change to new 1-wire platform (#6860)

Co-authored-by: Samuel Sieb <samuel@sieb.net>
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
This commit is contained in:
Samuel Sieb 2024-06-11 18:05:44 -07:00 committed by GitHub
parent 7b60543afd
commit 13fabf1cd8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
28 changed files with 802 additions and 773 deletions

View file

@ -94,6 +94,7 @@ esphome/components/current_based/* @djwmarcx
esphome/components/dac7678/* @NickB1
esphome/components/daikin_arc/* @MagicBear
esphome/components/daikin_brc/* @hagak
esphome/components/dallas_temp/* @ssieb
esphome/components/daly_bms/* @s1lvi0
esphome/components/dashboard_import/* @esphome/core
esphome/components/datetime/* @jesserockz @rfdarter
@ -144,6 +145,7 @@ esphome/components/gdk101/* @Szewcson
esphome/components/globals/* @esphome/core
esphome/components/gp8403/* @jesserockz
esphome/components/gpio/* @esphome/core
esphome/components/gpio/one_wire/* @ssieb
esphome/components/gps/* @coogle
esphome/components/graph/* @synco
esphome/components/graphical_display_menu/* @MrMDavidson
@ -270,6 +272,7 @@ esphome/components/nextion/text_sensor/* @senexcrenshaw
esphome/components/nfc/* @jesserockz @kbx81
esphome/components/noblex/* @AGalfra
esphome/components/number/* @esphome/core
esphome/components/one_wire/* @ssieb
esphome/components/ota/* @esphome/core
esphome/components/output/* @esphome/core
esphome/components/pca6416a/* @Mat931

View file

@ -1,25 +1,7 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome import pins
from esphome.const import CONF_ID, CONF_PIN
MULTI_CONF = True
AUTO_LOAD = ["sensor"]
dallas_ns = cg.esphome_ns.namespace("dallas")
DallasComponent = dallas_ns.class_("DallasComponent", cg.PollingComponent)
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.declare_id(DallasComponent),
cv.Required(CONF_PIN): pins.internal_gpio_output_pin_schema,
}
).extend(cv.polling_component_schema("60s"))
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
pin = await cg.gpio_pin_expression(config[CONF_PIN])
cg.add(var.set_pin(pin))
CONFIG_SCHEMA = cv.invalid(
'The "dallas" component has been replaced by the "one_wire" component.\nhttps://esphome.io/components/one_wire'
)

