diff --git a/esphome/components/cse7766/cse7766.cpp b/esphome/components/cse7766/cse7766.cpp index 9c5016c503..f482ba26c3 100644 --- a/esphome/components/cse7766/cse7766.cpp +++ b/esphome/components/cse7766/cse7766.cpp @@ -1,6 +1,8 @@ #include "cse7766.h" #include "esphome/core/log.h" #include +#include +#include namespace esphome { namespace cse7766 { @@ -68,20 +70,26 @@ bool CSE7766Component::check_byte_() { return true; } void CSE7766Component::parse_data_() { - ESP_LOGVV(TAG, "CSE7766 Data: "); - for (uint8_t i = 0; i < 23; i++) { - ESP_LOGVV(TAG, " %u: 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", i + 1, BYTE_TO_BINARY(this->raw_data_[i]), - this->raw_data_[i]); +#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERY_VERBOSE + { + std::stringstream ss; + ss << "Raw data:" << std::hex << std::uppercase << std::setfill('0'); + for (uint8_t i = 0; i < 23; i++) { + ss << ' ' << std::setw(2) << static_cast(this->raw_data_[i]); + } + ESP_LOGVV(TAG, "%s", ss.str().c_str()); } +#endif + // Parse header uint8_t header1 = this->raw_data_[0]; + if (header1 == 0xAA) { ESP_LOGE(TAG, "CSE7766 not calibrated!"); return; } bool power_cycle_exceeds_range = false; - if ((header1 & 0xF0) == 0xF0) { if (header1 & 0xD) { ESP_LOGE(TAG, "CSE7766 reports abnormal external circuit or chip damage: (0x%02X)", header1); @@ -94,74 +102,106 @@ void CSE7766Component::parse_data_() { if (header1 & (1 << 0)) { ESP_LOGE(TAG, " Coefficient storage area is abnormal."); } + + // Datasheet: voltage or current cycle exceeding range means invalid values return; } power_cycle_exceeds_range = header1 & (1 << 1); } - uint32_t voltage_calib = this->get_24_bit_uint_(2); + // Parse data frame + uint32_t voltage_coeff = this->get_24_bit_uint_(2); uint32_t voltage_cycle = this->get_24_bit_uint_(5); - uint32_t current_calib = this->get_24_bit_uint_(8); + uint32_t current_coeff = this->get_24_bit_uint_(8); uint32_t current_cycle = this->get_24_bit_uint_(11); - uint32_t power_calib = this->get_24_bit_uint_(14); + uint32_t power_coeff = this->get_24_bit_uint_(14); uint32_t power_cycle = this->get_24_bit_uint_(17); - uint8_t adj = this->raw_data_[20]; uint32_t cf_pulses = (this->raw_data_[21] << 8) + this->raw_data_[22]; + bool have_power = adj & 0x10; + bool have_current = adj & 0x20; bool have_voltage = adj & 0x40; + + float voltage = 0.0f; if (have_voltage) { - // voltage cycle of serial port outputted is a complete cycle; - float voltage = voltage_calib / float(voltage_cycle); - if (this->voltage_sensor_ != nullptr) + voltage = voltage_coeff / float(voltage_cycle); + if (this->voltage_sensor_ != nullptr) { this->voltage_sensor_->publish_state(voltage); + } } - bool have_power = adj & 0x10; float power = 0.0f; - - if (have_power) { - // power cycle of serial port outputted is a complete cycle; - // According to the user manual, power cycle exceeding range means the measured power is 0 - if (!power_cycle_exceeds_range) { - power = power_calib / float(power_cycle); + float energy = 0.0f; + if (power_cycle_exceeds_range) { + // Datasheet: power cycle exceeding range means active power is 0 + if (this->power_sensor_ != nullptr) { + this->power_sensor_->publish_state(0.0f); } - if (this->power_sensor_ != nullptr) + } else if (have_power) { + power = power_coeff / float(power_cycle); + if (this->power_sensor_ != nullptr) { this->power_sensor_->publish_state(power); + } + + // Add CF pulses to the total energy only if we have Power coefficient to multiply by - uint32_t difference; if (this->cf_pulses_last_ == 0) { this->cf_pulses_last_ = cf_pulses; } + uint32_t cf_diff; if (cf_pulses < this->cf_pulses_last_) { - difference = cf_pulses + (0x10000 - this->cf_pulses_last_); + cf_diff = cf_pulses + (0x10000 - this->cf_pulses_last_); } else { - difference = cf_pulses - this->cf_pulses_last_; + cf_diff = cf_pulses - this->cf_pulses_last_; } this->cf_pulses_last_ = cf_pulses; - this->energy_total_ += difference * float(power_calib) / 1000000.0f / 3600.0f; + + energy = cf_diff * float(power_coeff) / 1000000.0f / 3600.0f; + this->energy_total_ += energy; if (this->energy_sensor_ != nullptr) this->energy_sensor_->publish_state(this->energy_total_); } else if ((this->energy_sensor_ != nullptr) && !this->energy_sensor_->has_state()) { this->energy_sensor_->publish_state(0); } - if (adj & 0x20) { - // indicates current cycle of serial port outputted is a complete cycle; - float current = 0.0f; - if (have_voltage && !have_power) { - // Testing has shown that when we have voltage and current but not power, that means the power is 0. - // We report a power of 0, which in turn means we should report a current of 0. - if (this->power_sensor_ != nullptr) - this->power_sensor_->publish_state(0); - } else if (power != 0.0f) { - current = current_calib / float(current_cycle); + float current = 0.0f; + float calculated_current = 0.0f; + if (have_current) { + // Assumption: if we don't have power measurement, then current is likely below 50mA + if (have_power && voltage > 1.0f) { + calculated_current = power / voltage; } - if (this->current_sensor_ != nullptr) + // Datasheet: minimum measured current is 50mA + if (calculated_current > 0.05f) { + current = current_coeff / float(current_cycle); + } + if (this->current_sensor_ != nullptr) { this->current_sensor_->publish_state(current); + } } + +#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERY_VERBOSE + { + std::stringstream ss; + ss << "Parsed:"; + if (have_voltage) { + ss << " V=" << voltage << "V"; + } + if (have_current) { + ss << " I=" << current * 1000.0f << "mA (~" << calculated_current * 1000.0f << "mA)"; + } + if (have_power) { + ss << " P=" << power << "W"; + } + if (energy != 0.0f) { + ss << " E=" << energy << "kWh (" << cf_pulses << ")"; + } + ESP_LOGVV(TAG, "%s", ss.str().c_str()); + } +#endif } uint32_t CSE7766Component::get_24_bit_uint_(uint8_t start_index) {