Add BME680 via BSEC integration (#1313)

This commit is contained in:
Trevor North 2021-04-06 11:19:56 +01:00 committed by GitHub
parent 808e3be324
commit 2d618768d5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 701 additions and 0 deletions

View file

@ -20,6 +20,7 @@ esphome/components/async_tcp/* @OttoWinter
esphome/components/atc_mithermometer/* @ahpohl esphome/components/atc_mithermometer/* @ahpohl
esphome/components/bang_bang/* @OttoWinter esphome/components/bang_bang/* @OttoWinter
esphome/components/binary_sensor/* @esphome/core esphome/components/binary_sensor/* @esphome/core
esphome/components/bme680_bsec/* @trvrnrth
esphome/components/canbus/* @danielschramm @mvturnho esphome/components/canbus/* @danielschramm @mvturnho
esphome/components/captive_portal/* @OttoWinter esphome/components/captive_portal/* @OttoWinter
esphome/components/climate/* @esphome/core esphome/components/climate/* @esphome/core

View file

@ -0,0 +1,64 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import i2c
from esphome.const import CONF_ID
CODEOWNERS = ["@trvrnrth"]
DEPENDENCIES = ["i2c"]
AUTO_LOAD = ["sensor", "text_sensor"]
CONF_BME680_BSEC_ID = "bme680_bsec_id"
CONF_TEMPERATURE_OFFSET = "temperature_offset"
CONF_IAQ_MODE = "iaq_mode"
CONF_SAMPLE_RATE = "sample_rate"
CONF_STATE_SAVE_INTERVAL = "state_save_interval"
bme680_bsec_ns = cg.esphome_ns.namespace("bme680_bsec")
IAQMode = bme680_bsec_ns.enum("IAQMode")
IAQ_MODE_OPTIONS = {
"STATIC": IAQMode.IAQ_MODE_STATIC,
"MOBILE": IAQMode.IAQ_MODE_MOBILE,
}
SampleRate = bme680_bsec_ns.enum("SampleRate")
SAMPLE_RATE_OPTIONS = {
"LP": SampleRate.SAMPLE_RATE_LP,
"ULP": SampleRate.SAMPLE_RATE_ULP,
}
BME680BSECComponent = bme680_bsec_ns.class_(
"BME680BSECComponent", cg.Component, i2c.I2CDevice
)
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.declare_id(BME680BSECComponent),
cv.Optional(CONF_TEMPERATURE_OFFSET, default=0): cv.temperature,
cv.Optional(CONF_IAQ_MODE, default="STATIC"): cv.enum(
IAQ_MODE_OPTIONS, upper=True
),
cv.Optional(CONF_SAMPLE_RATE, default="LP"): cv.enum(
SAMPLE_RATE_OPTIONS, upper=True
),
cv.Optional(
CONF_STATE_SAVE_INTERVAL, default="6hours"
): cv.positive_time_period_minutes,
}
).extend(i2c.i2c_device_schema(0x76))
def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
yield cg.register_component(var, config)
yield i2c.register_i2c_device(var, config)
cg.add(var.set_temperature_offset(config[CONF_TEMPERATURE_OFFSET]))
cg.add(var.set_iaq_mode(config[CONF_IAQ_MODE]))
cg.add(var.set_sample_rate(config[CONF_SAMPLE_RATE]))
cg.add(
var.set_state_save_interval(config[CONF_STATE_SAVE_INTERVAL].total_milliseconds)
)
cg.add_build_flag("-DUSING_BSEC")
cg.add_library("BSEC Software Library", "1.6.1480")