View file

@ -1,287 +0,0 @@
#include "dallas_component.h"
#include "esphome/core/log.h"
namespace esphome {
namespace dallas {
static const char *const TAG = "dallas.sensor";
static const uint8_t DALLAS_MODEL_DS18S20 = 0x10;
static const uint8_t DALLAS_MODEL_DS1822 = 0x22;
static const uint8_t DALLAS_MODEL_DS18B20 = 0x28;
static const uint8_t DALLAS_MODEL_DS1825 = 0x3B;
static const uint8_t DALLAS_MODEL_DS28EA00 = 0x42;
static const uint8_t DALLAS_COMMAND_START_CONVERSION = 0x44;
static const uint8_t DALLAS_COMMAND_READ_SCRATCH_PAD = 0xBE;
static const uint8_t DALLAS_COMMAND_WRITE_SCRATCH_PAD = 0x4E;
uint16_t DallasTemperatureSensor::millis_to_wait_for_conversion() const {
switch (this->resolution_) {
case 9:
return 94;
case 10:
return 188;
case 11:
return 375;
default:
return 750;
}
}
void DallasComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up DallasComponent...");
pin_->setup();
// clear bus with 480µs high, otherwise initial reset in search_vec() fails
pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
delayMicroseconds(480);
one_wire_ = new ESPOneWire(pin_); // NOLINT(cppcoreguidelines-owning-memory)
std::vector<uint64_t> raw_sensors;
raw_sensors = this->one_wire_->search_vec();
for (auto &address : raw_sensors) {
auto *address8 = reinterpret_cast<uint8_t *>(&address);
if (crc8(address8, 7) != address8[7]) {
ESP_LOGW(TAG, "Dallas device 0x%s has invalid CRC.", format_hex(address).c_str());
continue;
}
if (address8[0] != DALLAS_MODEL_DS18S20 && address8[0] != DALLAS_MODEL_DS1822 &&
address8[0] != DALLAS_MODEL_DS18B20 && address8[0] != DALLAS_MODEL_DS1825 &&
address8[0] != DALLAS_MODEL_DS28EA00) {
ESP_LOGW(TAG, "Unknown device type 0x%02X.", address8[0]);
continue;
}
this->found_sensors_.push_back(address);
}
for (auto *sensor : this->sensors_) {
if (sensor->get_index().has_value()) {
if (*sensor->get_index() >= this->found_sensors_.size()) {
this->status_set_error("Sensor configured by index but not found");
continue;
}
sensor->set_address(this->found_sensors_[*sensor->get_index()]);
}
if (!sensor->setup_sensor()) {
this->status_set_error();
}
}
}
void DallasComponent::dump_config() {
ESP_LOGCONFIG(TAG, "DallasComponent:");
LOG_PIN(" Pin: ", this->pin_);
LOG_UPDATE_INTERVAL(this);
if (this->found_sensors_.empty()) {
ESP_LOGW(TAG, " Found no sensors!");
} else {
ESP_LOGD(TAG, " Found sensors:");
for (auto &address : this->found_sensors_) {
ESP_LOGD(TAG, " 0x%s", format_hex(address).c_str());
}
}
for (auto *sensor : this->sensors_) {
LOG_SENSOR(" ", "Device", sensor);
if (sensor->get_index().has_value()) {
ESP_LOGCONFIG(TAG, " Index %u", *sensor->get_index());
if (*sensor->get_index() >= this->found_sensors_.size()) {
ESP_LOGE(TAG, "Couldn't find sensor by index - not connected. Proceeding without it.");
continue;
}
}
ESP_LOGCONFIG(TAG, " Address: %s", sensor->get_address_name().c_str());
ESP_LOGCONFIG(TAG, " Resolution: %u", sensor->get_resolution());
}
}
void DallasComponent::register_sensor(DallasTemperatureSensor *sensor) { this->sensors_.push_back(sensor); }
void DallasComponent::update() {
this->status_clear_warning();
bool result;
{
InterruptLock lock;
result = this->one_wire_->reset();
}
if (!result) {
if (!this->found_sensors_.empty()) {
// Only log error if at the start sensors were found (and thus are disconnected during uptime)
ESP_LOGE(TAG, "Requesting conversion failed");
this->status_set_warning();
}
for (auto *sensor : this->sensors_) {
sensor->publish_state(NAN);
}
return;
}
{
InterruptLock lock;
this->one_wire_->skip();
this->one_wire_->write8(DALLAS_COMMAND_START_CONVERSION);
}
for (auto *sensor : this->sensors_) {
if (sensor->get_address() == 0) {
ESP_LOGV(TAG, "'%s' - Indexed sensor not found at startup, skipping update", sensor->get_name().c_str());
sensor->publish_state(NAN);
continue;
}
this->set_timeout(sensor->get_address_name(), sensor->millis_to_wait_for_conversion(), [this, sensor] {
bool res = sensor->read_scratch_pad();
if (!res) {
ESP_LOGW(TAG, "'%s' - Resetting bus for read failed!", sensor->get_name().c_str());
sensor->publish_state(NAN);
this->status_set_warning();
return;
}
if (!sensor->check_scratch_pad()) {
sensor->publish_state(NAN);
this->status_set_warning();
return;
}
float tempc = sensor->get_temp_c();
ESP_LOGD(TAG, "'%s': Got Temperature=%.1f°C", sensor->get_name().c_str(), tempc);
sensor->publish_state(tempc);
});
}
}
void DallasTemperatureSensor::set_address(uint64_t address) { this->address_ = address; }
uint8_t DallasTemperatureSensor::get_resolution() const { return this->resolution_; }
void DallasTemperatureSensor::set_resolution(uint8_t resolution) { this->resolution_ = resolution; }
optional<uint8_t> DallasTemperatureSensor::get_index() const { return this->index_; }
void DallasTemperatureSensor::set_index(uint8_t index) { this->index_ = index; }
uint8_t *DallasTemperatureSensor::get_address8() { return reinterpret_cast<uint8_t *>(&this->address_); }
uint64_t DallasTemperatureSensor::get_address() { return this->address_; }
const std::string &DallasTemperatureSensor::get_address_name() {
if (this->address_name_.empty()) {
this->address_name_ = std::string("0x") + format_hex(this->address_);
}
return this->address_name_;
}
bool IRAM_ATTR DallasTemperatureSensor::read_scratch_pad() {
auto *wire = this->parent_->one_wire_;
{
InterruptLock lock;
if (!wire->reset()) {
return false;
}
wire->select(this->address_);
wire->write8(DALLAS_COMMAND_READ_SCRATCH_PAD);
for (unsigned char &i : this->scratch_pad_) {
i = wire->read8();
}
}
return true;
}
bool DallasTemperatureSensor::setup_sensor() {
bool r = this->read_scratch_pad();
if (!r) {
ESP_LOGE(TAG, "Reading scratchpad failed: reset");
return false;
}
if (!this->check_scratch_pad())
return false;
if (this->scratch_pad_[4] == this->resolution_)
return false;
if (this->get_address8()[0] == DALLAS_MODEL_DS18S20) {
// DS18S20 doesn't support resolution.
ESP_LOGW(TAG, "DS18S20 doesn't support setting resolution.");
return false;
}
switch (this->resolution_) {
case 12:
this->scratch_pad_[4] = 0x7F;
break;
case 11:
this->scratch_pad_[4] = 0x5F;
break;
case 10:
this->scratch_pad_[4] = 0x3F;
break;
case 9:
default:
this->scratch_pad_[4] = 0x1F;
break;
}
auto *wire = this->parent_->one_wire_;
{
InterruptLock lock;
if (wire->reset()) {
wire->select(this->address_);
wire->write8(DALLAS_COMMAND_WRITE_SCRATCH_PAD);
wire->write8(this->scratch_pad_[2]); // high alarm temp
wire->write8(this->scratch_pad_[3]); // low alarm temp
wire->write8(this->scratch_pad_[4]); // resolution
wire->reset();
// write value to EEPROM
wire->select(this->address_);
wire->write8(0x48);
}
}
delay(20); // allow it to finish operation
wire->reset();
return true;
}
bool DallasTemperatureSensor::check_scratch_pad() {
bool chksum_validity = (crc8(this->scratch_pad_, 8) == this->scratch_pad_[8]);
bool config_validity = false;
switch (this->get_address8()[0]) {
case DALLAS_MODEL_DS18B20:
config_validity = ((this->scratch_pad_[4] & 0x9F) == 0x1F);
break;
default:
config_validity = ((this->scratch_pad_[4] & 0x10) == 0x10);
}
#ifdef ESPHOME_LOG_LEVEL_VERY_VERBOSE
ESP_LOGVV(TAG, "Scratch pad: %02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X (%02X)", this->scratch_pad_[0],
this->scratch_pad_[1], this->scratch_pad_[2], this->scratch_pad_[3], this->scratch_pad_[4],
this->scratch_pad_[5], this->scratch_pad_[6], this->scratch_pad_[7], this->scratch_pad_[8],
crc8(this->scratch_pad_, 8));
#endif
if (!chksum_validity) {
ESP_LOGW(TAG, "'%s' - Scratch pad checksum invalid!", this->get_name().c_str());
} else if (!config_validity) {
ESP_LOGW(TAG, "'%s' - Scratch pad config register invalid!", this->get_name().c_str());
}
return chksum_validity && config_validity;
}
float DallasTemperatureSensor::get_temp_c() {
int16_t temp = (int16_t(this->scratch_pad_[1]) << 11) | (int16_t(this->scratch_pad_[0]) << 3);
if (this->get_address8()[0] == DALLAS_MODEL_DS18S20) {
int diff = (this->scratch_pad_[7] - this->scratch_pad_[6]) << 7;
temp = ((temp & 0xFFF0) << 3) - 16 + (diff / this->scratch_pad_[7]);
}
return temp / 128.0f;
}
std::string DallasTemperatureSensor::unique_id() { return "dallas-" + str_lower_case(format_hex(this->address_)); }
} // namespace dallas
} // namespace esphome

