mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-10 14:43:19 +01:00
494 lines
16 KiB
Python
494 lines
16 KiB
Python
from copy import copy, deepcopy
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.core.dtypes.common import is_scalar
|
|
|
|
from pandas import DataFrame, Series
|
|
import pandas._testing as tm
|
|
|
|
# ----------------------------------------------------------------------
|
|
# Generic types test cases
|
|
|
|
|
|
class Generic:
|
|
@property
|
|
def _ndim(self):
|
|
return self._typ._AXIS_LEN
|
|
|
|
def _axes(self):
|
|
""" return the axes for my object typ """
|
|
return self._typ._AXIS_ORDERS
|
|
|
|
def _construct(self, shape, value=None, dtype=None, **kwargs):
|
|
"""
|
|
construct an object for the given shape
|
|
if value is specified use that if its a scalar
|
|
if value is an array, repeat it as needed
|
|
"""
|
|
if isinstance(shape, int):
|
|
shape = tuple([shape] * self._ndim)
|
|
if value is not None:
|
|
if is_scalar(value):
|
|
if value == "empty":
|
|
arr = None
|
|
dtype = np.float64
|
|
|
|
# remove the info axis
|
|
kwargs.pop(self._typ._info_axis_name, None)
|
|
else:
|
|
arr = np.empty(shape, dtype=dtype)
|
|
arr.fill(value)
|
|
else:
|
|
fshape = np.prod(shape)
|
|
arr = value.ravel()
|
|
new_shape = fshape / arr.shape[0]
|
|
if fshape % arr.shape[0] != 0:
|
|
raise Exception("invalid value passed in _construct")
|
|
|
|
arr = np.repeat(arr, new_shape).reshape(shape)
|
|
else:
|
|
arr = np.random.randn(*shape)
|
|
return self._typ(arr, dtype=dtype, **kwargs)
|
|
|
|
def _compare(self, result, expected):
|
|
self._comparator(result, expected)
|
|
|
|
def test_rename(self):
|
|
|
|
# single axis
|
|
idx = list("ABCD")
|
|
# relabeling values passed into self.rename
|
|
args = [
|
|
str.lower,
|
|
{x: x.lower() for x in idx},
|
|
Series({x: x.lower() for x in idx}),
|
|
]
|
|
|
|
for axis in self._axes():
|
|
kwargs = {axis: idx}
|
|
obj = self._construct(4, **kwargs)
|
|
|
|
for arg in args:
|
|
# rename a single axis
|
|
result = obj.rename(**{axis: arg})
|
|
expected = obj.copy()
|
|
setattr(expected, axis, list("abcd"))
|
|
self._compare(result, expected)
|
|
|
|
# multiple axes at once
|
|
|
|
def test_get_numeric_data(self):
|
|
|
|
n = 4
|
|
kwargs = {
|
|
self._typ._get_axis_name(i): list(range(n)) for i in range(self._ndim)
|
|
}
|
|
|
|
# get the numeric data
|
|
o = self._construct(n, **kwargs)
|
|
result = o._get_numeric_data()
|
|
self._compare(result, o)
|
|
|
|
# non-inclusion
|
|
result = o._get_bool_data()
|
|
expected = self._construct(n, value="empty", **kwargs)
|
|
self._compare(result, expected)
|
|
|
|
# get the bool data
|
|
arr = np.array([True, True, False, True])
|
|
o = self._construct(n, value=arr, **kwargs)
|
|
result = o._get_numeric_data()
|
|
self._compare(result, o)
|
|
|
|
# _get_numeric_data is includes _get_bool_data, so can't test for
|
|
# non-inclusion
|
|
|
|
def test_nonzero(self):
|
|
|
|
# GH 4633
|
|
# look at the boolean/nonzero behavior for objects
|
|
obj = self._construct(shape=4)
|
|
msg = f"The truth value of a {self._typ.__name__} is ambiguous"
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj == 0)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj == 1)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj)
|
|
|
|
obj = self._construct(shape=4, value=1)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj == 0)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj == 1)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj)
|
|
|
|
obj = self._construct(shape=4, value=np.nan)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj == 0)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj == 1)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj)
|
|
|
|
# empty
|
|
obj = self._construct(shape=0)
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(obj)
|
|
|
|
# invalid behaviors
|
|
|
|
obj1 = self._construct(shape=4, value=1)
|
|
obj2 = self._construct(shape=4, value=1)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
if obj1:
|
|
pass
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
obj1 and obj2
|
|
with pytest.raises(ValueError, match=msg):
|
|
obj1 or obj2
|
|
with pytest.raises(ValueError, match=msg):
|
|
not obj1
|
|
|
|
def test_downcast(self):
|
|
# test close downcasting
|
|
|
|
o = self._construct(shape=4, value=9, dtype=np.int64)
|
|
result = o.copy()
|
|
result._mgr = o._mgr.downcast()
|
|
self._compare(result, o)
|
|
|
|
o = self._construct(shape=4, value=9.5)
|
|
result = o.copy()
|
|
result._mgr = o._mgr.downcast()
|
|
self._compare(result, o)
|
|
|
|
def test_constructor_compound_dtypes(self):
