craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/plotting/test_misc.py

537 lines
19 KiB
Python

""" Test cases for misc plot functions """
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame, Series
import pandas._testing as tm
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
import pandas.plotting as plotting
pytestmark = pytest.mark.slow
@td.skip_if_mpl
def test_import_error_message():
# GH-19810
df = DataFrame({"A": [1, 2]})
with pytest.raises(ImportError, match="matplotlib is required for plotting"):
df.plot()
def test_get_accessor_args():
func = plotting._core.PlotAccessor._get_call_args
msg = "Called plot accessor for type list, expected Series or DataFrame"
with pytest.raises(TypeError, match=msg):
func(backend_name="", data=[], args=[], kwargs={})
msg = "should not be called with positional arguments"
with pytest.raises(TypeError, match=msg):
func(backend_name="", data=Series(dtype=object), args=["line", None], kwargs={})
x, y, kind, kwargs = func(
backend_name="",
data=DataFrame(),
args=["x"],
kwargs={"y": "y", "kind": "bar", "grid": False},
)
assert x == "x"
assert y == "y"
assert kind == "bar"
assert kwargs == {"grid": False}
x, y, kind, kwargs = func(
backend_name="pandas.plotting._matplotlib",
data=Series(dtype=object),
args=[],
kwargs={},
)
assert x is None
assert y is None
assert kind == "line"
assert len(kwargs) == 24
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = "ts"
def test_autocorrelation_plot(self):
from pandas.plotting import autocorrelation_plot
_check_plot_works(autocorrelation_plot, series=self.ts)
_check_plot_works(autocorrelation_plot, series=self.ts.values)
ax = autocorrelation_plot(self.ts, label="Test")
self._check_legend_labels(ax, labels=["Test"])
def test_lag_plot(self):
from pandas.plotting import lag_plot
_check_plot_works(lag_plot, series=self.ts)
_check_plot_works(lag_plot, series=self.ts, lag=5)
def test_bootstrap_plot(self):
from pandas.plotting import bootstrap_plot
_check_plot_works(bootstrap_plot, series=self.ts, size=10)
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
@td.skip_if_no_scipy
def test_scatter_matrix_axis(self):
from pandas.plotting._matplotlib.compat import mpl_ge_3_0_0
scatter_matrix = plotting.scatter_matrix
with tm.RNGContext(42):
df = DataFrame(np.random.randn(100, 3))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(
UserWarning, raise_on_extra_warnings=mpl_ge_3_0_0()
):
axes = _check_plot_works(
scatter_matrix, filterwarnings="always", frame=df, range_padding=0.1
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
expected = ["-2", "0", "2"]
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
df[0] = (df[0] - 2) / 3
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
scatter_matrix, filterwarnings="always", frame=df, range_padding=0.1
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
expected = ["-1.0", "-0.5", "0.0"]
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
def test_andrews_curves(self, iris):
from matplotlib import cm
from pandas.plotting import andrews_curves
df = iris
_check_plot_works(andrews_curves, frame=df, class_column="Name")
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=rgba
)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
)
cnames = ["dodgerblue", "aquamarine", "seagreen"]
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=cnames
)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
)
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
)
length = 10
df = DataFrame(
{
"A": np.random.rand(length),
"B": np.random.rand(length),
"C": np.random.rand(length),
"Name": ["A"] * length,
}
)
_check_plot_works(andrews_curves, frame=df, class_column="Name")
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=rgba
)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
)
cnames = ["dodgerblue", "aquamarine", "seagreen"]
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=cnames
)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
)
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
)
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = andrews_curves(df, "Name", color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, linecolors=colors)
def test_parallel_coordinates(self, iris):
from matplotlib import cm
from pandas.plotting import parallel_coordinates
df = iris
ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name")
nlines = len(ax.get_lines())
nxticks = len(ax.xaxis.get_ticklabels())
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", color=rgba
)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
)
cnames = ["dodgerblue", "aquamarine", "seagreen"]
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", color=cnames
)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
)