View file

@ -1,79 +0,0 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include "esp_one_wire.h"
#include <vector>
namespace esphome {
namespace dallas {
class DallasTemperatureSensor;
class DallasComponent : public PollingComponent {
public:
void set_pin(InternalGPIOPin *pin) { pin_ = pin; }
void register_sensor(DallasTemperatureSensor *sensor);
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void update() override;
protected:
friend DallasTemperatureSensor;
InternalGPIOPin *pin_;
ESPOneWire *one_wire_;
std::vector<DallasTemperatureSensor *> sensors_;
std::vector<uint64_t> found_sensors_;
};
/// Internal class that helps us create multiple sensors for one Dallas hub.
class DallasTemperatureSensor : public sensor::Sensor {
public:
void set_parent(DallasComponent *parent) { parent_ = parent; }
/// Helper to get a pointer to the address as uint8_t.
uint8_t *get_address8();
uint64_t get_address();
/// Helper to create (and cache) the name for this sensor. For example "0xfe0000031f1eaf29".
const std::string &get_address_name();
/// Set the 64-bit unsigned address for this sensor.
void set_address(uint64_t address);
/// Get the index of this sensor. (0 if using address.)
optional<uint8_t> get_index() const;
/// Set the index of this sensor. If using index, address will be set after setup.
void set_index(uint8_t index);
/// Get the set resolution for this sensor.
uint8_t get_resolution() const;
/// Set the resolution for this sensor.
void set_resolution(uint8_t resolution);
/// Get the number of milliseconds we have to wait for the conversion phase.
uint16_t millis_to_wait_for_conversion() const;
bool setup_sensor();
bool read_scratch_pad();
bool check_scratch_pad();
float get_temp_c();
std::string unique_id() override;
protected:
DallasComponent *parent_;
uint64_t address_;
optional<uint8_t> index_;
uint8_t resolution_;
std::string address_name_;
uint8_t scratch_pad_[9] = {
0,
};
};
} // namespace dallas
} // namespace esphome

View file

@ -1,252 +0,0 @@
#include "esp_one_wire.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
namespace esphome {
namespace dallas {
static const char *const TAG = "dallas.one_wire";
const uint8_t ONE_WIRE_ROM_SELECT = 0x55;
const int ONE_WIRE_ROM_SEARCH = 0xF0;
ESPOneWire::ESPOneWire(InternalGPIOPin *pin) { pin_ = pin->to_isr(); }
bool HOT IRAM_ATTR ESPOneWire::reset() {
// See reset here:
// https://www.maximintegrated.com/en/design/technical-documents/app-notes/1/126.html
// Wait for communication to clear (delay G)
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
uint8_t retries = 125;
do {
if (--retries == 0)
return false;
delayMicroseconds(2);
} while (!pin_.digital_read());
// Send 480µs LOW TX reset pulse (drive bus low, delay H)
pin_.pin_mode(gpio::FLAG_OUTPUT);
pin_.digital_write(false);
delayMicroseconds(480);
// Release the bus, delay I
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
delayMicroseconds(70);
// sample bus, 0=device(s) present, 1=no device present
bool r = !pin_.digital_read();
// delay J
delayMicroseconds(410);
return r;
}
void HOT IRAM_ATTR ESPOneWire::write_bit(bool bit) {
// drive bus low
pin_.pin_mode(gpio::FLAG_OUTPUT);
pin_.digital_write(false);
// from datasheet:
// write 0 low time: t_low0: min=60µs, max=120µs
// write 1 low time: t_low1: min=1µs, max=15µs
// time slot: t_slot: min=60µs, max=120µs
// recovery time: t_rec: min=1µs
// ds18b20 appears to read the bus after roughly 14µs
uint32_t delay0 = bit ? 6 : 60;
uint32_t delay1 = bit ? 54 : 5;
// delay A/C
delayMicroseconds(delay0);
// release bus
pin_.digital_write(true);
// delay B/D
delayMicroseconds(delay1);
}
bool HOT IRAM_ATTR ESPOneWire::read_bit() {
// drive bus low
pin_.pin_mode(gpio::FLAG_OUTPUT);
pin_.digital_write(false);
// note: for reading we'll need very accurate timing, as the
// timing for the digital_read() is tight; according to the datasheet,
// we should read at the end of 16µs starting from the bus low
// typically, the ds18b20 pulls the line high after 11µs for a logical 1
// and 29µs for a logical 0
uint32_t start = micros();
// datasheet says >1µs
delayMicroseconds(3);
// release bus, delay E
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
// Unfortunately some frameworks have different characteristics than others
// esp32 arduino appears to pull the bus low only after the digital_write(false),
// whereas on esp-idf it already happens during the pin_mode(OUTPUT)
// manually correct for this with these constants.
#ifdef USE_ESP32
uint32_t timing_constant = 12;
#else
uint32_t timing_constant = 14;
#endif
// measure from start value directly, to get best accurate timing no matter
// how long pin_mode/delayMicroseconds took
while (micros() - start < timing_constant)
;
// sample bus to read bit from peer
bool r = pin_.digital_read();
// read slot is at least 60µs; get as close to 60µs to spend less time with interrupts locked
uint32_t now = micros();
if (now - start < 60)
delayMicroseconds(60 - (now - start));
return r;
}
void IRAM_ATTR ESPOneWire::write8(uint8_t val) {
for (uint8_t i = 0; i < 8; i++) {
this->write_bit(bool((1u << i) & val));
}
}
void IRAM_ATTR ESPOneWire::write64(uint64_t val) {
for (uint8_t i = 0; i < 64; i++) {
this->write_bit(bool((1ULL << i) & val));
}
}
uint8_t IRAM_ATTR ESPOneWire::read8() {
uint8_t ret = 0;
for (uint8_t i = 0; i < 8; i++) {
ret |= (uint8_t(this->read_bit()) << i);
}
return ret;
}
uint64_t IRAM_ATTR ESPOneWire::read64() {
uint64_t ret = 0;
for (uint8_t i = 0; i < 8; i++) {
ret |= (uint64_t(this->read_bit()) << i);
}
return ret;
}
void IRAM_ATTR ESPOneWire::select(uint64_t address) {
this->write8(ONE_WIRE_ROM_SELECT);
this->write64(address);
}
void IRAM_ATTR ESPOneWire::reset_search() {
this->last_discrepancy_ = 0;
this->last_device_flag_ = false;
this->rom_number_ = 0;
}
uint64_t IRAM_ATTR ESPOneWire::search() {
if (this->last_device_flag_) {
return 0u;
}
{
InterruptLock lock;
if (!this->reset()) {
// Reset failed or no devices present
this->reset_search();
return 0u;
}
}
uint8_t id_bit_number = 1;
uint8_t last_zero = 0;
uint8_t rom_byte_number = 0;
bool search_result = false;
uint8_t rom_byte_mask = 1;
{
InterruptLock lock;
// Initiate search
this->write8(ONE_WIRE_ROM_SEARCH);
do {
// read bit
bool id_bit = this->read_bit();
// read its complement
bool cmp_id_bit = this->read_bit();
if (id_bit && cmp_id_bit) {
// No devices participating in search
break;
}
bool branch;
if (id_bit != cmp_id_bit) {
// only chose one branch, the other one doesn't have any devices.
branch = id_bit;
} else {
// there are devices with both 0s and 1s at this bit
if (id_bit_number < this->last_discrepancy_) {
branch = (this->rom_number8_()[rom_byte_number] & rom_byte_mask) > 0;
} else {
branch = id_bit_number == this->last_discrepancy_;
}
if (!branch) {
last_zero = id_bit_number;
}
}
if (branch) {
// set bit
this->rom_number8_()[rom_byte_number] |= rom_byte_mask;
} else {
// clear bit
this->rom_number8_()[rom_byte_number] &= ~rom_byte_mask;
}
// choose/announce branch
this->write_bit(branch);
id_bit_number++;
rom_byte_mask <<= 1;
if (rom_byte_mask == 0u) {
// go to next byte
rom_byte_number++;
rom_byte_mask = 1;
}
} while (rom_byte_number < 8); // loop through all bytes
}
if (id_bit_number >= 65) {
this->last_discrepancy_ = last_zero;
if (this->last_discrepancy_ == 0) {
// we're at root and have no choices left, so this was the last one.
this->last_device_flag_ = true;
}
search_result = true;
}
search_result = search_result && (this->rom_number8_()[0] != 0);
if (!search_result) {
this->reset_search();
return 0u;
}
return this->rom_number_;
}
std::vector<uint64_t> ESPOneWire::search_vec() {
std::vector<uint64_t> res;
this->reset_search();
uint64_t address;
while ((address = this->search()) != 0u)
res.push_back(address);
return res;
}
void IRAM_ATTR ESPOneWire::skip() {
this->write8(0xCC); // skip ROM
}
uint8_t IRAM_ATTR *ESPOneWire::rom_number8_() { return reinterpret_cast<uint8_t *>(&this->rom_number_); }
} // namespace dallas
} // namespace esphome