View file

@ -0,0 +1,398 @@
#ifdef USING_BSEC
#include "bme680_bsec.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include <string>
namespace esphome {
namespace bme680_bsec {
static const char *TAG = "bme680_bsec.sensor";
static const std::string IAQ_ACCURACY_STATES[4] = {"Stabilizing", "Uncertain", "Calibrating", "Calibrated"};
BME680BSECComponent *BME680BSECComponent::instance;
void BME680BSECComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up BME680 via BSEC...");
BME680BSECComponent::instance = this;
this->bsec_status_ = bsec_init();
if (this->bsec_status_ != BSEC_OK) {
this->mark_failed();
return;
}
this->bme680_.dev_id = this->address_;
this->bme680_.intf = BME680_I2C_INTF;
this->bme680_.read = BME680BSECComponent::read_bytes_wrapper;
this->bme680_.write = BME680BSECComponent::write_bytes_wrapper;
this->bme680_.delay_ms = BME680BSECComponent::delay_ms;
this->bme680_.amb_temp = 25;
this->bme680_.power_mode = BME680_FORCED_MODE;
this->bme680_status_ = bme680_init(&this->bme680_);
if (this->bme680_status_ != BME680_OK) {
this->mark_failed();
return;
}
if (this->sample_rate_ == SAMPLE_RATE_ULP) {
const uint8_t bsec_config[] = {
#include "config/generic_33v_300s_28d/bsec_iaq.txt"
};
this->set_config_(bsec_config);
this->update_subscription_(BSEC_SAMPLE_RATE_ULP);
} else {
const uint8_t bsec_config[] = {
#include "config/generic_33v_3s_28d/bsec_iaq.txt"
};
this->set_config_(bsec_config);
this->update_subscription_(BSEC_SAMPLE_RATE_LP);
}
if (this->bsec_status_ != BSEC_OK) {
this->mark_failed();
return;
}
this->load_state_();
}
void BME680BSECComponent::set_config_(const uint8_t *config) {
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE];
this->bsec_status_ = bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, work_buffer, sizeof(work_buffer));
}
void BME680BSECComponent::update_subscription_(float sample_rate) {
bsec_sensor_configuration_t virtual_sensors[BSEC_NUMBER_OUTPUTS];
int num_virtual_sensors = 0;
if (this->iaq_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id =
this->iaq_mode_ == IAQ_MODE_STATIC ? BSEC_OUTPUT_STATIC_IAQ : BSEC_OUTPUT_IAQ;
virtual_sensors[num_virtual_sensors].sample_rate = sample_rate;
num_virtual_sensors++;
}
if (this->co2_equivalent_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT;
virtual_sensors[num_virtual_sensors].sample_rate = sample_rate;
num_virtual_sensors++;
}
if (this->breath_voc_equivalent_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_BREATH_VOC_EQUIVALENT;
virtual_sensors[num_virtual_sensors].sample_rate = sample_rate;
num_virtual_sensors++;
}
if (this->pressure_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
virtual_sensors[num_virtual_sensors].sample_rate = sample_rate;
num_virtual_sensors++;
}
if (this->gas_resistance_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_GAS;
virtual_sensors[num_virtual_sensors].sample_rate = sample_rate;
num_virtual_sensors++;
}
if (this->temperature_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
virtual_sensors[num_virtual_sensors].sample_rate = sample_rate;
num_virtual_sensors++;
}
if (this->humidity_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
virtual_sensors[num_virtual_sensors].sample_rate = sample_rate;
num_virtual_sensors++;
}
bsec_sensor_configuration_t sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t num_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
