Add combination sensor and remove absorbed kalman_combinator component (#5438)

This commit is contained in:
kahrendt 2024-01-18 04:09:49 -05:00 committed by GitHub
parent 45c0d10eb0
commit 045836c3fe
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 637 additions and 219 deletions

View file

@ -71,6 +71,7 @@ esphome/components/cd74hc4067/* @asoehlke
esphome/components/climate/* @esphome/core
esphome/components/climate_ir/* @glmnet
esphome/components/color_temperature/* @jesserockz
esphome/components/combination/* @Cat-Ion @kahrendt
esphome/components/coolix/* @glmnet
esphome/components/copy/* @OttoWinter
esphome/components/cover/* @esphome/core
@ -161,7 +162,6 @@ esphome/components/integration/* @OttoWinter
esphome/components/internal_temperature/* @Mat931
esphome/components/interval/* @esphome/core
esphome/components/json/* @OttoWinter
esphome/components/kalman_combinator/* @Cat-Ion
esphome/components/key_collector/* @ssieb
esphome/components/key_provider/* @ssieb
esphome/components/kuntze/* @ssieb

View file

@ -0,0 +1,262 @@
#include "combination.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include <cmath>
#include <functional>
#include <vector>
namespace esphome {
namespace combination {
static const char *const TAG = "combination";
void CombinationComponent::log_config_(const LogString *combo_type) {
LOG_SENSOR("", "Combination Sensor:", this);
ESP_LOGCONFIG(TAG, " Combination Type: %s", LOG_STR_ARG(combo_type));
this->log_source_sensors();
}
void CombinationNoParameterComponent::add_source(Sensor *sensor) { this->sensors_.emplace_back(sensor); }
void CombinationOneParameterComponent::add_source(Sensor *sensor, std::function<float(float)> const &stddev) {
this->sensor_pairs_.emplace_back(sensor, stddev);
}
void CombinationOneParameterComponent::add_source(Sensor *sensor, float stddev) {
this->add_source(sensor, std::function<float(float)>{[stddev](float x) -> float { return stddev; }});
}
void CombinationNoParameterComponent::log_source_sensors() {
ESP_LOGCONFIG(TAG, " Source Sensors:");
for (const auto &sensor : this->sensors_) {
ESP_LOGCONFIG(TAG, " - %s", sensor->get_name().c_str());
}
}
void CombinationOneParameterComponent::log_source_sensors() {
ESP_LOGCONFIG(TAG, " Source Sensors:");
for (const auto &sensor : this->sensor_pairs_) {
auto &entity = *sensor.first;
ESP_LOGCONFIG(TAG, " - %s", entity.get_name().c_str());
}
}
void CombinationNoParameterComponent::setup() {
for (const auto &sensor : this->sensors_) {
// All sensor updates are deferred until the next loop. This avoids publishing the combined sensor's result
// repeatedly in the same loop if multiple source senors update.
sensor->add_on_state_callback(
[this](float value) -> void { this->defer("update", [this, value]() { this->handle_new_value(value); }); });
}
}
void KalmanCombinationComponent::dump_config() {
this->log_config_(LOG_STR("kalman"));
ESP_LOGCONFIG(TAG, " Update variance: %f per ms", this->update_variance_value_);
if (this->std_dev_sensor_ != nullptr) {
LOG_SENSOR(" ", "Standard Deviation Sensor:", this->std_dev_sensor_);
}
}
void KalmanCombinationComponent::setup() {
for (const auto &sensor : this->sensor_pairs_) {
const auto stddev = sensor.second;
sensor.first->add_on_state_callback([this, stddev](float x) -> void { this->correct_(x, stddev(x)); });
}
}
void KalmanCombinationComponent::update_variance_() {
uint32_t now = millis();
// Variance increases by update_variance_ each millisecond
auto dt = now - this->last_update_;
auto dv = this->update_variance_value_ * dt;
this->variance_ += dv;
this->last_update_ = now;
}
void KalmanCombinationComponent::correct_(float value, float stddev) {
if (std::isnan(value) || std::isinf(stddev)) {
return;
}
if (std::isnan(this->state_) || std::isinf(this->variance_)) {
this->state_ = value;
this->variance_ = stddev * stddev;
if (this->std_dev_sensor_ != nullptr) {
this->std_dev_sensor_->publish_state(stddev);
}
return;
}
this->update_variance_();
// Combine two gaussian distributions mu1+-var1, mu2+-var2 to a new one around mu
// Use the value with the smaller variance as mu1 to prevent precision errors