|
|
# see gh-5191
|
|
# Compound dtypes should raise NotImplementedError.
|
|
|
|
def f(dtype):
|
|
return self._construct(shape=3, value=1, dtype=dtype)
|
|
|
|
msg = (
|
|
"compound dtypes are not implemented "
|
|
f"in the {self._typ.__name__} constructor"
|
|
)
|
|
|
|
with pytest.raises(NotImplementedError, match=msg):
|
|
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")])
|
|
|
|
# these work (though results may be unexpected)
|
|
f("int64")
|
|
f("float64")
|
|
f("M8[ns]")
|
|
|
|
def check_metadata(self, x, y=None):
|
|
for m in x._metadata:
|
|
v = getattr(x, m, None)
|
|
if y is None:
|
|
assert v is None
|
|
else:
|
|
assert v == getattr(y, m, None)
|
|
|
|
def test_metadata_propagation(self):
|
|
# check that the metadata matches up on the resulting ops
|
|
|
|
o = self._construct(shape=3)
|
|
o.name = "foo"
|
|
o2 = self._construct(shape=3)
|
|
o2.name = "bar"
|
|
|
|
# ----------
|
|
# preserving
|
|
# ----------
|
|
|
|
# simple ops with scalars
|
|
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
|
|
result = getattr(o, op)(1)
|
|
self.check_metadata(o, result)
|
|
|
|
# ops with like
|
|
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
|
|
result = getattr(o, op)(o)
|
|
self.check_metadata(o, result)
|
|
|
|
# simple boolean
|
|
for op in ["__eq__", "__le__", "__ge__"]:
|
|
v1 = getattr(o, op)(o)
|
|
self.check_metadata(o, v1)
|
|
self.check_metadata(o, v1 & v1)
|
|
self.check_metadata(o, v1 | v1)
|
|
|
|
# combine_first
|
|
result = o.combine_first(o2)
|
|
self.check_metadata(o, result)
|
|
|
|
# ---------------------------
|
|
# non-preserving (by default)
|
|
# ---------------------------
|
|
|
|
# add non-like
|
|
result = o + o2
|
|
self.check_metadata(result)
|
|
|
|
# simple boolean
|
|
for op in ["__eq__", "__le__", "__ge__"]:
|
|
|
|
# this is a name matching op
|
|
v1 = getattr(o, op)(o)
|
|
v2 = getattr(o, op)(o2)
|
|
self.check_metadata(v2)
|
|
self.check_metadata(v1 & v2)
|
|
self.check_metadata(v1 | v2)
|
|
|
|
def test_size_compat(self):
|
|
# GH8846
|
|
# size property should be defined
|
|
|
|
o = self._construct(shape=10)
|
|
assert o.size == np.prod(o.shape)
|
|
assert o.size == 10 ** len(o.axes)
|
|
|
|
def test_split_compat(self):
|
|
# xref GH8846
|
|
o = self._construct(shape=10)
|
|
assert len(np.array_split(o, 5)) == 5
|
|
assert len(np.array_split(o, 2)) == 2
|
|
|
|
# See gh-12301
|
|
def test_stat_unexpected_keyword(self):
|
|
obj = self._construct(5)
|
|
starwars = "Star Wars"
|
|
errmsg = "unexpected keyword"
|
|
|
|
with pytest.raises(TypeError, match=errmsg):
|
|
obj.max(epic=starwars) # stat_function
|
|
with pytest.raises(TypeError, match=errmsg):
|
|
obj.var(epic=starwars) # stat_function_ddof
|
|
with pytest.raises(TypeError, match=errmsg):
|
|
obj.sum(epic=starwars) # cum_function
|
|
with pytest.raises(TypeError, match=errmsg):
|
|
obj.any(epic=starwars) # logical_function
|
|
|
|
@pytest.mark.parametrize("func", ["sum", "cumsum", "any", "var"])
|
|
def test_api_compat(self, func):
|
|
|
|
# GH 12021
|
|
# compat for __name__, __qualname__
|
|
|
|
obj = self._construct(5)
|
|
f = getattr(obj, func)
|
|
assert f.__name__ == func
|
|
assert f.__qualname__.endswith(func)
|
|
|
|
def test_stat_non_defaults_args(self):
|
|
obj = self._construct(5)
|
|
out = np.array([0])
|
|
errmsg = "the 'out' parameter is not supported"
|
|
|
|