View file

@ -1,68 +0,0 @@
#pragma once
#include "esphome/core/hal.h"
#include <vector>
namespace esphome {
namespace dallas {
extern const uint8_t ONE_WIRE_ROM_SELECT;
extern const int ONE_WIRE_ROM_SEARCH;
class ESPOneWire {
public:
explicit ESPOneWire(InternalGPIOPin *pin);
/** Reset the bus, should be done before all write operations.
*
* Takes approximately 1ms.
*
* @return Whether the operation was successful.
*/
bool reset();
/// Write a single bit to the bus, takes about 70µs.
void write_bit(bool bit);
/// Read a single bit from the bus, takes about 70µs
bool read_bit();
/// Write a word to the bus. LSB first.
void write8(uint8_t val);
/// Write a 64 bit unsigned integer to the bus. LSB first.
void write64(uint64_t val);
/// Write a command to the bus that addresses all devices by skipping the ROM.
void skip();
/// Read an 8 bit word from the bus.
uint8_t read8();
/// Read an 64-bit unsigned integer from the bus.
uint64_t read64();
/// Select a specific address on the bus for the following command.
void select(uint64_t address);
/// Reset the device search.
void reset_search();
/// Search for a 1-Wire device on the bus. Returns 0 if all devices have been found.
uint64_t search();
/// Helper that wraps search in a std::vector.
std::vector<uint64_t> search_vec();
protected:
/// Helper to get the internal 64-bit unsigned rom number as a 8-bit integer pointer.
inline uint8_t *rom_number8_();
ISRInternalGPIOPin pin_;
uint8_t last_discrepancy_{0};
bool last_device_flag_{false};
uint64_t rom_number_{0};
};
} // namespace dallas
} // namespace esphome

View file

@ -1,50 +1,5 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_ADDRESS,
CONF_DALLAS_ID,
CONF_INDEX,
CONF_RESOLUTION,
DEVICE_CLASS_TEMPERATURE,
STATE_CLASS_MEASUREMENT,
UNIT_CELSIUS,
CONFIG_SCHEMA = cv.invalid(
'The "dallas" sensor is now "dallas_temp"\nhttps://esphome.io/components/sensor/dallas_temp'
)
from . import DallasComponent, dallas_ns
DallasTemperatureSensor = dallas_ns.class_("DallasTemperatureSensor", sensor.Sensor)
CONFIG_SCHEMA = cv.All(
sensor.sensor_schema(
DallasTemperatureSensor,
unit_of_measurement=UNIT_CELSIUS,
accuracy_decimals=1,
device_class=DEVICE_CLASS_TEMPERATURE,
state_class=STATE_CLASS_MEASUREMENT,
).extend(
{
cv.GenerateID(CONF_DALLAS_ID): cv.use_id(DallasComponent),
cv.Optional(CONF_ADDRESS): cv.hex_uint64_t,
cv.Optional(CONF_INDEX): cv.positive_int,
cv.Optional(CONF_RESOLUTION, default=12): cv.int_range(min=9, max=12),
}
),
cv.has_exactly_one_key(CONF_ADDRESS, CONF_INDEX),
)
async def to_code(config):
hub = await cg.get_variable(config[CONF_DALLAS_ID])
var = await sensor.new_sensor(config)
if CONF_ADDRESS in config:
cg.add(var.set_address(config[CONF_ADDRESS]))
else:
cg.add(var.set_index(config[CONF_INDEX]))
if CONF_RESOLUTION in config:
cg.add(var.set_resolution(config[CONF_RESOLUTION]))
cg.add(var.set_parent(hub))
cg.add(hub.register_sensor(var))