const bool this_first = this->variance_ < (stddev * stddev);
const float mu1 = this_first ? this->state_ : value;
const float mu2 = this_first ? value : this->state_;
const float var1 = this_first ? this->variance_ : stddev * stddev;
const float var2 = this_first ? stddev * stddev : this->variance_;
const float mu = mu1 + var1 * (mu2 - mu1) / (var1 + var2);
const float var = var1 - (var1 * var1) / (var1 + var2);
// Update and publish state
this->state_ = mu;
this->variance_ = var;
this->publish_state(mu);
if (this->std_dev_sensor_ != nullptr) {
this->std_dev_sensor_->publish_state(std::sqrt(var));
}
}
void LinearCombinationComponent::setup() {
for (const auto &sensor : this->sensor_pairs_) {
// All sensor updates are deferred until the next loop. This avoids publishing the combined sensor's result
// repeatedly in the same loop if multiple source senors update.
sensor.first->add_on_state_callback(
[this](float value) -> void { this->defer("update", [this, value]() { this->handle_new_value(value); }); });
}
}
void LinearCombinationComponent::handle_new_value(float value) {
// Multiplies each sensor state by a configured coeffecient and then sums
if (!std::isfinite(value))
return;
float sum = 0.0;
for (const auto &sensor : this->sensor_pairs_) {
const float sensor_state = sensor.first->state;
if (std::isfinite(sensor_state)) {
sum += sensor_state * sensor.second(sensor_state);
}
}
this->publish_state(sum);
};
void MaximumCombinationComponent::handle_new_value(float value) {
if (!std::isfinite(value))
return;
float max_value = (-1) * std::numeric_limits<float>::infinity(); // note x = max(x, -infinity)
for (const auto &sensor : this->sensors_) {
if (std::isfinite(sensor->state)) {
max_value = std::max(max_value, sensor->state);
}
}
this->publish_state(max_value);
}
void MeanCombinationComponent::handle_new_value(float value) {
if (!std::isfinite(value))
return;
float sum = 0.0;
size_t count = 0.0;
for (const auto &sensor : this->sensors_) {
if (std::isfinite(sensor->state)) {
++count;
sum += sensor->state;
}
}
float mean = sum / count;
this->publish_state(mean);
}
void MedianCombinationComponent::handle_new_value(float value) {
// Sorts sensor states in ascending order and determines the middle value
if (!std::isfinite(value))
return;
std::vector<float> sensor_states;
for (const auto &sensor : this->sensors_) {
if (std::isfinite(sensor->state)) {
sensor_states.push_back(sensor->state);
}
}
sort(sensor_states.begin(), sensor_states.end());
size_t sensor_states_size = sensor_states.size();
float median = NAN;
if (sensor_states_size) {
if (sensor_states_size % 2) {
// Odd number of measurements, use middle measurement
median = sensor_states[sensor_states_size / 2];
} else {
// Even number of measurements, use the average of the two middle measurements
median = (sensor_states[sensor_states_size / 2] + sensor_states[sensor_states_size / 2 - 1]) / 2.0;
}
}
this->publish_state(median);
}
void MinimumCombinationComponent::handle_new_value(float value) {
if (!std::isfinite(value))
return;
float min_value = std::numeric_limits<float>::infinity(); // note x = min(x, infinity)
for (const auto &sensor : this->sensors_) {
if (std::isfinite(sensor->state)) {
min_value = std::min(min_value, sensor->state);
}
}
this->publish_state(min_value);
}
void MostRecentCombinationComponent::handle_new_value(float value) { this->publish_state(value); }
void RangeCombinationComponent::handle_new_value(float value) {
// Sorts sensor states then takes difference between largest and smallest states
if (!std::isfinite(value))
return;
std::vector<float> sensor_states;
for (const auto &sensor : this->sensors_) {
if (std::isfinite(sensor->state)) {
sensor_states.push_back(sensor->state);
}
}
sort(sensor_states.begin(), sensor_states.end());
float range = sensor_states.back() - sensor_states.front();
this->publish_state(range);
}
void SumCombinationComponent::handle_new_value(float value) {
if (!std::isfinite(value))
return;
float sum = 0.0;
for (const auto &sensor : this->sensors_) {
if (std::isfinite(sensor->state)) {
sum += sensor->state;
}
}
this->publish_state(sum);
}
} // namespace combination
} // namespace esphome

