mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-25 13:54:29 +01:00
111 lines
3.9 KiB
Python
111 lines
3.9 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
dtypes = [
|
|
"int64",
|
|
"Int64",
|
|
{"A": "int64", "B": "Int64"},
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_unary_unary(dtype):
|
|
# unary input, unary output
|
|
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
|
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
|
result = np.positive(df)
|
|
expected = pd.DataFrame(
|
|
np.positive(values), index=df.index, columns=df.columns
|
|
).astype(dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_unary_binary(dtype):
|
|
# unary input, binary output
|
|
if pd.api.types.is_extension_array_dtype(dtype) or isinstance(dtype, dict):
|
|
pytest.xfail(reason="Extension / mixed with multiple outuputs not implemented.")
|
|
|
|
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
|
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
|
result_pandas = np.modf(df)
|
|
assert isinstance(result_pandas, tuple)
|
|
assert len(result_pandas) == 2
|
|
expected_numpy = np.modf(values)
|
|
|
|
for result, b in zip(result_pandas, expected_numpy):
|
|
expected = pd.DataFrame(b, index=df.index, columns=df.columns)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_binary_input_dispatch_binop(dtype):
|
|
# binop ufuncs are dispatched to our dunder methods.
|
|
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
|
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
|
result = np.add(df, df)
|
|
expected = pd.DataFrame(
|
|
np.add(values, values), index=df.index, columns=df.columns
|
|
).astype(dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype_a", dtypes)
|
|
@pytest.mark.parametrize("dtype_b", dtypes)
|
|
def test_binary_input_aligns_columns(dtype_a, dtype_b):
|
|
if (
|
|
pd.api.types.is_extension_array_dtype(dtype_a)
|
|
or isinstance(dtype_a, dict)
|
|
or pd.api.types.is_extension_array_dtype(dtype_b)
|
|
or isinstance(dtype_b, dict)
|
|
):
|
|
pytest.xfail(reason="Extension / mixed with multiple inputs not implemented.")
|
|
|
|
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}).astype(dtype_a)
|
|
|
|
if isinstance(dtype_a, dict) and isinstance(dtype_b, dict):
|
|
dtype_b["C"] = dtype_b.pop("B")
|
|
|
|
df2 = pd.DataFrame({"A": [1, 2], "C": [3, 4]}).astype(dtype_b)
|
|
result = np.heaviside(df1, df2)
|
|
expected = np.heaviside(
|
|
np.array([[1, 3, np.nan], [2, 4, np.nan]]),
|
|
np.array([[1, np.nan, 3], [2, np.nan, 4]]),
|
|
)
|
|
expected = pd.DataFrame(expected, index=[0, 1], columns=["A", "B", "C"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_binary_input_aligns_index(dtype):
|
|
if pd.api.types.is_extension_array_dtype(dtype) or isinstance(dtype, dict):
|
|
pytest.xfail(reason="Extension / mixed with multiple inputs not implemented.")
|
|
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).astype(dtype)
|
|
df2 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "c"]).astype(dtype)
|
|
result = np.heaviside(df1, df2)
|
|
expected = np.heaviside(
|
|
np.array([[1, 3], [3, 4], [np.nan, np.nan]]),
|
|
np.array([[1, 3], [np.nan, np.nan], [3, 4]]),
|
|
)
|
|
# TODO(FloatArray): this will be Float64Dtype.
|
|
expected = pd.DataFrame(expected, index=["a", "b", "c"], columns=["A", "B"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_binary_frame_series_raises():
|
|
# We don't currently implement
|
|
df = pd.DataFrame({"A": [1, 2]})
|
|
with pytest.raises(NotImplementedError, match="logaddexp"):
|
|
np.logaddexp(df, df["A"])
|
|
|
|
with pytest.raises(NotImplementedError, match="logaddexp"):
|
|
np.logaddexp(df["A"], df)
|
|
|
|
|
|
def test_frame_outer_deprecated():
|
|
df = pd.DataFrame({"A": [1, 2]})
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
np.subtract.outer(df, df)
|