View file

@ -0,0 +1 @@
CODEOWNERS = ["@ssieb"]

View file

@ -0,0 +1,172 @@
#include "dallas_temp.h"
#include "esphome/core/log.h"
namespace esphome {
namespace dallas_temp {
static const char *const TAG = "dallas.temp.sensor";
static const uint8_t DALLAS_MODEL_DS18S20 = 0x10;
static const uint8_t DALLAS_COMMAND_START_CONVERSION = 0x44;
static const uint8_t DALLAS_COMMAND_READ_SCRATCH_PAD = 0xBE;
static const uint8_t DALLAS_COMMAND_WRITE_SCRATCH_PAD = 0x4E;
static const uint8_t DALLAS_COMMAND_COPY_SCRATCH_PAD = 0x48;
uint16_t DallasTemperatureSensor::millis_to_wait_for_conversion_() const {
switch (this->resolution_) {
case 9:
return 94;
case 10:
return 188;
case 11:
return 375;
default:
return 750;
}
}
void DallasTemperatureSensor::dump_config() {
ESP_LOGCONFIG(TAG, "Dallas Temperature Sensor:");
if (this->address_ == 0) {
ESP_LOGW(TAG, " Unable to select an address");
return;
}
LOG_ONE_WIRE_DEVICE(this);
ESP_LOGCONFIG(TAG, " Resolution: %u bits", this->resolution_);
LOG_UPDATE_INTERVAL(this);
}
void DallasTemperatureSensor::update() {
if (this->address_ == 0)
return;
this->status_clear_warning();
this->send_command_(DALLAS_COMMAND_START_CONVERSION);
this->set_timeout(this->get_address_name(), this->millis_to_wait_for_conversion_(), [this] {
if (!this->read_scratch_pad_() || !this->check_scratch_pad_()) {
this->publish_state(NAN);
return;
}
float tempc = this->get_temp_c_();
ESP_LOGD(TAG, "'%s': Got Temperature=%.1f°C", this->get_name().c_str(), tempc);
this->publish_state(tempc);
});
}
void IRAM_ATTR DallasTemperatureSensor::read_scratch_pad_int_() {
for (uint8_t &i : this->scratch_pad_) {
i = this->bus_->read8();
}
}
bool DallasTemperatureSensor::read_scratch_pad_() {
bool success;
{
InterruptLock lock;
success = this->send_command_(DALLAS_COMMAND_READ_SCRATCH_PAD);
if (success)
this->read_scratch_pad_int_();
}
if (!success) {
ESP_LOGW(TAG, "'%s' - reading scratch pad failed bus reset", this->get_name().c_str());
this->status_set_warning("bus reset failed");
}
return success;
}
void DallasTemperatureSensor::setup() {
ESP_LOGCONFIG(TAG, "setting up Dallas temperature sensor...");
if (!this->check_address_())
return;
if (!this->read_scratch_pad_())
return;
if (!this->check_scratch_pad_())
return;
if ((this->address_ & 0xff) == DALLAS_MODEL_DS18S20) {
// DS18S20 doesn't support resolution.
ESP_LOGW(TAG, "DS18S20 doesn't support setting resolution.");
return;
}
uint8_t res;
switch (this->resolution_) {
case 12:
res = 0x7F;
break;
case 11:
res = 0x5F;
break;
case 10:
res = 0x3F;
break;
case 9:
default:
res = 0x1F;
break;
}
if (this->scratch_pad_[4] == res)
return;
this->scratch_pad_[4] = res;
{
InterruptLock lock;
if (this->send_command_(DALLAS_COMMAND_WRITE_SCRATCH_PAD)) {
this->bus_->write8(this->scratch_pad_[2]); // high alarm temp
this->bus_->write8(this->scratch_pad_[3]); // low alarm temp
this->bus_->write8(this->scratch_pad_[4]); // resolution
}
// write value to EEPROM
this->send_command_(DALLAS_COMMAND_COPY_SCRATCH_PAD);
}
}
bool DallasTemperatureSensor::check_scratch_pad_() {
bool chksum_validity = (crc8(this->scratch_pad_, 8) == this->scratch_pad_[8]);
#ifdef ESPHOME_LOG_LEVEL_VERY_VERBOSE
ESP_LOGVV(TAG, "Scratch pad: %02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X.%02X (%02X)", this->scratch_pad_[0],
this->scratch_pad_[1], this->scratch_pad_[2], this->scratch_pad_[3], this->scratch_pad_[4],
this->scratch_pad_[5], this->scratch_pad_[6], this->scratch_pad_[7], this->scratch_pad_[8],
crc8(this->scratch_pad_, 8));
#endif
if (!chksum_validity) {
ESP_LOGW(TAG, "'%s' - Scratch pad checksum invalid!", this->get_name().c_str());
this->status_set_warning("scratch pad checksum invalid");
}
return chksum_validity;
}
float DallasTemperatureSensor::get_temp_c_() {
int16_t temp = (this->scratch_pad_[1] << 8) | this->scratch_pad_[0];
if ((this->address_ & 0xff) == DALLAS_MODEL_DS18S20) {
if (this->scratch_pad_[7] != 0x10)
ESP_LOGE(TAG, "unexpected COUNT_PER_C value: %u", this->scratch_pad_[7]);
temp = ((temp & 0xfff7) << 3) + (0x10 - this->scratch_pad_[6]) - 4;
} else {
switch (this->resolution_) {
case 9:
temp &= 0xfff8;
break;
case 10:
temp &= 0xfffc;
break;
case 11:
temp &= 0xfffe;
break;
case 12:
default:
break;
}
}
return temp / 16.0f;
}
} // namespace dallas_temp
} // namespace esphome