View file

@ -0,0 +1,141 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include <vector>
namespace esphome {
namespace combination {
class CombinationComponent : public Component, public sensor::Sensor {
public:
float get_setup_priority() const override { return esphome::setup_priority::DATA; }
/// @brief Logs all source sensor's names
virtual void log_source_sensors() = 0;
protected:
/// @brief Logs the sensor for use in dump_config
/// @param combo_type Name of the combination operation
void log_config_(const LogString *combo_type);
};
/// @brief Base class for operations that do not require an extra parameter to compute the combination
class CombinationNoParameterComponent : public CombinationComponent {
public:
/// @brief Adds a callback to each source sensor
void setup() override;
void add_source(Sensor *sensor);
/// @brief Computes the combination
/// @param value Newest sensor measurement
virtual void handle_new_value(float value) = 0;
/// @brief Logs all source sensor's names in sensors_
void log_source_sensors() override;
protected:
std::vector<Sensor *> sensors_;
};
// Base class for opertions that require one parameter to compute the combination
class CombinationOneParameterComponent : public CombinationComponent {
public:
void add_source(Sensor *sensor, std::function<float(float)> const &stddev);
void add_source(Sensor *sensor, float stddev);
/// @brief Logs all source sensor's names in sensor_pairs_
void log_source_sensors() override;
protected:
std::vector<std::pair<Sensor *, std::function<float(float)>>> sensor_pairs_;
};
class KalmanCombinationComponent : public CombinationOneParameterComponent {
public:
void dump_config() override;
void setup() override;
void set_process_std_dev(float process_std_dev) {
this->update_variance_value_ = process_std_dev * process_std_dev * 0.001f;
}
void set_std_dev_sensor(Sensor *sensor) { this->std_dev_sensor_ = sensor; }
protected:
void update_variance_();
void correct_(float value, float stddev);
// Optional sensor for publishing the current error
sensor::Sensor *std_dev_sensor_{nullptr};
// Tick of the last update
uint32_t last_update_{0};
// Change of the variance, per ms
float update_variance_value_{0.f};
// Best guess for the state and its variance
float state_{NAN};
float variance_{INFINITY};
};
class LinearCombinationComponent : public CombinationOneParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("linear")); }
void setup() override;
void handle_new_value(float value);
};
class MaximumCombinationComponent : public CombinationNoParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("max")); }
void handle_new_value(float value) override;
};
class MeanCombinationComponent : public CombinationNoParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("mean")); }
void handle_new_value(float value) override;
};
class MedianCombinationComponent : public CombinationNoParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("median")); }
void handle_new_value(float value) override;
};
class MinimumCombinationComponent : public CombinationNoParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("min")); }
void handle_new_value(float value) override;
};
class MostRecentCombinationComponent : public CombinationNoParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("most_recently_updated")); }
void handle_new_value(float value) override;
};
class RangeCombinationComponent : public CombinationNoParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("range")); }
void handle_new_value(float value) override;
};
class SumCombinationComponent : public CombinationNoParameterComponent {
public:
void dump_config() override { this->log_config_(LOG_STR("sum")); }
void handle_new_value(float value) override;
};
} // namespace combination
} // namespace esphome

