mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-10 14:43:19 +01:00
129 lines
3.7 KiB
Python
129 lines
3.7 KiB
Python
""" feather-format compat """
|
|
|
|
from typing import AnyStr
|
|
|
|
from pandas._typing import FilePathOrBuffer, StorageOptions
|
|
from pandas.compat._optional import import_optional_dependency
|
|
from pandas.util._decorators import doc
|
|
|
|
from pandas import DataFrame, Int64Index, RangeIndex
|
|
from pandas.core import generic
|
|
|
|
from pandas.io.common import get_handle
|
|
|
|
|
|
@doc(storage_options=generic._shared_docs["storage_options"])
|
|
def to_feather(
|
|
df: DataFrame,
|
|
path: FilePathOrBuffer[AnyStr],
|
|
storage_options: StorageOptions = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Write a DataFrame to the binary Feather format.
|
|
|
|
Parameters
|
|
----------
|
|
df : DataFrame
|
|
path : string file path, or file-like object
|
|
{storage_options}
|
|
|
|
.. versionadded:: 1.2.0
|
|
|
|
**kwargs :
|
|
Additional keywords passed to `pyarrow.feather.write_feather`.
|
|
|
|
.. versionadded:: 1.1.0
|
|
"""
|
|
import_optional_dependency("pyarrow")
|
|
from pyarrow import feather
|
|
|
|
if not isinstance(df, DataFrame):
|
|
raise ValueError("feather only support IO with DataFrames")
|
|
|
|
valid_types = {"string", "unicode"}
|
|
|
|
# validate index
|
|
# --------------
|
|
|
|
# validate that we have only a default index
|
|
# raise on anything else as we don't serialize the index
|
|
|
|
if not isinstance(df.index, Int64Index):
|
|
typ = type(df.index)
|
|
raise ValueError(
|
|
f"feather does not support serializing {typ} "
|
|
"for the index; you can .reset_index() to make the index into column(s)"
|
|
)
|
|
|
|
if not df.index.equals(RangeIndex.from_range(range(len(df)))):
|
|
raise ValueError(
|
|
"feather does not support serializing a non-default index for the index; "
|
|
"you can .reset_index() to make the index into column(s)"
|
|
)
|
|
|
|
if df.index.name is not None:
|
|
raise ValueError(
|
|
"feather does not serialize index meta-data on a default index"
|
|
)
|
|
|
|
# validate columns
|
|
# ----------------
|
|
|
|
# must have value column names (strings only)
|
|
if df.columns.inferred_type not in valid_types:
|
|
raise ValueError("feather must have string column names")
|
|
|
|
with get_handle(
|
|
path, "wb", storage_options=storage_options, is_text=False
|
|
) as handles:
|
|
feather.write_feather(df, handles.handle, **kwargs)
|
|
|
|
|
|
@doc(storage_options=generic._shared_docs["storage_options"])
|
|
def read_feather(
|
|
path, columns=None, use_threads: bool = True, storage_options: StorageOptions = None
|
|
):
|
|
"""
|
|
Load a feather-format object from the file path.
|
|
|
|
Parameters
|
|
----------
|
|
path : str, path object or file-like object
|
|
Any valid string path is acceptable. The string could be a URL. Valid
|
|
URL schemes include http, ftp, s3, and file. For file URLs, a host is
|
|
expected. A local file could be:
|
|
``file://localhost/path/to/table.feather``.
|
|
|
|
If you want to pass in a path object, pandas accepts any
|
|
``os.PathLike``.
|
|
|
|
By file-like object, we refer to objects with a ``read()`` method,
|
|
such as a file handle (e.g. via builtin ``open`` function)
|
|
or ``StringIO``.
|
|
columns : sequence, default None
|
|
If not provided, all columns are read.
|
|
|
|
.. versionadded:: 0.24.0
|
|
use_threads : bool, default True
|
|
Whether to parallelize reading using multiple threads.
|
|
|
|
.. versionadded:: 0.24.0
|
|
{storage_options}
|
|
|
|
.. versionadded:: 1.2.0
|
|
|
|
Returns
|
|
-------
|
|
type of object stored in file
|
|
"""
|
|
import_optional_dependency("pyarrow")
|
|
from pyarrow import feather
|
|
|
|
with get_handle(
|
|
path, "rb", storage_options=storage_options, is_text=False
|
|
) as handles:
|
|
|
|
return feather.read_feather(
|
|
handles.handle, columns=columns, use_threads=bool(use_threads)
|
|
)
|