mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-23 04:46:11 +01:00
159 lines
5.4 KiB
Python
159 lines
5.4 KiB
Python
# Copyright (c) 2016, 2018-2020 Claudiu Popa <pcmanticore@gmail.com>
|
|
# Copyright (c) 2018 hippo91 <guillaume.peillex@gmail.com>
|
|
# Copyright (c) 2018 Bryce Guinta <bryce.paul.guinta@gmail.com>
|
|
|
|
"""Astroid hooks for understanding functools library module."""
|
|
from functools import partial
|
|
from itertools import chain
|
|
|
|
import astroid
|
|
from astroid import arguments
|
|
from astroid import BoundMethod
|
|
from astroid import extract_node
|
|
from astroid import helpers
|
|
from astroid.interpreter import objectmodel
|
|
from astroid import MANAGER
|
|
from astroid import objects
|
|
|
|
|
|
LRU_CACHE = "functools.lru_cache"
|
|
|
|
|
|
class LruWrappedModel(objectmodel.FunctionModel):
|
|
"""Special attribute model for functions decorated with functools.lru_cache.
|
|
|
|
The said decorators patches at decoration time some functions onto
|
|
the decorated function.
|
|
"""
|
|
|
|
@property
|
|
def attr___wrapped__(self):
|
|
return self._instance
|
|
|
|
@property
|
|
def attr_cache_info(self):
|
|
cache_info = extract_node(
|
|
"""
|
|
from functools import _CacheInfo
|
|
_CacheInfo(0, 0, 0, 0)
|
|
"""
|
|
)
|
|
|
|
class CacheInfoBoundMethod(BoundMethod):
|
|
def infer_call_result(self, caller, context=None):
|
|
yield helpers.safe_infer(cache_info)
|
|
|
|
return CacheInfoBoundMethod(proxy=self._instance, bound=self._instance)
|
|
|
|
@property
|
|
def attr_cache_clear(self):
|
|
node = extract_node("""def cache_clear(self): pass""")
|
|
return BoundMethod(proxy=node, bound=self._instance.parent.scope())
|
|
|
|
|
|
def _transform_lru_cache(node, context=None):
|
|
# TODO: this is not ideal, since the node should be immutable,
|
|
# but due to https://github.com/PyCQA/astroid/issues/354,
|
|
# there's not much we can do now.
|
|
# Replacing the node would work partially, because,
|
|
# in pylint, the old node would still be available, leading
|
|
# to spurious false positives.
|
|
node.special_attributes = LruWrappedModel()(node)
|
|
return
|
|
|
|
|
|
def _functools_partial_inference(node, context=None):
|
|
call = arguments.CallSite.from_call(node, context=context)
|
|
number_of_positional = len(call.positional_arguments)
|
|
if number_of_positional < 1:
|
|
raise astroid.UseInferenceDefault(
|
|
"functools.partial takes at least one argument"
|
|
)
|
|
if number_of_positional == 1 and not call.keyword_arguments:
|
|
raise astroid.UseInferenceDefault(
|
|
"functools.partial needs at least to have some filled arguments"
|
|
)
|
|
|
|
partial_function = call.positional_arguments[0]
|
|
try:
|
|
inferred_wrapped_function = next(partial_function.infer(context=context))
|
|
except astroid.InferenceError as exc:
|
|
raise astroid.UseInferenceDefault from exc
|
|
if inferred_wrapped_function is astroid.Uninferable:
|
|
raise astroid.UseInferenceDefault("Cannot infer the wrapped function")
|
|
if not isinstance(inferred_wrapped_function, astroid.FunctionDef):
|
|
raise astroid.UseInferenceDefault("The wrapped function is not a function")
|
|
|
|
# Determine if the passed keywords into the callsite are supported
|
|
# by the wrapped function.
|
|
function_parameters = chain(
|
|
inferred_wrapped_function.args.args or (),
|
|
inferred_wrapped_function.args.posonlyargs or (),
|
|
inferred_wrapped_function.args.kwonlyargs or (),
|
|
)
|
|
parameter_names = set(
|
|
param.name
|
|
for param in function_parameters
|
|
if isinstance(param, astroid.AssignName)
|
|
)
|
|
if set(call.keyword_arguments) - parameter_names:
|
|
raise astroid.UseInferenceDefault(
|
|
"wrapped function received unknown parameters"
|
|
)
|
|
|
|
partial_function = objects.PartialFunction(
|
|
call,
|
|
name=inferred_wrapped_function.name,
|
|
doc=inferred_wrapped_function.doc,
|
|
lineno=inferred_wrapped_function.lineno,
|
|
col_offset=inferred_wrapped_function.col_offset,
|
|
parent=inferred_wrapped_function.parent,
|
|
)
|
|
partial_function.postinit(
|
|
args=inferred_wrapped_function.args,
|
|
body=inferred_wrapped_function.body,
|
|
decorators=inferred_wrapped_function.decorators,
|
|
returns=inferred_wrapped_function.returns,
|
|
type_comment_returns=inferred_wrapped_function.type_comment_returns,
|
|
type_comment_args=inferred_wrapped_function.type_comment_args,
|
|
)
|
|
return iter((partial_function,))
|
|
|
|
|
|
def _looks_like_lru_cache(node):
|
|
"""Check if the given function node is decorated with lru_cache."""
|
|
if not node.decorators:
|
|
return False
|
|
for decorator in node.decorators.nodes:
|
|
if not isinstance(decorator, astroid.Call):
|
|
continue
|
|
if _looks_like_functools_member(decorator, "lru_cache"):
|
|
return True
|
|
return False
|
|
|
|
|
|
def _looks_like_functools_member(node, member):
|
|
"""Check if the given Call node is a functools.partial call"""
|
|
if isinstance(node.func, astroid.Name):
|
|
return node.func.name == member
|
|
elif isinstance(node.func, astroid.Attribute):
|
|
return (
|
|
node.func.attrname == member
|
|
and isinstance(node.func.expr, astroid.Name)
|
|
and node.func.expr.name == "functools"
|
|
)
|
|
|
|
|
|
_looks_like_partial = partial(_looks_like_functools_member, member="partial")
|
|
|
|
|
|
MANAGER.register_transform(
|
|
astroid.FunctionDef, _transform_lru_cache, _looks_like_lru_cache
|
|
)
|
|
|
|
|
|
MANAGER.register_transform(
|
|
astroid.Call,
|
|
astroid.inference_tip(_functools_partial_inference),
|
|
_looks_like_partial,
|
|
)
|