View file

@ -0,0 +1,176 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_ACCURACY_DECIMALS,
CONF_DEVICE_CLASS,
CONF_ENTITY_CATEGORY,
CONF_ICON,
CONF_ID,
CONF_RANGE,
CONF_SOURCE,
CONF_SUM,
CONF_TYPE,
CONF_UNIT_OF_MEASUREMENT,
)
from esphome.core.entity_helpers import inherit_property_from
CODEOWNERS = ["@Cat-Ion", "@kahrendt"]
combination_ns = cg.esphome_ns.namespace("combination")
KalmanCombinationComponent = combination_ns.class_(
"KalmanCombinationComponent", cg.Component, sensor.Sensor
)
LinearCombinationComponent = combination_ns.class_(
"LinearCombinationComponent", cg.Component, sensor.Sensor
)
MaximumCombinationComponent = combination_ns.class_(
"MaximumCombinationComponent", cg.Component, sensor.Sensor
)
MeanCombinationComponent = combination_ns.class_(
"MeanCombinationComponent", cg.Component, sensor.Sensor
)
MedianCombinationComponent = combination_ns.class_(
"MedianCombinationComponent", cg.Component, sensor.Sensor
)
MinimumCombinationComponent = combination_ns.class_(
"MinimumCombinationComponent", cg.Component, sensor.Sensor
)
MostRecentCombinationComponent = combination_ns.class_(
"MostRecentCombinationComponent", cg.Component, sensor.Sensor
)
RangeCombinationComponent = combination_ns.class_(
"RangeCombinationComponent", cg.Component, sensor.Sensor
)
SumCombinationComponent = combination_ns.class_(
"SumCombinationComponent", cg.Component, sensor.Sensor
)
CONF_COEFFECIENT = "coeffecient"
CONF_ERROR = "error"
CONF_KALMAN = "kalman"
CONF_LINEAR = "linear"
CONF_MAX = "max"
CONF_MEAN = "mean"
CONF_MEDIAN = "median"
CONF_MIN = "min"
CONF_MOST_RECENTLY_UPDATED = "most_recently_updated"
CONF_PROCESS_STD_DEV = "process_std_dev"
CONF_SOURCES = "sources"
CONF_STD_DEV = "std_dev"
KALMAN_SOURCE_SCHEMA = cv.Schema(
{
cv.Required(CONF_SOURCE): cv.use_id(sensor.Sensor),
cv.Required(CONF_ERROR): cv.templatable(cv.positive_float),
}
)
LINEAR_SOURCE_SCHEMA = cv.Schema(
{
cv.Required(CONF_SOURCE): cv.use_id(sensor.Sensor),
cv.Required(CONF_COEFFECIENT): cv.templatable(cv.float_),
}
)
SENSOR_ONLY_SOURCE_SCHEMA = cv.Schema(
{
cv.Required(CONF_SOURCE): cv.use_id(sensor.Sensor),
}
)
CONFIG_SCHEMA = cv.typed_schema(
{
CONF_KALMAN: sensor.sensor_schema(KalmanCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend(
{
cv.Required(CONF_PROCESS_STD_DEV): cv.positive_float,
cv.Required(CONF_SOURCES): cv.ensure_list(KALMAN_SOURCE_SCHEMA),
cv.Optional(CONF_STD_DEV): sensor.sensor_schema(),
}
),
CONF_LINEAR: sensor.sensor_schema(LinearCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(LINEAR_SOURCE_SCHEMA)}),
CONF_MAX: sensor.sensor_schema(MaximumCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MEAN: sensor.sensor_schema(MeanCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MEDIAN: sensor.sensor_schema(MedianCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MIN: sensor.sensor_schema(MinimumCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MOST_RECENTLY_UPDATED: sensor.sensor_schema(MostRecentCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_RANGE: sensor.sensor_schema(RangeCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_SUM: sensor.sensor_schema(SumCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
}
)
# Inherit some sensor values from the first source, for both the state and the error value
# CONF_STATE_CLASS could also be inherited, but might lead to unexpected behaviour with "total_increasing"
properties_to_inherit = [
CONF_ACCURACY_DECIMALS,
CONF_DEVICE_CLASS,
CONF_ENTITY_CATEGORY,
CONF_ICON,
CONF_UNIT_OF_MEASUREMENT,
]
inherit_schema_for_state = [
inherit_property_from(property, [CONF_SOURCES, 0, CONF_SOURCE])
for property in properties_to_inherit
]
inherit_schema_for_std_dev = [
inherit_property_from([CONF_STD_DEV, property], [CONF_SOURCES, 0, CONF_SOURCE])
for property in properties_to_inherit
]
FINAL_VALIDATE_SCHEMA = cv.All(
*inherit_schema_for_state,
*inherit_schema_for_std_dev,
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await sensor.register_sensor(var, config)
if proces_std_dev := config.get(CONF_PROCESS_STD_DEV):
cg.add(var.set_process_std_dev(proces_std_dev))
for source_conf in config[CONF_SOURCES]:
source = await cg.get_variable(source_conf[CONF_SOURCE])
if config[CONF_TYPE] == CONF_KALMAN:
error = await cg.templatable(
source_conf[CONF_ERROR],
[(float, "x")],
cg.float_,
)
cg.add(var.add_source(source, error))
elif config[CONF_TYPE] == CONF_LINEAR:
coeffecient = await cg.templatable(
source_conf[CONF_COEFFECIENT],
[(float, "x")],
cg.float_,
)
cg.add(var.add_source(source, coeffecient))
else:
cg.add(var.add_source(source))
if CONF_STD_DEV in config:
sens = await sensor.new_sensor(config[CONF_STD_DEV])
cg.add(var.set_std_dev_sensor(sens))

View file

@ -1 +0,0 @@
CODEOWNERS = ["@Cat-Ion"]

