craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/window/test_pairwise.py

219 lines
8.5 KiB
Python

import warnings
import numpy as np
import pytest
from pandas import DataFrame, MultiIndex, Series, date_range
import pandas._testing as tm
from pandas.core.algorithms import safe_sort
class TestPairwise:
# GH 7738
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame methods (which do not call flex_binary_moment())
result = f(pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.columns)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().cov(pairwise=True),
lambda x: x.expanding().corr(pairwise=True),
lambda x: x.rolling(window=3).cov(pairwise=True),
lambda x: x.rolling(window=3).corr(pairwise=True),
lambda x: x.ewm(com=3).cov(pairwise=True),
lambda x: x.ewm(com=3).corr(pairwise=True),
],
)
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=True
# note that we may construct the 1st level of the MI
# in a non-monotonic way, so compare accordingly
result = f(pairwise_frames)
tm.assert_index_equal(
result.index.levels[0], pairwise_frames.index, check_names=False
)
tm.assert_numpy_array_equal(
safe_sort(result.index.levels[1]),
safe_sort(pairwise_frames.columns.unique()),
)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().cov(pairwise=False),
lambda x: x.expanding().corr(pairwise=False),
lambda x: x.rolling(window=3).cov(pairwise=False),
lambda x: x.rolling(window=3).corr(pairwise=False),
lambda x: x.ewm(com=3).cov(pairwise=False),
lambda x: x.ewm(com=3).corr(pairwise=False),
],
)
def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=False
result = f(pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.index)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y, pairwise=True),
lambda x, y: x.expanding().corr(y, pairwise=True),
lambda x, y: x.rolling(window=3).cov(y, pairwise=True),
lambda x, y: x.rolling(window=3).corr(y, pairwise=True),
lambda x, y: x.ewm(com=3).cov(y, pairwise=True),
lambda x, y: x.ewm(com=3).corr(y, pairwise=True),
],
)
def test_pairwise_with_other(
self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f
):
# DataFrame with another DataFrame, pairwise=True
result = f(pairwise_frames, pairwise_other_frame)
tm.assert_index_equal(
result.index.levels[0], pairwise_frames.index, check_names=False
)
tm.assert_numpy_array_equal(
safe_sort(result.index.levels[1]),
safe_sort(pairwise_other_frame.columns.unique()),
)
expected = f(pairwise_target_frame, pairwise_other_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y, pairwise=False),
lambda x, y: x.expanding().corr(y, pairwise=False),
lambda x, y: x.rolling(window=3).cov(y, pairwise=False),
lambda x, y: x.rolling(window=3).corr(y, pairwise=False),
lambda x, y: x.ewm(com=3).cov(y, pairwise=False),
lambda x, y: x.ewm(com=3).corr(y, pairwise=False),
],
)
def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f):
# DataFrame with another DataFrame, pairwise=False
result = (
f(pairwise_frames, pairwise_other_frame)
if pairwise_frames.columns.is_unique
else None
)
if result is not None:
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore", RuntimeWarning)
# we can have int and str columns
expected_index = pairwise_frames.index.union(pairwise_other_frame.index)
expected_columns = pairwise_frames.columns.union(
pairwise_other_frame.columns
)
tm.assert_index_equal(result.index, expected_index)
tm.assert_index_equal(result.columns, expected_columns)
else:
with pytest.raises(ValueError, match="'arg1' columns are not unique"):
f(pairwise_frames, pairwise_other_frame)
with pytest.raises(ValueError, match="'arg2' columns are not unique"):
f(pairwise_other_frame, pairwise_frames)
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y),
lambda x, y: x.expanding().corr(y),
lambda x, y: x.rolling(window=3).cov(y),
lambda x, y: x.rolling(window=3).corr(y),
lambda x, y: x.ewm(com=3).cov(y),
lambda x, y: x.ewm(com=3).corr(y),
],
)
def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with a Series
result = f(pairwise_frames, Series([1, 1, 3, 8]))
tm.assert_index_equal(result.index, pairwise_frames.index)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame, Series([1, 1, 3, 8]))
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
result = f(Series([1, 1, 3, 8]), pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.index)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(Series([1, 1, 3, 8]), pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
def test_corr_freq_memory_error(self):
# GH 31789
s = Series(range(5), index=date_range("2020", periods=5))
result = s.rolling("12H").corr(s)
expected = Series([np.nan] * 5, index=date_range("2020", periods=5))
tm.assert_series_equal(result, expected)
def test_cov_mulittindex(self):
# GH 34440
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
index = range(3)
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns)
result = df.ewm(alpha=0.1).cov()
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")])
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
expected = DataFrame(
np.vstack(
(
np.full((8, 8), np.NaN),
np.full((8, 8), 32.000000),
np.full((8, 8), 63.881919),
)
),
index=index,
columns=columns,
)
tm.assert_frame_equal(result, expected)