this->bsec_status_ =
bsec_update_subscription(virtual_sensors, num_virtual_sensors, sensor_settings, &num_sensor_settings);
}
void BME680BSECComponent::dump_config() {
ESP_LOGCONFIG(TAG, "BME680 via BSEC:");
bsec_version_t version;
bsec_get_version(&version);
ESP_LOGCONFIG(TAG, " BSEC Version: %d.%d.%d.%d", version.major, version.minor, version.major_bugfix,
version.minor_bugfix);
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication failed (BSEC Status: %d, BME680 Status: %d)", this->bsec_status_,
this->bme680_status_);
}
ESP_LOGCONFIG(TAG, " Temperature Offset: %.2f", this->temperature_offset_);
ESP_LOGCONFIG(TAG, " IAQ Mode: %s", this->iaq_mode_ == IAQ_MODE_STATIC ? "Static" : "Mobile");
ESP_LOGCONFIG(TAG, " Sample Rate: %s", this->sample_rate_ == SAMPLE_RATE_ULP ? "ULP" : "LP");
ESP_LOGCONFIG(TAG, " State Save Interval: %ims", this->state_save_interval_ms_);
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
LOG_SENSOR(" ", "Pressure", this->pressure_sensor_);
LOG_SENSOR(" ", "Humidity", this->humidity_sensor_);
LOG_SENSOR(" ", "Gas Resistance", this->gas_resistance_sensor_);
LOG_SENSOR(" ", "IAQ", this->iaq_sensor_);
LOG_SENSOR(" ", "Numeric IAQ Accuracy", this->iaq_accuracy_sensor_);
LOG_TEXT_SENSOR(" ", "IAQ Accuracy", this->iaq_accuracy_text_sensor_);
LOG_SENSOR(" ", "CO2 Equivalent", this->co2_equivalent_sensor_);
LOG_SENSOR(" ", "Breath VOC Equivalent", this->breath_voc_equivalent_sensor_);
}
float BME680BSECComponent::get_setup_priority() const { return setup_priority::DATA; }
void BME680BSECComponent::loop() {
this->run_();
if (this->bsec_status_ < BSEC_OK || this->bme680_status_ < BME680_OK) {
this->status_set_error();
} else {
this->status_clear_error();
}
if (this->bsec_status_ > BSEC_OK || this->bme680_status_ > BME680_OK) {
this->status_set_warning();
} else {
this->status_clear_warning();
}
}
void BME680BSECComponent::run_() {
int64_t curr_time_ns = this->get_time_ns_();
if (curr_time_ns < this->next_call_ns_) {
return;
}
ESP_LOGV(TAG, "Performing sensor run");
bsec_bme_settings_t bme680_settings;
this->bsec_status_ = bsec_sensor_control(curr_time_ns, &bme680_settings);
if (this->bsec_status_ < BSEC_OK) {
ESP_LOGW(TAG, "Failed to fetch sensor control settings (BSEC Error Code %d)", this->bsec_status_);
return;
}
this->next_call_ns_ = bme680_settings.next_call;
this->bme680_.gas_sett.run_gas = bme680_settings.run_gas;
this->bme680_.tph_sett.os_hum = bme680_settings.humidity_oversampling;
this->bme680_.tph_sett.os_temp = bme680_settings.temperature_oversampling;
this->bme680_.tph_sett.os_pres = bme680_settings.pressure_oversampling;
this->bme680_.gas_sett.heatr_temp = bme680_settings.heater_temperature;
this->bme680_.gas_sett.heatr_dur = bme680_settings.heating_duration;
uint16_t desired_settings =
BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL | BME680_GAS_SENSOR_SEL;
this->bme680_status_ = bme680_set_sensor_settings(desired_settings, &this->bme680_);
if (this->bme680_status_ != BME680_OK) {
ESP_LOGW(TAG, "Failed to set sensor settings (BME680 Error Code %d)", this->bme680_status_);
return;
}
this->bme680_status_ = bme680_set_sensor_mode(&this->bme680_);
if (this->bme680_status_ != BME680_OK) {
ESP_LOGW(TAG, "Failed to set sensor mode (BME680 Error Code %d)", this->bme680_status_);
