mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-19 02:46:00 +01:00
216 lines
8.2 KiB
Python
216 lines
8.2 KiB
Python
import warnings
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import DataFrame, MultiIndex, Series, date_range
|
|
import pandas._testing as tm
|
|
from pandas.core.algorithms import safe_sort
|
|
|
|
|
|
class TestPairwise:
|
|
|
|
# GH 7738
|
|
df1s = [
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]),
|
|
DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0]),
|
|
DataFrame([[2, 4.0], [1, 2.0], [5, 2.0], [8, 1.0]], columns=[0, 1.0]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.0]], columns=[1.0, "X"]),
|
|
]
|
|
df2 = DataFrame(
|
|
[[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]],
|
|
columns=["Y", "Z", "X"],
|
|
)
|
|
s = Series([1, 1, 3, 8])
|
|
|
|
def compare(self, result, expected):
|
|
|
|
# since we have sorted the results
|
|
# we can only compare non-nans
|
|
result = result.dropna().values
|
|
expected = expected.dropna().values
|
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
|
|
def test_no_flex(self, f):
|
|
|
|
# DataFrame methods (which do not call _flex_binary_moment())
|
|
|
|
results = [f(df) for df in self.df1s]
|
|
for (df, result) in zip(self.df1s, results):
|
|
tm.assert_index_equal(result.index, df.columns)
|
|
tm.assert_index_equal(result.columns, df.columns)
|
|
for i, result in enumerate(results):
|
|
if i > 0:
|
|
self.compare(result, results[0])
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x: x.expanding().cov(pairwise=True),
|
|
lambda x: x.expanding().corr(pairwise=True),
|
|
lambda x: x.rolling(window=3).cov(pairwise=True),
|
|
lambda x: x.rolling(window=3).corr(pairwise=True),
|
|
lambda x: x.ewm(com=3).cov(pairwise=True),
|
|
lambda x: x.ewm(com=3).corr(pairwise=True),
|
|
],
|
|
)
|
|
def test_pairwise_with_self(self, f):
|
|
|
|
# DataFrame with itself, pairwise=True
|
|
# note that we may construct the 1st level of the MI
|
|
# in a non-monotonic way, so compare accordingly
|
|
results = []
|
|
for i, df in enumerate(self.df1s):
|
|
result = f(df)
|
|
tm.assert_index_equal(result.index.levels[0], df.index, check_names=False)
|
|
tm.assert_numpy_array_equal(
|
|
safe_sort(result.index.levels[1]), safe_sort(df.columns.unique())
|
|
)
|
|
tm.assert_index_equal(result.columns, df.columns)
|
|
results.append(df)
|
|
|
|
for i, result in enumerate(results):
|
|
if i > 0:
|
|
self.compare(result, results[0])
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x: x.expanding().cov(pairwise=False),
|
|
lambda x: x.expanding().corr(pairwise=False),
|
|
lambda x: x.rolling(window=3).cov(pairwise=False),
|
|
lambda x: x.rolling(window=3).corr(pairwise=False),
|
|
lambda x: x.ewm(com=3).cov(pairwise=False),
|
|
lambda x: x.ewm(com=3).corr(pairwise=False),
|
|
],
|
|
)
|
|
def test_no_pairwise_with_self(self, f):
|
|
|
|
# DataFrame with itself, pairwise=False
|
|
results = [f(df) for df in self.df1s]
|
|
for (df, result) in zip(self.df1s, results):
|
|
tm.assert_index_equal(result.index, df.index)
|
|
tm.assert_index_equal(result.columns, df.columns)
|
|
for i, result in enumerate(results):
|
|
if i > 0:
|
|
self.compare(result, results[0])
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x, y: x.expanding().cov(y, pairwise=True),
|
|
lambda x, y: x.expanding().corr(y, pairwise=True),
|
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=True),
|
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=True),
|
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=True),
|
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=True),
|
|
],
|
|
)
|
|
def test_pairwise_with_other(self, f):
|
|
|
|
# DataFrame with another DataFrame, pairwise=True
|
|
results = [f(df, self.df2) for df in self.df1s]
|
|
for (df, result) in zip(self.df1s, results):
|
|
tm.assert_index_equal(result.index.levels[0], df.index, check_names=False)
|
|
tm.assert_numpy_array_equal(
|
|
safe_sort(result.index.levels[1]), safe_sort(self.df2.columns.unique())
|
|
)
|
|
for i, result in enumerate(results):
|
|
if i > 0:
|
|
self.compare(result, results[0])
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x, y: x.expanding().cov(y, pairwise=False),
|
|
lambda x, y: x.expanding().corr(y, pairwise=False),
|
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=False),
|
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=False),
|
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=False),
|
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=False),
|
|
],
|
|
)
|
|
def test_no_pairwise_with_other(self, f):
|
|
|
|
# DataFrame with another DataFrame, pairwise=False
|
|
results = [
|
|
f(df, self.df2) if df.columns.is_unique else None for df in self.df1s
|
|
]
|
|
for (df, result) in zip(self.df1s, results):
|
|
if result is not None:
|
|
with warnings.catch_warnings(record=True):
|
|
warnings.simplefilter("ignore", RuntimeWarning)
|
|
# we can have int and str columns
|
|
expected_index = df.index.union(self.df2.index)
|
|
expected_columns = df.columns.union(self.df2.columns)
|
|
tm.assert_index_equal(result.index, expected_index)
|
|
tm.assert_index_equal(result.columns, expected_columns)
|
|
else:
|
|
with pytest.raises(ValueError, match="'arg1' columns are not unique"):
|
|
f(df, self.df2)
|
|
with pytest.raises(ValueError, match="'arg2' columns are not unique"):
|
|
f(self.df2, df)
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x, y: x.expanding().cov(y),
|
|
lambda x, y: x.expanding().corr(y),
|
|
lambda x, y: x.rolling(window=3).cov(y),
|
|
lambda x, y: x.rolling(window=3).corr(y),
|
|
lambda x, y: x.ewm(com=3).cov(y),
|
|
lambda x, y: x.ewm(com=3).corr(y),
|
|
],
|
|
)
|
|
def test_pairwise_with_series(self, f):
|
|
|
|
# DataFrame with a Series
|
|
results = [f(df, self.s) for df in self.df1s] + [
|
|
f(self.s, df) for df in self.df1s
|
|
]
|
|
for (df, result) in zip(self.df1s, results):
|
|
tm.assert_index_equal(result.index, df.index)
|
|
tm.assert_index_equal(result.columns, df.columns)
|
|
for i, result in enumerate(results):
|
|
if i > 0:
|
|
self.compare(result, results[0])
|
|
|
|
def test_corr_freq_memory_error(self):
|
|
# GH 31789
|
|
s = Series(range(5), index=date_range("2020", periods=5))
|
|
result = s.rolling("12H").corr(s)
|
|
expected = Series([np.nan] * 5, index=date_range("2020", periods=5))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_cov_mulittindex(self):
|
|
# GH 34440
|
|
|
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
|
|
index = range(3)
|
|
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns,)
|
|
|
|
result = df.ewm(alpha=0.1).cov()
|
|
|
|
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")])
|
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
|
|
expected = DataFrame(
|
|
np.vstack(
|
|
(
|
|
np.full((8, 8), np.NaN),
|
|
np.full((8, 8), 32.000000),
|
|
np.full((8, 8), 63.881919),
|
|
)
|
|
),
|
|
index=index,
|
|
columns=columns,
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|