esphome/esphome/components/dallas/esp_one_wire.cpp

218 lines
5.3 KiB
C++
Raw Normal View History

🏗 Merge C++ into python codebase (#504) ## Description: Move esphome-core codebase into esphome (and a bunch of other refactors). See https://github.com/esphome/feature-requests/issues/97 Yes this is a shit ton of work and no there's no way to automate it :( But it will be worth it 👍 Progress: - Core support (file copy etc): 80% - Base Abstractions (light, switch): ~50% - Integrations: ~10% - Working? Yes, (but only with ported components). Other refactors: - Moves all codegen related stuff into a single class: `esphome.codegen` (imported as `cg`) - Rework coroutine syntax - Move from `component/platform.py` to `domain/component.py` structure as with HA - Move all defaults out of C++ and into config validation. - Remove `make_...` helpers from Application class. Reason: Merge conflicts with every single new integration. - Pointer Variables are stored globally instead of locally in setup(). Reason: stack size limit. Future work: - Rework const.py - Move all `CONF_...` into a conf class (usage `conf.UPDATE_INTERVAL` vs `CONF_UPDATE_INTERVAL`). Reason: Less convoluted import block - Enable loading from `custom_components` folder. **Related issue (if applicable):** https://github.com/esphome/feature-requests/issues/97 **Pull request in [esphome-docs](https://github.com/esphome/esphome-docs) with documentation (if applicable):** esphome/esphome-docs#<esphome-docs PR number goes here> ## Checklist: - [ ] The code change is tested and works locally. - [ ] Tests have been added to verify that the new code works (under `tests/` folder). If user exposed functionality or configuration variables are added/changed: - [ ] Documentation added/updated in [esphomedocs](https://github.com/OttoWinter/esphomedocs).
2019-04-17 12:06:00 +02:00
#include "esp_one_wire.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
namespace esphome {
namespace dallas {
static const char *TAG = "dallas.one_wire";
const uint8_t ONE_WIRE_ROM_SELECT = 0x55;
const int ONE_WIRE_ROM_SEARCH = 0xF0;
ESPOneWire::ESPOneWire(GPIOPin *pin) : pin_(pin) {}
bool HOT ESPOneWire::reset() {
uint8_t retries = 125;
// Wait for communication to clear
this->pin_->pin_mode(INPUT_PULLUP);
do {
if (--retries == 0)
return false;
delayMicroseconds(2);
} while (!this->pin_->digital_read());
// Send 480µs LOW TX reset pulse
this->pin_->pin_mode(OUTPUT);
this->pin_->digital_write(false);
delayMicroseconds(480);
// Switch into RX mode, letting the pin float
this->pin_->pin_mode(INPUT_PULLUP);
// after 15µs-60µs wait time, slave pulls low for 60µs-240µs
// let's have 70µs just in case
delayMicroseconds(70);
bool r = !this->pin_->digital_read();
delayMicroseconds(410);
return r;
}
void HOT ESPOneWire::write_bit(bool bit) {
// Initiate write/read by pulling low.
this->pin_->pin_mode(OUTPUT);
this->pin_->digital_write(false);
// bus sampled within 15µs and 60µs after pulling LOW.