View file

@ -1,82 +0,0 @@
#include "kalman_combinator.h"
#include "esphome/core/hal.h"
#include <cmath>
#include <functional>
namespace esphome {
namespace kalman_combinator {
void KalmanCombinatorComponent::dump_config() {
ESP_LOGCONFIG("kalman_combinator", "Kalman Combinator:");
ESP_LOGCONFIG("kalman_combinator", " Update variance: %f per ms", this->update_variance_value_);
ESP_LOGCONFIG("kalman_combinator", " Sensors:");
for (const auto &sensor : this->sensors_) {
auto &entity = *sensor.first;
ESP_LOGCONFIG("kalman_combinator", " - %s", entity.get_name().c_str());
}
}
void KalmanCombinatorComponent::setup() {
for (const auto &sensor : this->sensors_) {
const auto stddev = sensor.second;
sensor.first->add_on_state_callback([this, stddev](float x) -> void { this->correct_(x, stddev(x)); });
}
}
void KalmanCombinatorComponent::add_source(Sensor *sensor, std::function<float(float)> const &stddev) {
this->sensors_.emplace_back(sensor, stddev);
}
void KalmanCombinatorComponent::add_source(Sensor *sensor, float stddev) {
this->add_source(sensor, std::function<float(float)>{[stddev](float x) -> float { return stddev; }});
}
void KalmanCombinatorComponent::update_variance_() {
uint32_t now = millis();
// Variance increases by update_variance_ each millisecond
auto dt = now - this->last_update_;
auto dv = this->update_variance_value_ * dt;
this->variance_ += dv;
this->last_update_ = now;
}
void KalmanCombinatorComponent::correct_(float value, float stddev) {
if (std::isnan(value) || std::isinf(stddev)) {
return;
}
if (std::isnan(this->state_) || std::isinf(this->variance_)) {
this->state_ = value;
this->variance_ = stddev * stddev;
if (this->std_dev_sensor_ != nullptr) {
this->std_dev_sensor_->publish_state(stddev);
}
return;
}
this->update_variance_();
// Combine two gaussian distributions mu1+-var1, mu2+-var2 to a new one around mu
// Use the value with the smaller variance as mu1 to prevent precision errors
const bool this_first = this->variance_ < (stddev * stddev);
const float mu1 = this_first ? this->state_ : value;
const float mu2 = this_first ? value : this->state_;
const float var1 = this_first ? this->variance_ : stddev * stddev;
const float var2 = this_first ? stddev * stddev : this->variance_;
const float mu = mu1 + var1 * (mu2 - mu1) / (var1 + var2);
const float var = var1 - (var1 * var1) / (var1 + var2);
// Update and publish state
this->state_ = mu;
this->variance_ = var;
this->publish_state(mu);
if (this->std_dev_sensor_ != nullptr) {
this->std_dev_sensor_->publish_state(std::sqrt(var));
}
}
} // namespace kalman_combinator
} // namespace esphome

View file

@ -1,46 +0,0 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include <cmath>
#include <vector>
namespace esphome {
namespace kalman_combinator {
class KalmanCombinatorComponent : public Component, public sensor::Sensor {
public:
KalmanCombinatorComponent() = default;
float get_setup_priority() const override { return esphome::setup_priority::DATA; }
void dump_config() override;
void setup() override;
void add_source(Sensor *sensor, std::function<float(float)> const &stddev);
void add_source(Sensor *sensor, float stddev);
void set_process_std_dev(float process_std_dev) {
this->update_variance_value_ = process_std_dev * process_std_dev * 0.001f;
}
void set_std_dev_sensor(Sensor *sensor) { this->std_dev_sensor_ = sensor; }
private:
void update_variance_();
void correct_(float value, float stddev);
// Source sensors and their error functions
std::vector<std::pair<Sensor *, std::function<float(float)>>> sensors_;
// Optional sensor for publishing the current error
sensor::Sensor *std_dev_sensor_{nullptr};
// Tick of the last update
uint32_t last_update_{0};
// Change of the variance, per ms
float update_variance_value_{0.f};
// Best guess for the state and its variance
float state_{NAN};
float variance_{INFINITY};
};
} // namespace kalman_combinator
} // namespace esphome