with pytest.raises(ValueError, match=errmsg):
|
|
obj.max(out=out) # stat_function
|
|
with pytest.raises(ValueError, match=errmsg):
|
|
obj.var(out=out) # stat_function_ddof
|
|
with pytest.raises(ValueError, match=errmsg):
|
|
obj.sum(out=out) # cum_function
|
|
with pytest.raises(ValueError, match=errmsg):
|
|
obj.any(out=out) # logical_function
|
|
|
|
def test_truncate_out_of_bounds(self):
|
|
# GH11382
|
|
|
|
# small
|
|
shape = [int(2e3)] + ([1] * (self._ndim - 1))
|
|
small = self._construct(shape, dtype="int8", value=1)
|
|
self._compare(small.truncate(), small)
|
|
self._compare(small.truncate(before=0, after=3e3), small)
|
|
self._compare(small.truncate(before=-1, after=2e3), small)
|
|
|
|
# big
|
|
shape = [int(2e6)] + ([1] * (self._ndim - 1))
|
|
big = self._construct(shape, dtype="int8", value=1)
|
|
self._compare(big.truncate(), big)
|
|
self._compare(big.truncate(before=0, after=3e6), big)
|
|
self._compare(big.truncate(before=-1, after=2e6), big)
|
|
|
|
@pytest.mark.parametrize(
|
|
"func",
|
|
[copy, deepcopy, lambda x: x.copy(deep=False), lambda x: x.copy(deep=True)],
|
|
)
|
|
@pytest.mark.parametrize("shape", [0, 1, 2])
|
|
def test_copy_and_deepcopy(self, shape, func):
|
|
# GH 15444
|
|
obj = self._construct(shape)
|
|
obj_copy = func(obj)
|
|
assert obj_copy is not obj
|
|
self._compare(obj_copy, obj)
|
|
|
|
|
|
class TestNDFrame:
|
|
# tests that don't fit elsewhere
|
|
|
|
def test_squeeze(self):
|
|
# noop
|
|
for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
|
|
tm.assert_series_equal(s.squeeze(), s)
|
|
for df in [tm.makeTimeDataFrame()]:
|
|
tm.assert_frame_equal(df.squeeze(), df)
|
|
|
|
# squeezing
|
|
df = tm.makeTimeDataFrame().reindex(columns=["A"])
|
|
tm.assert_series_equal(df.squeeze(), df["A"])
|
|
|
|
# don't fail with 0 length dimensions GH11229 & GH8999
|
|
empty_series = Series([], name="five", dtype=np.float64)
|
|
empty_frame = DataFrame([empty_series])
|
|
tm.assert_series_equal(empty_series, empty_series.squeeze())
|
|
tm.assert_series_equal(empty_series, empty_frame.squeeze())
|
|
|
|
# axis argument
|
|
df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
|
|
assert df.shape == (1, 1)
|
|
tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
|
|
tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0])
|
|
tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
|
|
tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0])
|
|
assert df.squeeze() == df.iloc[0, 0]
|
|
msg = "No axis named 2 for object type DataFrame"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.squeeze(axis=2)
|
|
msg = "No axis named x for object type DataFrame"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.squeeze(axis="x")
|
|
|
|
df = tm.makeTimeDataFrame(3)
|
|
tm.assert_frame_equal(df.squeeze(axis=0), df)
|
|
|
|
def test_numpy_squeeze(self):
|
|
s = tm.makeFloatSeries()
|
|
tm.assert_series_equal(np.squeeze(s), s)
|
|
|
|
df = tm.makeTimeDataFrame().reindex(columns=["A"])
|
|
tm.assert_series_equal(np.squeeze(df), df["A"])
|
|
|
|
def test_transpose(self):
|
|
for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
|
|
# calls implementation in pandas/core/base.py
|
|
tm.assert_series_equal(s.transpose(), s)
|
|
for df in [tm.makeTimeDataFrame()]:
|
|
tm.assert_frame_equal(df.transpose().transpose(), df)
|
|
|
|
def test_numpy_transpose(self, frame_or_series):
|
|
|
|