if (bit) {
// pull high/release within 15µs
delayMicroseconds(10);
this->pin_->digital_write(true);
// in total minimum of 60µs long
delayMicroseconds(55);
} else {
// continue pulling LOW for at least 60µs
delayMicroseconds(65);
this->pin_->digital_write(true);
// grace period, 1µs recovery time
delayMicroseconds(5);
}
}
bool HOT ESPOneWire::read_bit() {
// Initiate read slot by pulling LOW for at least 1µs
this->pin_->pin_mode(OUTPUT);
this->pin_->digital_write(false);
delayMicroseconds(3);
// release bus, we have to sample within 15µs of pulling low
this->pin_->pin_mode(INPUT_PULLUP);
delayMicroseconds(10);
bool r = this->pin_->digital_read();
// read time slot at least 60µs long + 1µs recovery time between slots
delayMicroseconds(53);
return r;
}
void ESPOneWire::write8(uint8_t val) {
for (uint8_t i = 0; i < 8; i++) {
this->write_bit(bool((1u << i) & val));
}
}
void ESPOneWire::write64(uint64_t val) {
for (uint8_t i = 0; i < 64; i++) {
this->write_bit(bool((1ULL << i) & val));
}
}
uint8_t ESPOneWire::read8() {
uint8_t ret = 0;
for (uint8_t i = 0; i < 8; i++) {
ret |= (uint8_t(this->read_bit()) << i);
}
return ret;
}
uint64_t ESPOneWire::read64() {
uint64_t ret = 0;
for (uint8_t i = 0; i < 8; i++) {
ret |= (uint64_t(this->read_bit()) << i);
}
return ret;
}
void ESPOneWire::select(uint64_t address) {
this->write8(ONE_WIRE_ROM_SELECT);
this->write64(address);
}
void ESPOneWire::reset_search() {
this->last_discrepancy_ = 0;
this->last_device_flag_ = false;
this->last_family_discrepancy_ = 0;
this->rom_number_ = 0;
}
uint64_t HOT ESPOneWire::search() {
if (this->last_device_flag_) {
return 0u;
}
if (!this->reset()) {
// Reset failed
this->reset_search();
return 0u;
}
uint8_t id_bit_number = 1;
uint8_t last_zero = 0;
uint8_t rom_byte_number = 0;
bool search_result = false;
uint8_t rom_byte_mask = 1;
// Initiate search
this->write8(ONE_WIRE_ROM_SEARCH);
do {
// read bit
bool id_bit = this->read_bit();
// read its complement
bool cmp_id_bit = this->read_bit();
if (id_bit && cmp_id_bit)
// No devices participating in search
break;
bool branch;
if (id_bit != cmp_id_bit) {
// only chose one branch, the other one doesn't have any devices.
branch = id_bit;
} else {
// there are devices with both 0s and 1s at this bit
if (id_bit_number < this->last_discrepancy_) {
branch = (this->rom_number8_()[rom_byte_number] & rom_byte_mask) > 0;
} else {
branch = id_bit_number == this->last_discrepancy_;
}
if (!branch) {
last_zero = id_bit_number;
if (last_zero < 9) {
this->last_discrepancy_ = last_zero;
}
}
}
if (branch)
// set bit
this->rom_number8_()[rom_byte_number] |= rom_byte_mask;
else
// clear bit
this->rom_number8_()[rom_byte_number] &= ~rom_byte_mask;
// choose/announce branch
this->write_bit(branch);
id_bit_number++;
rom_byte_mask <<= 1;
if (rom_byte_mask == 0u) {
// go to next byte
rom_byte_number++;
rom_byte_mask = 1;
}
} while (rom_byte_number < 8); // loop through all bytes
if (id_bit_number >= 65) {
this->last_discrepancy_ = last_zero;
if (this->last_discrepancy_ == 0)
// we're at root and have no choices left, so this was the last one.
this->last_device_flag_ = true;
search_result = true;
}
search_result = search_result && (this->rom_number8_()[0] != 0);
if (!search_result) {
this->reset_search();
return 0u;
}
return this->rom_number_;
}
std::vector<uint64_t> ESPOneWire::search_vec() {
std::vector<uint64_t> res;
this->reset_search();
uint64_t address;
while ((address = this->search()) != 0u)
res.push_back(address);
return res;
}
void ESPOneWire::skip() {
this->write8(0xCC); // skip ROM
}
GPIOPin *ESPOneWire::get_pin() { return this->pin_; }
uint8_t *ESPOneWire::rom_number8_() { return reinterpret_cast<uint8_t *>(&this->rom_number_); }
} // namespace dallas
} // namespace esphome