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
)
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", axvlines=False
)
assert len(ax.get_lines()) == (nlines - nxticks)
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = parallel_coordinates(df, "Name", color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, linecolors=colors)
# not sure if this is indicative of a problem
@pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
def test_parallel_coordinates_with_sorted_labels(self):
""" For #15908 """
from pandas.plotting import parallel_coordinates
df = DataFrame(
{
"feat": list(range(30)),
"class": [2 for _ in range(10)]
+ [3 for _ in range(10)]
+ [1 for _ in range(10)],
}
)
ax = parallel_coordinates(df, "class", sort_labels=True)
polylines, labels = ax.get_legend_handles_labels()
color_label_tuples = zip(
[polyline.get_color() for polyline in polylines], labels
)
ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1])
prev_next_tupels = zip(
list(ordered_color_label_tuples[0:-1]), list(ordered_color_label_tuples[1:])
)
for prev, nxt in prev_next_tupels:
# labels and colors are ordered strictly increasing
assert prev[1] < nxt[1] and prev[0] < nxt[0]
def test_radviz(self, iris):
from matplotlib import cm
from pandas.plotting import radviz
df = iris
_check_plot_works(radviz, frame=df, class_column="Name")
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(radviz, frame=df, class_column="Name", color=rgba)
# skip Circle drawn as ticks
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
self._check_colors(patches[:10], facecolors=rgba, mapping=df["Name"][:10])
cnames = ["dodgerblue", "aquamarine", "seagreen"]
_check_plot_works(radviz, frame=df, class_column="Name", color=cnames)
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
self._check_colors(patches, facecolors=cnames, mapping=df["Name"][:10])
_check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
self._check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10])
colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]]
df = DataFrame(
{"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]}
)
ax = radviz(df, "Name", color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, facecolors=colors)
def test_subplot_titles(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case len(title) == len(df)
plot = df.plot(subplots=True, title=title)
assert [p.get_title() for p in plot] == title
# Case len(title) > len(df)
msg = (
"The length of `title` must equal the number of columns if "
"using `title` of type `list` and `subplots=True`"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title + ["kittens > puppies"])
# Case len(title) < len(df)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title[:2])
# Case subplots=False and title is of type list
msg = (
"Using `title` of type `list` is not supported unless "
"`subplots=True` is passed"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=False, title=title)
# Case df with 3 numeric columns but layout of (2,2)
plot = df.drop("SepalWidth", axis=1).plot(
subplots=True, layout=(2, 2), title=title[:-1]
)
title_list = [ax.get_title() for sublist in plot for ax in sublist]
assert title_list == title[:3] + [""]
def test_get_standard_colors_random_seed(self):
# GH17525
df = DataFrame(np.zeros((10, 10)))
# Make sure that the np.random.seed isn't reset by get_standard_colors
plotting.parallel_coordinates(df, 0)
rand1 = np.random.random()
plotting.parallel_coordinates(df, 0)
rand2 = np.random.random()
assert rand1 != rand2
# Make sure it produces the same colors every time it's called
from pandas.plotting._matplotlib.style import get_standard_colors
color1 = get_standard_colors(1, color_type="random")
color2 = get_standard_colors(1, color_type="random")
assert color1 == color2
def test_get_standard_colors_default_num_colors(self):
from pandas.plotting._matplotlib.style import get_standard_colors
# Make sure the default color_types returns the specified amount
color1 = get_standard_colors(1, color_type="default")
color2 = get_standard_colors(9, color_type="default")
color3 = get_standard_colors(20, color_type="default")
assert len(color1) == 1
assert len(color2) == 9
assert len(color3) == 20
def test_plot_single_color(self):
# Example from #20585. All 3 bars should have the same color
df = DataFrame(
{
"account-start": ["2017-02-03", "2017-03-03", "2017-01-01"],
"client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"],
"balance": [-1432.32, 10.43, 30000.00],
"db-id": [1234, 2424, 251],
"proxy-id": [525, 1525, 2542],
"rank": [52, 525, 32],
}
)
ax = df.client.value_counts().plot.bar()
colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]]
assert all(color == colors[0] for color in colors)
def test_get_standard_colors_no_appending(self):