return;
}
uint16_t meas_dur = 0;
bme680_get_profile_dur(&meas_dur, &this->bme680_);
ESP_LOGV(TAG, "Queueing read in %ums", meas_dur);
this->set_timeout("read", meas_dur, [this, bme680_settings]() { this->read_(bme680_settings); });
}
void BME680BSECComponent::read_(bsec_bme_settings_t bme680_settings) {
ESP_LOGV(TAG, "Reading data");
struct bme680_field_data data;
this->bme680_status_ = bme680_get_sensor_data(&data, &this->bme680_);
if (this->bme680_status_ != BME680_OK) {
ESP_LOGW(TAG, "Failed to get sensor data (BME680 Error Code %d)", this->bme680_status_);
return;
}
if (!(data.status & BME680_NEW_DATA_MSK)) {
ESP_LOGD(TAG, "BME680 did not report new data");
return;
}
bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR]; // Temperature, Pressure, Humidity & Gas Resistance
uint8_t num_inputs = 0;
int64_t curr_time_ns = this->get_time_ns_();
if (bme680_settings.process_data & BSEC_PROCESS_TEMPERATURE) {
inputs[num_inputs].sensor_id = BSEC_INPUT_TEMPERATURE;
inputs[num_inputs].signal = data.temperature / 100.0f;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
// Temperature offset from the real temperature due to external heat sources
inputs[num_inputs].sensor_id = BSEC_INPUT_HEATSOURCE;
inputs[num_inputs].signal = this->temperature_offset_;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
}
if (bme680_settings.process_data & BSEC_PROCESS_HUMIDITY) {
inputs[num_inputs].sensor_id = BSEC_INPUT_HUMIDITY;
inputs[num_inputs].signal = data.humidity / 1000.0f;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
}
if (bme680_settings.process_data & BSEC_PROCESS_PRESSURE) {
inputs[num_inputs].sensor_id = BSEC_INPUT_PRESSURE;
inputs[num_inputs].signal = data.pressure;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
}
if (bme680_settings.process_data & BSEC_PROCESS_GAS) {
inputs[num_inputs].sensor_id = BSEC_INPUT_GASRESISTOR;
inputs[num_inputs].signal = data.gas_resistance;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
}
if (num_inputs < 1) {
ESP_LOGD(TAG, "No signal inputs available for BSEC");
return;
}
bsec_output_t outputs[BSEC_NUMBER_OUTPUTS];
uint8_t num_outputs = BSEC_NUMBER_OUTPUTS;
this->bsec_status_ = bsec_do_steps(inputs, num_inputs, outputs, &num_outputs);
if (this->bsec_status_ != BSEC_OK) {
ESP_LOGW(TAG, "BSEC failed to process signals (BSEC Error Code %d)", this->bsec_status_);
return;
}
if (num_outputs < 1) {
ESP_LOGD(TAG, "No signal outputs provided by BSEC");
return;
}
this->publish_(outputs, num_outputs);
}
void BME680BSECComponent::publish_(const bsec_output_t *outputs, uint8_t num_outputs) {
ESP_LOGV(TAG, "Publishing sensor states");
for (uint8_t i = 0; i < num_outputs; i++) {
switch (outputs[i].sensor_id) {
case BSEC_OUTPUT_IAQ:
case BSEC_OUTPUT_STATIC_IAQ:
uint8_t accuracy;
accuracy = outputs[i].accuracy;
this->publish_sensor_state_(this->iaq_sensor_, outputs[i].signal);
this->publish_sensor_state_(this->iaq_accuracy_text_sensor_, IAQ_ACCURACY_STATES[accuracy]);
this->publish_sensor_state_(this->iaq_accuracy_sensor_, accuracy, true);
// Queue up an opportunity to save state
this->defer("save_state", [this, accuracy]() { this->save_state_(accuracy); });
break;
case BSEC_OUTPUT_CO2_EQUIVALENT:
this->publish_sensor_state_(this->co2_equivalent_sensor_, outputs[i].signal);
break;
