mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-10 06:33:21 +01:00
150 lines
4.8 KiB
Python
150 lines
4.8 KiB
Python
from datetime import datetime, timedelta, tzinfo
|
|
from io import BufferedIOBase, RawIOBase, TextIOBase, TextIOWrapper
|
|
from mmap import mmap
|
|
from os import PathLike
|
|
from typing import (
|
|
IO,
|
|
TYPE_CHECKING,
|
|
Any,
|
|
AnyStr,
|
|
Callable,
|
|
Collection,
|
|
Dict,
|
|
Hashable,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
TypeVar,
|
|
Union,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
# To prevent import cycles place any internal imports in the branch below
|
|
# and use a string literal forward reference to it in subsequent types
|
|
# https://mypy.readthedocs.io/en/latest/common_issues.html#import-cycles
|
|
if TYPE_CHECKING:
|
|
from typing import final
|
|
|
|
from pandas._libs import Period, Timedelta, Timestamp
|
|
|
|
from pandas.core.dtypes.dtypes import ExtensionDtype
|
|
|
|
from pandas import Interval
|
|
from pandas.core.arrays.base import ExtensionArray # noqa: F401
|
|
from pandas.core.frame import DataFrame
|
|
from pandas.core.generic import NDFrame # noqa: F401
|
|
from pandas.core.groupby.generic import DataFrameGroupBy, SeriesGroupBy
|
|
from pandas.core.indexes.base import Index
|
|
from pandas.core.resample import Resampler
|
|
from pandas.core.series import Series
|
|
from pandas.core.window.rolling import BaseWindow
|
|
|
|
from pandas.io.formats.format import EngFormatter
|
|
else:
|
|
# typing.final does not exist until py38
|
|
final = lambda x: x
|
|
|
|
|
|
# array-like
|
|
|
|
AnyArrayLike = TypeVar("AnyArrayLike", "ExtensionArray", "Index", "Series", np.ndarray)
|
|
ArrayLike = TypeVar("ArrayLike", "ExtensionArray", np.ndarray)
|
|
|
|
# scalars
|
|
|
|
PythonScalar = Union[str, int, float, bool]
|
|
DatetimeLikeScalar = TypeVar("DatetimeLikeScalar", "Period", "Timestamp", "Timedelta")
|
|
PandasScalar = Union["Period", "Timestamp", "Timedelta", "Interval"]
|
|
Scalar = Union[PythonScalar, PandasScalar]
|
|
|
|
# timestamp and timedelta convertible types
|
|
|
|
TimestampConvertibleTypes = Union[
|
|
"Timestamp", datetime, np.datetime64, int, np.int64, float, str
|
|
]
|
|
TimedeltaConvertibleTypes = Union[
|
|
"Timedelta", timedelta, np.timedelta64, int, np.int64, float, str
|
|
]
|
|
Timezone = Union[str, tzinfo]
|
|
|
|
# other
|
|
|
|
Dtype = Union[
|
|
"ExtensionDtype", str, np.dtype, Type[Union[str, float, int, complex, bool, object]]
|
|
]
|
|
DtypeObj = Union[np.dtype, "ExtensionDtype"]
|
|
|
|
# FrameOrSeriesUnion means either a DataFrame or a Series. E.g.
|
|
# `def func(a: FrameOrSeriesUnion) -> FrameOrSeriesUnion: ...` means that if a Series
|
|
# is passed in, either a Series or DataFrame is returned, and if a DataFrame is passed
|
|
# in, either a DataFrame or a Series is returned.
|
|
FrameOrSeriesUnion = Union["DataFrame", "Series"]
|
|
|
|
# FrameOrSeries is stricter and ensures that the same subclass of NDFrame always is
|
|
# used. E.g. `def func(a: FrameOrSeries) -> FrameOrSeries: ...` means that if a
|
|
# Series is passed into a function, a Series is always returned and if a DataFrame is
|
|
# passed in, a DataFrame is always returned.
|
|
FrameOrSeries = TypeVar("FrameOrSeries", bound="NDFrame")
|
|
|
|
Axis = Union[str, int]
|
|
Label = Optional[Hashable]
|
|
IndexLabel = Union[Label, Sequence[Label]]
|
|
Level = Union[Label, int]
|
|
Shape = Tuple[int, ...]
|
|
Ordered = Optional[bool]
|
|
JSONSerializable = Optional[Union[PythonScalar, List, Dict]]
|
|
Axes = Collection
|
|
|
|
# For functions like rename that convert one label to another
|
|
Renamer = Union[Mapping[Label, Any], Callable[[Label], Label]]
|
|
|
|
# to maintain type information across generic functions and parametrization
|
|
T = TypeVar("T")
|
|
|
|
# used in decorators to preserve the signature of the function it decorates
|
|
# see https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators
|
|
FuncType = Callable[..., Any]
|
|
F = TypeVar("F", bound=FuncType)
|
|
|
|
# types of vectorized key functions for DataFrame::sort_values and
|
|
# DataFrame::sort_index, among others
|
|
ValueKeyFunc = Optional[Callable[["Series"], Union["Series", AnyArrayLike]]]
|
|
IndexKeyFunc = Optional[Callable[["Index"], Union["Index", AnyArrayLike]]]
|
|
|
|
# types of `func` kwarg for DataFrame.aggregate and Series.aggregate
|
|
AggFuncTypeBase = Union[Callable, str]
|
|
AggFuncTypeDict = Dict[Label, Union[AggFuncTypeBase, List[AggFuncTypeBase]]]
|
|
AggFuncType = Union[
|
|
AggFuncTypeBase,
|
|
List[AggFuncTypeBase],
|
|
AggFuncTypeDict,
|
|
]
|
|
AggObjType = Union[
|
|
"Series",
|
|
"DataFrame",
|
|
"SeriesGroupBy",
|
|
"DataFrameGroupBy",
|
|
"BaseWindow",
|
|
"Resampler",
|
|
]
|
|
|
|
# filenames and file-like-objects
|
|
Buffer = Union[IO[AnyStr], RawIOBase, BufferedIOBase, TextIOBase, TextIOWrapper, mmap]
|
|
FileOrBuffer = Union[str, Buffer[T]]
|
|
FilePathOrBuffer = Union["PathLike[str]", FileOrBuffer[T]]
|
|
|
|
# for arbitrary kwargs passed during reading/writing files
|
|
StorageOptions = Optional[Dict[str, Any]]
|
|
|
|
|
|
# compression keywords and compression
|
|
CompressionDict = Dict[str, Any]
|
|
CompressionOptions = Optional[Union[str, CompressionDict]]
|
|
|
|
|
|
# type of float formatter in DataFrameFormatter
|
|
FloatFormatType = Union[str, Callable, "EngFormatter"]
|