mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-11-13 02:37:53 +01:00
203 lines
6.8 KiB
Python
203 lines
6.8 KiB
Python
import operator
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, Series
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestSeriesAnalytics:
|
|
def test_prod_numpy16_bug(self):
|
|
s = Series([1.0, 1.0, 1.0], index=range(3))
|
|
result = s.prod()
|
|
|
|
assert not isinstance(result, Series)
|
|
|
|
def test_matmul(self):
|
|
# matmul test is for GH #10259
|
|
a = Series(np.random.randn(4), index=["p", "q", "r", "s"])
|
|
b = DataFrame(
|
|
np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"]
|
|
).T
|
|
|
|
# Series @ DataFrame -> Series
|
|
result = operator.matmul(a, b)
|
|
expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# DataFrame @ Series -> Series
|
|
result = operator.matmul(b.T, a)
|
|
expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# Series @ Series -> scalar
|
|
result = operator.matmul(a, a)
|
|
expected = np.dot(a.values, a.values)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
# GH 21530
|
|
# vector (1D np.array) @ Series (__rmatmul__)
|
|
result = operator.matmul(a.values, a)
|
|
expected = np.dot(a.values, a.values)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
# GH 21530
|
|
# vector (1D list) @ Series (__rmatmul__)
|
|
result = operator.matmul(a.values.tolist(), a)
|
|
expected = np.dot(a.values, a.values)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
# GH 21530
|
|
# matrix (2D np.array) @ Series (__rmatmul__)
|
|
result = operator.matmul(b.T.values, a)
|
|
expected = np.dot(b.T.values, a.values)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
# GH 21530
|
|
# matrix (2D nested lists) @ Series (__rmatmul__)
|
|
result = operator.matmul(b.T.values.tolist(), a)
|
|
expected = np.dot(b.T.values, a.values)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
# mixed dtype DataFrame @ Series
|
|
a["p"] = int(a.p)
|
|
result = operator.matmul(b.T, a)
|
|
expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# different dtypes DataFrame @ Series
|
|
a = a.astype(int)
|
|
result = operator.matmul(b.T, a)
|
|
expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)"
|
|
# exception raised is of type Exception
|
|
with pytest.raises(Exception, match=msg):
|
|
a.dot(a.values[:3])
|
|
msg = "matrices are not aligned"
|
|
with pytest.raises(ValueError, match=msg):
|
|
a.dot(b.T)
|
|
|
|
def test_ptp(self):
|
|
# GH21614
|
|
N = 1000
|
|
arr = np.random.randn(N)
|
|
ser = Series(arr)
|
|
assert np.ptp(ser) == np.ptp(arr)
|
|
|
|
def test_repeat(self):
|
|
s = Series(np.random.randn(3), index=["a", "b", "c"])
|
|
|
|
reps = s.repeat(5)
|
|
exp = Series(s.values.repeat(5), index=s.index.values.repeat(5))
|
|
tm.assert_series_equal(reps, exp)
|
|
|
|
to_rep = [2, 3, 4]
|
|
reps = s.repeat(to_rep)
|
|
exp = Series(s.values.repeat(to_rep), index=s.index.values.repeat(to_rep))
|
|
tm.assert_series_equal(reps, exp)
|
|
|
|
def test_numpy_repeat(self):
|
|
s = Series(np.arange(3), name="x")
|
|
expected = Series(s.values.repeat(2), name="x", index=s.index.values.repeat(2))
|
|
tm.assert_series_equal(np.repeat(s, 2), expected)
|
|
|
|
msg = "the 'axis' parameter is not supported"
|
|
with pytest.raises(ValueError, match=msg):
|
|
np.repeat(s, 2, axis=0)
|
|
|
|
def test_is_monotonic(self):
|
|
|
|
s = Series(np.random.randint(0, 10, size=1000))
|
|
assert not s.is_monotonic
|
|
s = Series(np.arange(1000))
|
|
assert s.is_monotonic is True
|
|
assert s.is_monotonic_increasing is True
|
|
s = Series(np.arange(1000, 0, -1))
|
|
assert s.is_monotonic_decreasing is True
|
|
|
|
s = Series(pd.date_range("20130101", periods=10))
|
|
assert s.is_monotonic is True
|
|
assert s.is_monotonic_increasing is True
|
|
s = Series(list(reversed(s.tolist())))
|
|
assert s.is_monotonic is False
|
|
assert s.is_monotonic_decreasing is True
|
|
|
|
@pytest.mark.parametrize("func", [np.any, np.all])
|
|
@pytest.mark.parametrize("kwargs", [dict(keepdims=True), dict(out=object())])
|
|
@td.skip_if_np_lt("1.15")
|
|
def test_validate_any_all_out_keepdims_raises(self, kwargs, func):
|
|
s = pd.Series([1, 2])
|
|
param = list(kwargs)[0]
|
|
name = func.__name__
|
|
|
|
msg = (
|
|
f"the '{param}' parameter is not "
|
|
"supported in the pandas "
|
|
fr"implementation of {name}\(\)"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
func(s, **kwargs)
|
|
|
|
@td.skip_if_np_lt("1.15")
|
|
def test_validate_sum_initial(self):
|
|
s = pd.Series([1, 2])
|
|
msg = (
|
|
r"the 'initial' parameter is not "
|
|
r"supported in the pandas "
|
|
r"implementation of sum\(\)"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
np.sum(s, initial=10)
|
|
|
|
def test_validate_median_initial(self):
|
|
s = pd.Series([1, 2])
|
|
msg = (
|
|
r"the 'overwrite_input' parameter is not "
|
|
r"supported in the pandas "
|
|
r"implementation of median\(\)"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
# It seems like np.median doesn't dispatch, so we use the
|
|
# method instead of the ufunc.
|
|
s.median(overwrite_input=True)
|
|
|
|
@td.skip_if_np_lt("1.15")
|
|
def test_validate_stat_keepdims(self):
|
|
s = pd.Series([1, 2])
|
|
msg = (
|
|
r"the 'keepdims' parameter is not "
|
|
r"supported in the pandas "
|
|
r"implementation of sum\(\)"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
np.sum(s, keepdims=True)
|
|
|
|
def test_td64_summation_overflow(self):
|
|
# GH 9442
|
|
s = pd.Series(pd.date_range("20130101", periods=100000, freq="H"))
|
|
s[0] += pd.Timedelta("1s 1ms")
|
|
|
|
# mean
|
|
result = (s - s.min()).mean()
|
|
expected = pd.Timedelta((pd.TimedeltaIndex((s - s.min())).asi8 / len(s)).sum())
|
|
|
|
# the computation is converted to float so
|
|
# might be some loss of precision
|
|
assert np.allclose(result.value / 1000, expected.value / 1000)
|
|
|
|
# sum
|
|
msg = "overflow in timedelta operation"
|
|
with pytest.raises(ValueError, match=msg):
|
|
(s - s.min()).sum()
|
|
|
|
s1 = s[0:10000]
|
|
with pytest.raises(ValueError, match=msg):
|
|
(s1 - s1.min()).sum()
|
|
s2 = s[0:1000]
|
|
(s2 - s2.min()).sum()
|