View file

@ -0,0 +1,32 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/one_wire/one_wire.h"
namespace esphome {
namespace dallas_temp {
class DallasTemperatureSensor : public PollingComponent, public sensor::Sensor, public one_wire::OneWireDevice {
public:
void setup() override;
void update() override;
void dump_config() override;
/// Set the resolution for this sensor.
void set_resolution(uint8_t resolution) { this->resolution_ = resolution; }
protected:
uint8_t resolution_;
uint8_t scratch_pad_[9] = {0};
/// Get the number of milliseconds we have to wait for the conversion phase.
uint16_t millis_to_wait_for_conversion_() const;
bool read_scratch_pad_();
void read_scratch_pad_int_();
bool check_scratch_pad_();
float get_temp_c_();
};
} // namespace dallas_temp
} // namespace esphome

View file

@ -0,0 +1,43 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import one_wire, sensor
from esphome.const import (
CONF_RESOLUTION,
DEVICE_CLASS_TEMPERATURE,
STATE_CLASS_MEASUREMENT,
UNIT_CELSIUS,
)
dallas_temp_ns = cg.esphome_ns.namespace("dallas_temp")
DallasTemperatureSensor = dallas_temp_ns.class_(
"DallasTemperatureSensor",
cg.PollingComponent,
sensor.Sensor,
one_wire.OneWireDevice,
)
CONFIG_SCHEMA = (
sensor.sensor_schema(
DallasTemperatureSensor,
unit_of_measurement=UNIT_CELSIUS,
accuracy_decimals=1,
device_class=DEVICE_CLASS_TEMPERATURE,
state_class=STATE_CLASS_MEASUREMENT,
)
.extend(
{
cv.Optional(CONF_RESOLUTION, default=12): cv.int_range(min=9, max=12),
}
)
.extend(one_wire.one_wire_device_schema())
.extend(cv.polling_component_schema("60s"))
)
async def to_code(config):
var = await sensor.new_sensor(config)
await cg.register_component(var, config)
await one_wire.register_one_wire_device(var, config)
cg.add(var.set_resolution(config[CONF_RESOLUTION]))

View file

@ -0,0 +1,25 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome import pins
from esphome.const import CONF_ID, CONF_PIN
from esphome.components.one_wire import OneWireBus
from .. import gpio_ns
CODEOWNERS = ["@ssieb"]
GPIOOneWireBus = gpio_ns.class_("GPIOOneWireBus", OneWireBus, cg.Component)
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.declare_id(GPIOOneWireBus),
cv.Required(CONF_PIN): pins.internal_gpio_output_pin_schema,
}
).extend(cv.COMPONENT_SCHEMA)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
pin = await cg.gpio_pin_expression(config[CONF_PIN])
cg.add(var.set_pin(pin))

View file

@ -0,0 +1,199 @@
#include "gpio_one_wire.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
namespace esphome {
namespace gpio {
static const char *const TAG = "gpio.one_wire";
void GPIOOneWireBus::setup() {
ESP_LOGCONFIG(TAG, "Setting up 1-wire bus...");
this->search();
}
void GPIOOneWireBus::dump_config() {
ESP_LOGCONFIG(TAG, "GPIO 1-wire bus:");
LOG_PIN(" Pin: ", this->t_pin_);
this->dump_devices_(TAG);
}
bool HOT IRAM_ATTR GPIOOneWireBus::reset() {
// See reset here:
// https://www.maximintegrated.com/en/design/technical-documents/app-notes/1/126.html
// Wait for communication to clear (delay G)
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
uint8_t retries = 125;
do {
if (--retries == 0)
return false;
delayMicroseconds(2);
} while (!pin_.digital_read());
bool r;
// Send 480µs LOW TX reset pulse (drive bus low, delay H)
pin_.pin_mode(gpio::FLAG_OUTPUT);
pin_.digital_write(false);
delayMicroseconds(480);
// Release the bus, delay I
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
delayMicroseconds(70);
// sample bus, 0=device(s) present, 1=no device present
r = !pin_.digital_read();
// delay J
delayMicroseconds(410);
return r;
}
void HOT IRAM_ATTR GPIOOneWireBus::write_bit_(bool bit) {
// drive bus low
pin_.pin_mode(gpio::FLAG_OUTPUT);
pin_.digital_write(false);
// from datasheet:
// write 0 low time: t_low0: min=60µs, max=120µs
// write 1 low time: t_low1: min=1µs, max=15µs
// time slot: t_slot: min=60µs, max=120µs
// recovery time: t_rec: min=1µs
// ds18b20 appears to read the bus after roughly 14µs
uint32_t delay0 = bit ? 6 : 60;
uint32_t delay1 = bit ? 54 : 5;
// delay A/C
delayMicroseconds(delay0);
// release bus
pin_.digital_write(true);
// delay B/D
delayMicroseconds(delay1);
}
bool HOT IRAM_ATTR GPIOOneWireBus::read_bit_() {
// drive bus low
pin_.pin_mode(gpio::FLAG_OUTPUT);
pin_.digital_write(false);
// note: for reading we'll need very accurate timing, as the
// timing for the digital_read() is tight; according to the datasheet,
// we should read at the end of 16µs starting from the bus low
// typically, the ds18b20 pulls the line high after 11µs for a logical 1
// and 29µs for a logical 0
uint32_t start = micros();
// datasheet says >1µs
delayMicroseconds(2);
// release bus, delay E
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
// measure from start value directly, to get best accurate timing no matter
// how long pin_mode/delayMicroseconds took
delayMicroseconds(12 - (micros() - start));
// sample bus to read bit from peer
bool r = pin_.digital_read();
// read slot is at least 60µs; get as close to 60µs to spend less time with interrupts locked
uint32_t now = micros();
if (now - start < 60)
delayMicroseconds(60 - (now - start));
return r;
}
void IRAM_ATTR GPIOOneWireBus::write8(uint8_t val) {
for (uint8_t i = 0; i < 8; i++) {
this->write_bit_(bool((1u << i) & val));
}
}
void IRAM_ATTR GPIOOneWireBus::write64(uint64_t val) {
for (uint8_t i = 0; i < 64; i++) {
this->write_bit_(bool((1ULL << i) & val));
}
}
uint8_t IRAM_ATTR GPIOOneWireBus::read8() {
uint8_t ret = 0;
for (uint8_t i = 0; i < 8; i++) {
ret |= (uint8_t(this->read_bit_()) << i);
}
return ret;
}
uint64_t IRAM_ATTR GPIOOneWireBus::read64() {
uint64_t ret = 0;
for (uint8_t i = 0; i < 8; i++) {
ret |= (uint64_t(this->read_bit_()) << i);
}
return ret;
}
void GPIOOneWireBus::reset_search() {
this->last_discrepancy_ = 0;
this->last_device_flag_ = false;
this->address_ = 0;
}
uint64_t IRAM_ATTR GPIOOneWireBus::search_int() {
if (this->last_device_flag_)
return 0u;
uint8_t last_zero = 0;
uint64_t bit_mask = 1;
uint64_t address = this->address_;
// Initiate search
for (int bit_number = 1; bit_number <= 64; bit_number++, bit_mask <<= 1) {
// read bit
bool id_bit = this->read_bit_();
// read its complement
bool cmp_id_bit = this->read_bit_();
if (id_bit && cmp_id_bit) {
// No devices participating in search
return 0;
}
bool branch;
if (id_bit != cmp_id_bit) {
// only chose one branch, the other one doesn't have any devices.
branch = id_bit;
} else {
// there are devices with both 0s and 1s at this bit
if (bit_number < this->last_discrepancy_) {
branch = (address & bit_mask) > 0;
} else {
branch = bit_number == this->last_discrepancy_;
}
if (!branch) {
last_zero = bit_number;
}
}
if (branch) {
address |= bit_mask;
} else {
address &= ~bit_mask;
}
// choose/announce branch
this->write_bit_(branch);
}
this->last_discrepancy_ = last_zero;
if (this->last_discrepancy_ == 0) {
// we're at root and have no choices left, so this was the last one.
this->last_device_flag_ = true;
}
this->address_ = address;
return address;
}
} // namespace gpio
} // namespace esphome