obj = tm.makeTimeDataFrame()
|
|
if frame_or_series is Series:
|
|
obj = obj["A"]
|
|
|
|
if frame_or_series is Series:
|
|
# 1D -> np.transpose is no-op
|
|
tm.assert_series_equal(np.transpose(obj), obj)
|
|
|
|
# round-trip preserved
|
|
tm.assert_equal(np.transpose(np.transpose(obj)), obj)
|
|
|
|
msg = "the 'axes' parameter is not supported"
|
|
with pytest.raises(ValueError, match=msg):
|
|
np.transpose(obj, axes=1)
|
|
|
|
def test_take(self):
|
|
indices = [1, 5, -2, 6, 3, -1]
|
|
for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
|
|
out = s.take(indices)
|
|
expected = Series(
|
|
data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype
|
|
)
|
|
tm.assert_series_equal(out, expected)
|
|
for df in [tm.makeTimeDataFrame()]:
|
|
out = df.take(indices)
|
|
expected = DataFrame(
|
|
data=df.values.take(indices, axis=0),
|
|
index=df.index.take(indices),
|
|
columns=df.columns,
|
|
)
|
|
tm.assert_frame_equal(out, expected)
|
|
|
|
def test_take_invalid_kwargs(self, frame_or_series):
|
|
indices = [-3, 2, 0, 1]
|
|
|
|
obj = tm.makeTimeDataFrame()
|
|
if frame_or_series is Series:
|
|
obj = obj["A"]
|
|
|
|
msg = r"take\(\) got an unexpected keyword argument 'foo'"
|
|
with pytest.raises(TypeError, match=msg):
|
|
obj.take(indices, foo=2)
|
|
|
|
msg = "the 'out' parameter is not supported"
|
|
with pytest.raises(ValueError, match=msg):
|
|
obj.take(indices, out=indices)
|
|
|
|
msg = "the 'mode' parameter is not supported"
|
|
with pytest.raises(ValueError, match=msg):
|
|
obj.take(indices, mode="clip")
|
|
|
|
@pytest.mark.parametrize("is_copy", [True, False])
|
|
def test_depr_take_kwarg_is_copy(self, is_copy, frame_or_series):
|
|
# GH 27357
|
|
obj = DataFrame({"A": [1, 2, 3]})
|
|
if frame_or_series is Series:
|
|
obj = obj["A"]
|
|
|
|
msg = (
|
|
"is_copy is deprecated and will be removed in a future version. "
|
|
"'take' always returns a copy, so there is no need to specify this."
|
|
)
|
|
with tm.assert_produces_warning(FutureWarning) as w:
|
|
obj.take([0, 1], is_copy=is_copy)
|
|
|
|
assert w[0].message.args[0] == msg
|
|
|
|
def test_axis_classmethods(self, frame_or_series):
|
|
box = frame_or_series
|
|
obj = box(dtype=object)
|
|
values = box._AXIS_TO_AXIS_NUMBER.keys()
|
|
for v in values:
|
|
assert obj._get_axis_number(v) == box._get_axis_number(v)
|
|
assert obj._get_axis_name(v) == box._get_axis_name(v)
|
|
assert obj._get_block_manager_axis(v) == box._get_block_manager_axis(v)
|
|
|
|
def test_axis_names_deprecated(self, frame_or_series):
|
|
# GH33637
|
|
box = frame_or_series
|
|
obj = box(dtype=object)
|
|
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
|
|
obj._AXIS_NAMES
|
|
|
|
def test_axis_numbers_deprecated(self, frame_or_series):
|
|
# GH33637
|
|
box = frame_or_series
|
|
obj = box(dtype=object)
|
|
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
|
|
obj._AXIS_NUMBERS
|
|
|
|
def test_flags_identity(self, frame_or_series):
|
|
obj = Series([1, 2])
|
|
if frame_or_series is DataFrame:
|
|
obj = obj.to_frame()
|
|
|
|
assert obj.flags is obj.flags
|
|
obj2 = obj.copy()
|
|
assert obj2.flags is not obj.flags
|
|
|
|
def test_slice_shift_deprecated(self, frame_or_series):
|
|
# GH 37601
|
|
obj = DataFrame({"A": [1, 2, 3, 4]})
|
|
if frame_or_series is DataFrame:
|
|
obj = obj["A"]
|
|
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
obj.slice_shift()
|