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
this->publish_sensor_state_(this->breath_voc_equivalent_sensor_, outputs[i].signal);
break;
case BSEC_OUTPUT_RAW_PRESSURE:
this->publish_sensor_state_(this->pressure_sensor_, outputs[i].signal / 100.0f);
break;
case BSEC_OUTPUT_RAW_GAS:
this->publish_sensor_state_(this->gas_resistance_sensor_, outputs[i].signal);
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
this->publish_sensor_state_(this->temperature_sensor_, outputs[i].signal);
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
this->publish_sensor_state_(this->humidity_sensor_, outputs[i].signal);
break;
}
}
}
int64_t BME680BSECComponent::get_time_ns_() {
int64_t time_ms = millis();
if (this->last_time_ms_ > time_ms) {
this->millis_overflow_counter_++;
}
this->last_time_ms_ = time_ms;
return (time_ms + ((int64_t) this->millis_overflow_counter_ << 32)) * INT64_C(1000000);
}
void BME680BSECComponent::publish_sensor_state_(sensor::Sensor *sensor, float value, bool change_only) {
if (!sensor || (change_only && sensor->has_state() && sensor->state == value)) {
return;
}
sensor->publish_state(value);
}
void BME680BSECComponent::publish_sensor_state_(text_sensor::TextSensor *sensor, std::string value) {
if (!sensor || (sensor->has_state() && sensor->state == value)) {
return;
}
sensor->publish_state(value);
}
int8_t BME680BSECComponent::read_bytes_wrapper(uint8_t address, uint8_t a_register, uint8_t *data, uint16_t len) {
return BME680BSECComponent::instance->read_bytes(a_register, data, len) ? 0 : -1;
}
int8_t BME680BSECComponent::write_bytes_wrapper(uint8_t address, uint8_t a_register, uint8_t *data, uint16_t len) {
return BME680BSECComponent::instance->write_bytes(a_register, data, len) ? 0 : -1;
}
void BME680BSECComponent::delay_ms(uint32_t period) {
ESP_LOGV(TAG, "Delaying for %ums", period);
delay(period);
}
void BME680BSECComponent::load_state_() {
uint32_t hash = fnv1_hash("bme680_bsec_state_" + to_string(this->address_));
this->bsec_state_ = global_preferences.make_preference<uint8_t[BSEC_MAX_STATE_BLOB_SIZE]>(hash, true);
uint8_t state[BSEC_MAX_STATE_BLOB_SIZE];
if (this->bsec_state_.load(&state)) {
ESP_LOGV(TAG, "Loading state");
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE];
this->bsec_status_ = bsec_set_state(state, BSEC_MAX_STATE_BLOB_SIZE, work_buffer, sizeof(work_buffer));
if (this->bsec_status_ != BSEC_OK) {
ESP_LOGW(TAG, "Failed to load state (BSEC Error Code %d)", this->bsec_status_);
}
ESP_LOGI(TAG, "Loaded state");
}
}
void BME680BSECComponent::save_state_(uint8_t accuracy) {
if (accuracy < 3 || (millis() - this->last_state_save_ms_ < this->state_save_interval_ms_)) {
return;
}
ESP_LOGV(TAG, "Saving state");
uint8_t state[BSEC_MAX_STATE_BLOB_SIZE];
uint8_t work_buffer[BSEC_MAX_STATE_BLOB_SIZE];
uint32_t num_serialized_state = BSEC_MAX_STATE_BLOB_SIZE;
this->bsec_status_ =
bsec_get_state(0, state, BSEC_MAX_STATE_BLOB_SIZE, work_buffer, BSEC_MAX_STATE_BLOB_SIZE, &num_serialized_state);
if (this->bsec_status_ != BSEC_OK) {
ESP_LOGW(TAG, "Failed fetch state for save (BSEC Error Code %d)", this->bsec_status_);
return;
}
if (!this->bsec_state_.save(&state)) {
ESP_LOGW(TAG, "Failed to save state");
return;
}
this->last_state_save_ms_ = millis();
ESP_LOGI(TAG, "Saved state");
}
} // namespace bme680_bsec
} // namespace esphome
#endif