View file

@ -0,0 +1,41 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/core/hal.h"
#include "esphome/components/one_wire/one_wire.h"
namespace esphome {
namespace gpio {
class GPIOOneWireBus : public one_wire::OneWireBus, public Component {
public:
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::BUS; }
void set_pin(InternalGPIOPin *pin) {
this->t_pin_ = pin;
this->pin_ = pin->to_isr();
}
bool reset() override;
void write8(uint8_t val) override;
void write64(uint64_t val) override;
uint8_t read8() override;
uint64_t read64() override;
protected:
InternalGPIOPin *t_pin_;
ISRInternalGPIOPin pin_;
uint8_t last_discrepancy_{0};
bool last_device_flag_{false};
uint64_t address_;
void reset_search() override;
uint64_t search_int() override;
void write_bit_(bool bit);
bool read_bit_();
};
} // namespace gpio
} // namespace esphome

View file

@ -0,0 +1,40 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.const import CONF_ADDRESS
CODEOWNERS = ["@ssieb"]
IS_PLATFORM_COMPONENT = True
CONF_ONE_WIRE_ID = "one_wire_id"
one_wire_ns = cg.esphome_ns.namespace("one_wire")
OneWireBus = one_wire_ns.class_("OneWireBus")
OneWireDevice = one_wire_ns.class_("OneWireDevice")
def one_wire_device_schema():
"""Create a schema for a 1-wire device.
:return: The 1-wire device schema, `extend` this in your config schema.
"""
schema = cv.Schema(
{
cv.GenerateID(CONF_ONE_WIRE_ID): cv.use_id(OneWireBus),
cv.Optional(CONF_ADDRESS): cv.hex_uint64_t,
}
)
return schema
async def register_one_wire_device(var, config):
"""Register an 1-wire device with the given config.
Sets the 1-wire bus to use and the 1-wire address.
This is a coroutine, you need to await it with a 'yield' expression!
"""
parent = await cg.get_variable(config[CONF_ONE_WIRE_ID])
cg.add(var.set_one_wire_bus(parent))
if (address := config.get(CONF_ADDRESS)) is not None:
cg.add(var.set_address(address))

View file

@ -0,0 +1,40 @@
#include "one_wire.h"
namespace esphome {
namespace one_wire {
static const char *const TAG = "one_wire";
const std::string &OneWireDevice::get_address_name() {
if (this->address_name_.empty())
this->address_name_ = std::string("0x") + format_hex(this->address_);
return this->address_name_;
}
std::string OneWireDevice::unique_id() { return "dallas-" + str_lower_case(format_hex(this->address_)); }
bool OneWireDevice::send_command_(uint8_t cmd) {
if (!this->bus_->select(this->address_))
return false;
this->bus_->write8(cmd);
return true;
}
bool OneWireDevice::check_address_() {
if (this->address_ != 0)
return true;
auto devices = this->bus_->get_devices();
if (devices.empty()) {
ESP_LOGE(TAG, "No devices, can't auto-select address");
return false;
}
if (devices.size() > 1) {
ESP_LOGE(TAG, "More than one device, can't auto-select address");
return false;
}
this->address_ = devices[0];
return true;
}
} // namespace one_wire
} // namespace esphome

View file

@ -0,0 +1,44 @@
#pragma once
#include "one_wire_bus.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
namespace esphome {
namespace one_wire {
#define LOG_ONE_WIRE_DEVICE(this) \
ESP_LOGCONFIG(TAG, " Address: %s (%s)", this->get_address_name().c_str(), \
LOG_STR_ARG(this->bus_->get_model_str(this->address_ & 0xff)));
class OneWireDevice {
public:
/// @brief store the address of the device
/// @param address of the device
void set_address(uint64_t address) { this->address_ = address; }
/// @brief store the pointer to the OneWireBus to use
/// @param bus pointer to the OneWireBus object
void set_one_wire_bus(OneWireBus *bus) { this->bus_ = bus; }
/// Helper to create (and cache) the name for this sensor. For example "0xfe0000031f1eaf29".
const std::string &get_address_name();
std::string unique_id();
protected:
uint64_t address_{0};
OneWireBus *bus_{nullptr}; ///< pointer to OneWireBus instance
std::string address_name_;
/// @brief find an address if necessary
/// should be called from setup
bool check_address_();
/// @brief send command on the bus
/// @param cmd command to send
bool send_command_(uint8_t cmd);
};
} // namespace one_wire
} // namespace esphome

