craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/extension/test_floating.py

223 lines
5.9 KiB
Python

"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import is_extension_array_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.floating import Float32Dtype, Float64Dtype
from pandas.tests.extension import base
def make_data():
return (
list(np.arange(0.1, 0.9, 0.1))
+ [pd.NA]
+ list(np.arange(1, 9.8, 0.1))
+ [pd.NA]
+ [9.9, 10.0]
)
@pytest.fixture(params=[Float32Dtype, Float64Dtype])
def dtype(request):
return request.param()
@pytest.fixture
def data(dtype):
return pd.array(make_data(), dtype=dtype)
@pytest.fixture
def data_for_twos(dtype):
return pd.array(np.ones(100) * 2, dtype=dtype)
@pytest.fixture
def data_missing(dtype):
return pd.array([pd.NA, 0.1], dtype=dtype)
@pytest.fixture
def data_for_sorting(dtype):
return pd.array([0.1, 0.2, 0.0], dtype=dtype)
@pytest.fixture
def data_missing_for_sorting(dtype):
return pd.array([0.1, pd.NA, 0.0], dtype=dtype)
@pytest.fixture
def na_cmp():
# we are pd.NA
return lambda x, y: x is pd.NA and y is pd.NA
@pytest.fixture
def na_value():
return pd.NA
@pytest.fixture
def data_for_grouping(dtype):
b = 0.1
a = 0.0
c = 0.2
na = pd.NA
return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
class TestDtype(base.BaseDtypeTests):
@pytest.mark.skip(reason="using multiple dtypes")
def test_is_dtype_unboxes_dtype(self):
# we have multiple dtypes, so skip
pass
class TestArithmeticOps(base.BaseArithmeticOpsTests):
def check_opname(self, s, op_name, other, exc=None):
# overwriting to indicate ops don't raise an error
super().check_opname(s, op_name, other, exc=None)
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
if (
hasattr(other, "dtype")
and not is_extension_array_dtype(other.dtype)
and pd.api.types.is_float_dtype(other.dtype)
):
# other is np.float64 and would therefore always result in
# upcasting, so keeping other as same numpy_dtype
other = other.astype(s.dtype.numpy_dtype)
result = op(s, other)
expected = s.combine(other, op)
# combine method result in 'biggest' (float64) dtype
expected = expected.astype(s.dtype)
self.assert_series_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def _check_divmod_op(self, s, op, other, exc=None):
super()._check_divmod_op(s, op, other, None)
@pytest.mark.skip(reason="intNA does not error on ops")
def test_error(self, data, all_arithmetic_operators):
# other specific errors tested in the float array specific tests
pass
class TestComparisonOps(base.BaseComparisonOpsTests):
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
result = op(s, other)
# Override to do the astype to boolean
expected = s.combine(other, op).astype("boolean")
self.assert_series_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def check_opname(self, s, op_name, other, exc=None):
super().check_opname(s, op_name, other, exc=None)
def _compare_other(self, s, data, op_name, other):
self.check_opname(s, op_name, other)
class TestInterface(base.BaseInterfaceTests):
pass
class TestConstructors(base.BaseConstructorsTests):
pass
class TestReshaping(base.BaseReshapingTests):
pass
class TestGetitem(base.BaseGetitemTests):
pass
class TestSetitem(base.BaseSetitemTests):
pass
class TestMissing(base.BaseMissingTests):
pass
class TestMethods(base.BaseMethodsTests):
@pytest.mark.skip(reason="uses nullable integer")
def test_value_counts(self, all_data, dropna):
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
expected.index = expected.index.astype(all_data.dtype)
self.assert_series_equal(result, expected)
@pytest.mark.skip(reason="uses nullable integer")
def test_value_counts_with_normalize(self, data):
pass
class TestCasting(base.BaseCastingTests):
pass
class TestGroupby(base.BaseGroupbyTests):
pass
class TestNumericReduce(base.BaseNumericReduceTests):
def check_reduce(self, s, op_name, skipna):
# overwrite to ensure pd.NA is tested instead of np.nan
# https://github.com/pandas-dev/pandas/issues/30958
result = getattr(s, op_name)(skipna=skipna)
if not skipna and s.isna().any():
expected = pd.NA
else:
expected = getattr(s.dropna().astype(s.dtype.numpy_dtype), op_name)(
skipna=skipna
)
tm.assert_almost_equal(result, expected)
class TestBooleanReduce(base.BaseBooleanReduceTests):
pass
class TestPrinting(base.BasePrintingTests):
pass
class TestParsing(base.BaseParsingTests):
pass