View file

@ -0,0 +1,106 @@
#ifdef USING_BSEC
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/text_sensor/text_sensor.h"
#include "esphome/components/i2c/i2c.h"
#include "esphome/core/preferences.h"
#include <bsec.h>
#include <map>
namespace esphome {
namespace bme680_bsec {
enum IAQMode {
IAQ_MODE_STATIC = 0,
IAQ_MODE_MOBILE = 1,
};
enum SampleRate {
SAMPLE_RATE_LP = 0,
SAMPLE_RATE_ULP = 1,
};
class BME680BSECComponent : public Component, public i2c::I2CDevice {
public:
void set_temperature_offset(float offset) { this->temperature_offset_ = offset; }
void set_iaq_mode(IAQMode iaq_mode) { this->iaq_mode_ = iaq_mode; }
void set_sample_rate(SampleRate sample_rate) { this->sample_rate_ = sample_rate; }
void set_state_save_interval(uint32_t interval) { this->state_save_interval_ms_ = interval; }
void set_temperature_sensor(sensor::Sensor *temperature_sensor) { temperature_sensor_ = temperature_sensor; }
void set_pressure_sensor(sensor::Sensor *pressure_sensor) { pressure_sensor_ = pressure_sensor; }
void set_humidity_sensor(sensor::Sensor *humidity_sensor) { humidity_sensor_ = humidity_sensor; }
void set_gas_resistance_sensor(sensor::Sensor *gas_resistance_sensor) {
gas_resistance_sensor_ = gas_resistance_sensor;
}
void set_iaq_sensor(sensor::Sensor *iaq_sensor) { iaq_sensor_ = iaq_sensor; }
void set_iaq_accuracy_text_sensor(text_sensor::TextSensor *iaq_accuracy_text_sensor) {
iaq_accuracy_text_sensor_ = iaq_accuracy_text_sensor;
}
void set_iaq_accuracy_sensor(sensor::Sensor *iaq_accuracy_sensor) { iaq_accuracy_sensor_ = iaq_accuracy_sensor; }
void set_co2_equivalent_sensor(sensor::Sensor *co2_equivalent_sensor) {
co2_equivalent_sensor_ = co2_equivalent_sensor;
}
void set_breath_voc_equivalent_sensor(sensor::Sensor *breath_voc_equivalent_sensor) {
breath_voc_equivalent_sensor_ = breath_voc_equivalent_sensor;
}
static BME680BSECComponent *instance;
static int8_t read_bytes_wrapper(uint8_t address, uint8_t a_register, uint8_t *data, uint16_t len);
static int8_t write_bytes_wrapper(uint8_t address, uint8_t a_register, uint8_t *data, uint16_t len);
static void delay_ms(uint32_t period);
void setup() override;
void dump_config() override;
float get_setup_priority() const override;
void loop() override;
protected:
void set_config_(const uint8_t *config);
void update_subscription_(float sample_rate);
void run_();
void read_(bsec_bme_settings_t bme680_settings);
void publish_(const bsec_output_t *outputs, uint8_t num_outputs);
int64_t get_time_ns_();
void publish_sensor_state_(sensor::Sensor *sensor, float value, bool change_only = false);
void publish_sensor_state_(text_sensor::TextSensor *sensor, std::string value);
void load_state_();
void save_state_(uint8_t accuracy);
struct bme680_dev bme680_;
bsec_library_return_t bsec_status_{BSEC_OK};
int8_t bme680_status_{BME680_OK};
int64_t last_time_ms_{0};
uint32_t millis_overflow_counter_{0};
int64_t next_call_ns_{0};
ESPPreferenceObject bsec_state_;
uint32_t state_save_interval_ms_{21600000}; // 6 hours - 4 times a day
uint32_t last_state_save_ms_ = 0;
float temperature_offset_{0};
IAQMode iaq_mode_{IAQ_MODE_STATIC};
SampleRate sample_rate_{SAMPLE_RATE_LP};
sensor::Sensor *temperature_sensor_;
sensor::Sensor *pressure_sensor_;
sensor::Sensor *humidity_sensor_;
sensor::Sensor *gas_resistance_sensor_;
sensor::Sensor *iaq_sensor_;
text_sensor::TextSensor *iaq_accuracy_text_sensor_;
sensor::Sensor *iaq_accuracy_sensor_;
sensor::Sensor *co2_equivalent_sensor_;
sensor::Sensor *breath_voc_equivalent_sensor_;
};
} // namespace bme680_bsec
} // namespace esphome
#endif