View file

@ -0,0 +1,88 @@
#include "one_wire_bus.h"
#include "esphome/core/helpers.h"
namespace esphome {
namespace one_wire {
static const char *const TAG = "one_wire";
static const uint8_t DALLAS_MODEL_DS18S20 = 0x10;
static const uint8_t DALLAS_MODEL_DS1822 = 0x22;
static const uint8_t DALLAS_MODEL_DS18B20 = 0x28;
static const uint8_t DALLAS_MODEL_DS1825 = 0x3B;
static const uint8_t DALLAS_MODEL_DS28EA00 = 0x42;
const uint8_t ONE_WIRE_ROM_SELECT = 0x55;
const uint8_t ONE_WIRE_ROM_SEARCH = 0xF0;
const std::vector<uint64_t> &OneWireBus::get_devices() { return this->devices_; }
bool IRAM_ATTR OneWireBus::select(uint64_t address) {
if (!this->reset())
return false;
this->write8(ONE_WIRE_ROM_SELECT);
this->write64(address);
return true;
}
void OneWireBus::search() {
this->devices_.clear();
this->reset_search();
uint64_t address;
while (true) {
{
InterruptLock lock;
if (!this->reset()) {
// Reset failed or no devices present
return;
}
this->write8(ONE_WIRE_ROM_SEARCH);
address = this->search_int();
}
if (address == 0)
break;
auto *address8 = reinterpret_cast<uint8_t *>(&address);
if (crc8(address8, 7) != address8[7]) {
ESP_LOGW(TAG, "Dallas device 0x%s has invalid CRC.", format_hex(address).c_str());
} else {
this->devices_.push_back(address);
}
}
}
void OneWireBus::skip() {
this->write8(0xCC); // skip ROM
}
const LogString *OneWireBus::get_model_str(uint8_t model) {
switch (model) {
case DALLAS_MODEL_DS18S20:
return LOG_STR("DS18S20");
case DALLAS_MODEL_DS1822:
return LOG_STR("DS1822");
case DALLAS_MODEL_DS18B20:
return LOG_STR("DS18B20");
case DALLAS_MODEL_DS1825:
return LOG_STR("DS1825");
case DALLAS_MODEL_DS28EA00:
return LOG_STR("DS28EA00");
default:
return LOG_STR("Unknown");
}
}
void OneWireBus::dump_devices_(const char *tag) {
if (this->devices_.empty()) {
ESP_LOGW(tag, " Found no devices!");
} else {
ESP_LOGCONFIG(tag, " Found devices:");
for (auto &address : this->devices_) {
ESP_LOGCONFIG(tag, " 0x%s (%s)", format_hex(address).c_str(), LOG_STR_ARG(get_model_str(address & 0xff)));
}
}
}
} // namespace one_wire
} // namespace esphome

View file

@ -0,0 +1,61 @@
#pragma once
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include <vector>
namespace esphome {
namespace one_wire {
class OneWireBus {
public:
/** Reset the bus, should be done before all write operations.
*
* Takes approximately 1ms.
*
* @return Whether the operation was successful.
*/
virtual bool reset() = 0;
/// Write a word to the bus. LSB first.
virtual void write8(uint8_t val) = 0;
/// Write a 64 bit unsigned integer to the bus. LSB first.
virtual void write64(uint64_t val) = 0;
/// Write a command to the bus that addresses all devices by skipping the ROM.
void skip();
/// Read an 8 bit word from the bus.
virtual uint8_t read8() = 0;
/// Read an 64-bit unsigned integer from the bus.
virtual uint64_t read64() = 0;
/// Select a specific address on the bus for the following command.
bool select(uint64_t address);
/// Return the list of found devices.
const std::vector<uint64_t> &get_devices();
/// Search for 1-Wire devices on the bus.
void search();
/// Get the description string for this model.
const LogString *get_model_str(uint8_t model);
protected:
std::vector<uint64_t> devices_;
/// log the found devices
void dump_devices_(const char *tag);
/// Reset the device search.
virtual void reset_search() = 0;
/// Search for a 1-Wire device on the bus. Returns 0 if all devices have been found.
virtual uint64_t search_int() = 0;
};
} // namespace one_wire
} // namespace esphome

View file

@ -630,7 +630,7 @@ def lint_trailing_whitespace(fname, match):
"esphome/components/lock/lock.h",
"esphome/components/mqtt/mqtt_component.h",
"esphome/components/number/number.h",
"esphome/components/text/text.h",
"esphome/components/one_wire/one_wire.h",
"esphome/components/output/binary_output.h",
"esphome/components/output/float_output.h",
"esphome/components/nextion/nextion_base.h",
@ -638,6 +638,7 @@ def lint_trailing_whitespace(fname, match):
"esphome/components/sensor/sensor.h",
"esphome/components/stepper/stepper.h",
"esphome/components/switch/switch.h",
"esphome/components/text/text.h",
"esphome/components/text_sensor/text_sensor.h",
"esphome/components/valve/valve.h",
"esphome/core/component.h",

View file

@ -1,11 +1,11 @@
dallas:
one_wire:
- platform: gpio
pin: 4
sensor:
- platform: dallas
- platform: dallas_temp
address: 0x1C0000031EDD2A28
name: Dallas Temperature
resolution: 9
- platform: dallas
index: 1
- platform: dallas_temp
name: Dallas Temperature

View file

@ -315,11 +315,6 @@ as5600:
slow_filter: 8x
fast_filter: lsb6
dallas:
pin:
allow_other_uses: true
number: GPIO23
as3935_spi:
cs_pin:
ignore_strapping_warning: true
@ -714,13 +709,6 @@ sensor:
update_interval: 15s
iir_filter: 16x
i2c_id: i2c_bus
- platform: dallas
address: 0x1C0000031EDD2A28
name: Living Room Temperature
resolution: 9
- platform: dallas
index: 1
name: Living Room Temperature 2
- platform: dht
pin:
allow_other_uses: true