mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-23 21:04:31 +01:00
107 lines
3.3 KiB
Python
107 lines
3.3 KiB
Python
from datetime import time
|
|
|
|
import numpy as np
|
|
|
|
from pandas.compat._optional import import_optional_dependency
|
|
|
|
from pandas.io.excel._base import _BaseExcelReader
|
|
|
|
|
|
class _XlrdReader(_BaseExcelReader):
|
|
def __init__(self, filepath_or_buffer):
|
|
"""
|
|
Reader using xlrd engine.
|
|
|
|
Parameters
|
|
----------
|
|
filepath_or_buffer : string, path object or Workbook
|
|
Object to be parsed.
|
|
"""
|
|
err_msg = "Install xlrd >= 1.0.0 for Excel support"
|
|
import_optional_dependency("xlrd", extra=err_msg)
|
|
super().__init__(filepath_or_buffer)
|
|
|
|
@property
|
|
def _workbook_class(self):
|
|
from xlrd import Book
|
|
|
|
return Book
|
|
|
|
def load_workbook(self, filepath_or_buffer):
|
|
from xlrd import open_workbook
|
|
|
|
if hasattr(filepath_or_buffer, "read"):
|
|
data = filepath_or_buffer.read()
|
|
return open_workbook(file_contents=data)
|
|
else:
|
|
return open_workbook(filepath_or_buffer)
|
|
|
|
@property
|
|
def sheet_names(self):
|
|
return self.book.sheet_names()
|
|
|
|
def get_sheet_by_name(self, name):
|
|
return self.book.sheet_by_name(name)
|
|
|
|
def get_sheet_by_index(self, index):
|
|
return self.book.sheet_by_index(index)
|
|
|
|
def get_sheet_data(self, sheet, convert_float):
|
|
from xlrd import (
|
|
XL_CELL_BOOLEAN,
|
|
XL_CELL_DATE,
|
|
XL_CELL_ERROR,
|
|
XL_CELL_NUMBER,
|
|
xldate,
|
|
)
|
|
|
|
epoch1904 = self.book.datemode
|
|
|
|
def _parse_cell(cell_contents, cell_typ):
|
|
"""
|
|
converts the contents of the cell into a pandas appropriate object
|
|
"""
|
|
if cell_typ == XL_CELL_DATE:
|
|
|
|
# Use the newer xlrd datetime handling.
|
|
try:
|
|
cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
|
|
except OverflowError:
|
|
return cell_contents
|
|
|
|
# Excel doesn't distinguish between dates and time,
|
|
# so we treat dates on the epoch as times only.
|
|
# Also, Excel supports 1900 and 1904 epochs.
|
|
year = (cell_contents.timetuple())[0:3]
|
|
if (not epoch1904 and year == (1899, 12, 31)) or (
|
|
epoch1904 and year == (1904, 1, 1)
|
|
):
|
|
cell_contents = time(
|
|
cell_contents.hour,
|
|
cell_contents.minute,
|
|
cell_contents.second,
|
|
cell_contents.microsecond,
|
|
)
|
|
|
|
elif cell_typ == XL_CELL_ERROR:
|
|
cell_contents = np.nan
|
|
elif cell_typ == XL_CELL_BOOLEAN:
|
|
cell_contents = bool(cell_contents)
|
|
elif convert_float and cell_typ == XL_CELL_NUMBER:
|
|
# GH5394 - Excel 'numbers' are always floats
|
|
# it's a minimal perf hit and less surprising
|
|
val = int(cell_contents)
|
|
if val == cell_contents:
|
|
cell_contents = val
|
|
return cell_contents
|
|
|
|
data = []
|
|
|
|
for i in range(sheet.nrows):
|
|
row = [
|
|
_parse_cell(value, typ)
|
|
for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
|
|
]
|
|
data.append(row)
|
|
|
|
return data
|