View file

@ -1,90 +1,6 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_ID,
CONF_SOURCE,
CONF_ACCURACY_DECIMALS,
CONF_DEVICE_CLASS,
CONF_ENTITY_CATEGORY,
CONF_ICON,
CONF_UNIT_OF_MEASUREMENT,
CONFIG_SCHEMA = CONFIG_SCHEMA = cv.invalid(
"The kalman_combinator sensor has moved.\nPlease use the combination platform instead with type: kalman.\n"
"See https://esphome.io/components/sensor/combination.html"
)
from esphome.core.entity_helpers import inherit_property_from
kalman_combinator_ns = cg.esphome_ns.namespace("kalman_combinator")
KalmanCombinatorComponent = kalman_combinator_ns.class_(
"KalmanCombinatorComponent", cg.Component, sensor.Sensor
)
CONF_ERROR = "error"
CONF_SOURCES = "sources"
CONF_PROCESS_STD_DEV = "process_std_dev"
CONF_STD_DEV = "std_dev"
CONFIG_SCHEMA = (
sensor.sensor_schema(KalmanCombinatorComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend(
{
cv.Required(CONF_PROCESS_STD_DEV): cv.positive_float,
cv.Required(CONF_SOURCES): cv.ensure_list(
cv.Schema(
{
cv.Required(CONF_SOURCE): cv.use_id(sensor.Sensor),
cv.Required(CONF_ERROR): cv.templatable(cv.positive_float),
}
),
),
cv.Optional(CONF_STD_DEV): sensor.sensor_schema(),
}
)
)
# Inherit some sensor values from the first source, for both the state and the error value
properties_to_inherit = [
CONF_ACCURACY_DECIMALS,
CONF_DEVICE_CLASS,
CONF_ENTITY_CATEGORY,
CONF_ICON,
CONF_UNIT_OF_MEASUREMENT,
# CONF_STATE_CLASS could also be inherited, but might lead to unexpected behaviour with "total_increasing"
]
inherit_schema_for_state = [
inherit_property_from(property, [CONF_SOURCES, 0, CONF_SOURCE])
for property in properties_to_inherit
]
inherit_schema_for_std_dev = [
inherit_property_from([CONF_STD_DEV, property], [CONF_SOURCES, 0, CONF_SOURCE])
for property in properties_to_inherit
]
FINAL_VALIDATE_SCHEMA = cv.All(
CONFIG_SCHEMA.extend(
{cv.Required(CONF_ID): cv.use_id(KalmanCombinatorComponent)},
extra=cv.ALLOW_EXTRA,
),
*inherit_schema_for_state,
*inherit_schema_for_std_dev,
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await sensor.register_sensor(var, config)
cg.add(var.set_process_std_dev(config[CONF_PROCESS_STD_DEV]))
for source_conf in config[CONF_SOURCES]:
source = await cg.get_variable(source_conf[CONF_SOURCE])
error = await cg.templatable(
source_conf[CONF_ERROR],
[(float, "x")],
cg.float_,
)
cg.add(var.add_source(source, error))
if CONF_STD_DEV in config:
sens = await sensor.new_sensor(config[CONF_STD_DEV])
cg.add(var.set_std_dev_sensor(sens))

View file

@ -971,7 +971,8 @@ sensor:
name: Internal Ttemperature
update_interval: 15s
i2c_id: i2c_bus
- platform: kalman_combinator
- platform: combination
type: kalman
name: Kalman-filtered temperature
process_std_dev: 0.00139
sources:
@ -980,6 +981,57 @@ sensor:
return 0.4 + std::abs(x - 25) * 0.023;
- source: scd4x_temperature
error: 1.5
- platform: combination
type: linear
name: Linearly combined temperatures
sources:
- source: scd30_temperature
coeffecient: !lambda |-
return 0.4 + std::abs(x - 25) * 0.023;
- source: scd4x_temperature
coeffecient: 1.5
- platform: combination
type: max
name: Max of combined temperatures
sources:
- source: scd30_temperature
- source: scd4x_temperature
- platform: combination
type: mean
name: Mean of combined temperatures
sources:
- source: scd30_temperature
- source: scd4x_temperature
- platform: combination
type: median
name: Median of combined temperatures
sources:
- source: scd30_temperature
- source: scd4x_temperature
- platform: combination
type: min
name: Min of combined temperatures
sources:
- source: scd30_temperature
- source: scd4x_temperature
- platform: combination
type: most_recently_updated
name: Most recently updated of combined temperatures
sources:
- source: scd30_temperature
- source: scd4x_temperature
- platform: combination
type: range
name: Range of combined temperatures
sources:
- source: scd30_temperature
- source: scd4x_temperature
- platform: combination
type: sum
name: Sum of combined temperatures
sources:
- source: scd30_temperature
- source: scd4x_temperature
- platform: htu21d
temperature:
name: Living Room Temperature 6