# GH20726
# Make sure not to add more colors so that matplotlib can cycle
# correctly.
from matplotlib import cm
from pandas.plotting._matplotlib.style import get_standard_colors
color_before = cm.gnuplot(range(5))
color_after = get_standard_colors(1, color=color_before)
assert len(color_after) == len(color_before)
df = DataFrame(np.random.randn(48, 4), columns=list("ABCD"))
color_list = cm.gnuplot(np.linspace(0, 1, 16))
p = df.A.plot.bar(figsize=(16, 7), color=color_list)
assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor()
def test_dictionary_color(self):
# issue-8193
# Test plot color dictionary format
data_files = ["a", "b"]
expected = [(0.5, 0.24, 0.6), (0.3, 0.7, 0.7)]
df1 = DataFrame(np.random.rand(2, 2), columns=data_files)
dic_color = {"b": (0.3, 0.7, 0.7), "a": (0.5, 0.24, 0.6)}
# Bar color test
ax = df1.plot(kind="bar", color=dic_color)
colors = [rect.get_facecolor()[0:-1] for rect in ax.get_children()[0:3:2]]
assert all(color == expected[index] for index, color in enumerate(colors))
# Line color test
ax = df1.plot(kind="line", color=dic_color)
colors = [rect.get_color() for rect in ax.get_lines()[0:2]]
assert all(color == expected[index] for index, color in enumerate(colors))
def test_has_externally_shared_axis_x_axis(self):
# GH33819
# Test _has_externally_shared_axis() works for x-axis
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = self.plt.figure()
plots = fig.subplots(2, 4)
# Create *externally* shared axes for first and third columns
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
# Create *internally* shared axes for second and third columns
plots[0][1].twinx()
plots[0][2].twinx()
# First column is only externally shared
# Second column is only internally shared
# Third column is both
# Fourth column is neither
assert func(plots[0][0], "x")
assert not func(plots[0][1], "x")
assert func(plots[0][2], "x")
assert not func(plots[0][3], "x")
def test_has_externally_shared_axis_y_axis(self):
# GH33819
# Test _has_externally_shared_axis() works for y-axis
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = self.plt.figure()
plots = fig.subplots(4, 2)
# Create *externally* shared axes for first and third rows
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
plots[2][0] = fig.add_subplot(325, sharey=plots[2][1])
# Create *internally* shared axes for second and third rows
plots[1][0].twiny()
plots[2][0].twiny()
# First row is only externally shared
# Second row is only internally shared
# Third row is both
# Fourth row is neither
assert func(plots[0][0], "y")
assert not func(plots[1][0], "y")
assert func(plots[2][0], "y")
assert not func(plots[3][0], "y")
def test_has_externally_shared_axis_invalid_compare_axis(self):
# GH33819
# Test _has_externally_shared_axis() raises an exception when
# passed an invalid value as compare_axis parameter
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = self.plt.figure()
plots = fig.subplots(4, 2)
# Create arbitrary axes
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
# Check that an invalid compare_axis value triggers the expected exception
msg = "needs 'x' or 'y' as a second parameter"
with pytest.raises(ValueError, match=msg):
func(plots[0][0], "z")
def test_externally_shared_axes(self):
# Example from GH33819
# Create data
df = DataFrame({"a": np.random.randn(1000), "b": np.random.randn(1000)})
# Create figure
fig = self.plt.figure()
plots = fig.subplots(2, 3)
# Create *externally* shared axes
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
# note: no plots[0][1] that's the twin only case
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
# Create *internally* shared axes
# note: no plots[0][0] that's the external only case
twin_ax1 = plots[0][1].twinx()
twin_ax2 = plots[0][2].twinx()
# Plot data to primary axes
df["a"].plot(ax=plots[0][0], title="External share only").set_xlabel(
"this label should never be visible"
)
df["a"].plot(ax=plots[1][0])
df["a"].plot(ax=plots[0][1], title="Internal share (twin) only").set_xlabel(
"this label should always be visible"
)
df["a"].plot(ax=plots[1][1])
df["a"].plot(ax=plots[0][2], title="Both").set_xlabel(
"this label should never be visible"
)
df["a"].plot(ax=plots[1][2])
# Plot data to twinned axes
df["b"].plot(ax=twin_ax1, color="green")
df["b"].plot(ax=twin_ax2, color="yellow")
assert not plots[0][0].xaxis.get_label().get_visible()
assert plots[0][1].xaxis.get_label().get_visible()
assert not plots[0][2].xaxis.get_label().get_visible()