View file

@ -0,0 +1,91 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_GAS_RESISTANCE,
CONF_HUMIDITY,
CONF_PRESSURE,
CONF_TEMPERATURE,
DEVICE_CLASS_EMPTY,
DEVICE_CLASS_HUMIDITY,
DEVICE_CLASS_PRESSURE,
DEVICE_CLASS_TEMPERATURE,
UNIT_CELSIUS,
UNIT_EMPTY,
UNIT_HECTOPASCAL,
UNIT_OHM,
UNIT_PARTS_PER_MILLION,
UNIT_PERCENT,
ICON_GAS_CYLINDER,
ICON_GAUGE,
ICON_THERMOMETER,
ICON_WATER_PERCENT,
)
from esphome.core import coroutine
from . import BME680BSECComponent, CONF_BME680_BSEC_ID
DEPENDENCIES = ["bme680_bsec"]
CONF_IAQ = "iaq"
CONF_IAQ_ACCURACY = "iaq_accuracy"
CONF_CO2_EQUIVALENT = "co2_equivalent"
CONF_BREATH_VOC_EQUIVALENT = "breath_voc_equivalent"
UNIT_IAQ = "IAQ"
ICON_ACCURACY = "mdi:checkbox-marked-circle-outline"
ICON_TEST_TUBE = "mdi:test-tube"
TYPES = {
CONF_TEMPERATURE: "set_temperature_sensor",
CONF_PRESSURE: "set_pressure_sensor",
CONF_HUMIDITY: "set_humidity_sensor",
CONF_GAS_RESISTANCE: "set_gas_resistance_sensor",
CONF_IAQ: "set_iaq_sensor",
CONF_IAQ_ACCURACY: "set_iaq_accuracy_sensor",
CONF_CO2_EQUIVALENT: "set_co2_equivalent_sensor",
CONF_BREATH_VOC_EQUIVALENT: "set_breath_voc_equivalent_sensor",
}
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(CONF_BME680_BSEC_ID): cv.use_id(BME680BSECComponent),
cv.Optional(CONF_TEMPERATURE): sensor.sensor_schema(
UNIT_CELSIUS, ICON_THERMOMETER, 1, DEVICE_CLASS_TEMPERATURE
),
cv.Optional(CONF_PRESSURE): sensor.sensor_schema(
UNIT_HECTOPASCAL, ICON_GAUGE, 1, DEVICE_CLASS_PRESSURE
),
cv.Optional(CONF_HUMIDITY): sensor.sensor_schema(
UNIT_PERCENT, ICON_WATER_PERCENT, 1, DEVICE_CLASS_HUMIDITY
),
cv.Optional(CONF_GAS_RESISTANCE): sensor.sensor_schema(
UNIT_OHM, ICON_GAS_CYLINDER, 0, DEVICE_CLASS_EMPTY
),
cv.Optional(CONF_IAQ): sensor.sensor_schema(
UNIT_IAQ, ICON_GAUGE, 0, DEVICE_CLASS_EMPTY
),
cv.Optional(CONF_IAQ_ACCURACY): sensor.sensor_schema(
UNIT_EMPTY, ICON_ACCURACY, 0, DEVICE_CLASS_EMPTY
),
cv.Optional(CONF_CO2_EQUIVALENT): sensor.sensor_schema(
UNIT_PARTS_PER_MILLION, ICON_TEST_TUBE, 1, DEVICE_CLASS_EMPTY
),
cv.Optional(CONF_BREATH_VOC_EQUIVALENT): sensor.sensor_schema(
UNIT_PARTS_PER_MILLION, ICON_TEST_TUBE, 1, DEVICE_CLASS_EMPTY
),
}
)
@coroutine
def setup_conf(config, key, hub, funcName):
if key in config:
conf = config[key]
var = yield sensor.new_sensor(conf)
func = getattr(hub, funcName)
cg.add(func(var))
def to_code(config):
hub = yield cg.get_variable(config[CONF_BME680_BSEC_ID])
for key, funcName in TYPES.items():
yield setup_conf(config, key, hub, funcName)

View file

@ -0,0 +1,41 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import text_sensor
from esphome.const import CONF_ID, CONF_ICON
from esphome.core import coroutine
from . import BME680BSECComponent, CONF_BME680_BSEC_ID
DEPENDENCIES = ["bme680_bsec"]
CONF_IAQ_ACCURACY = "iaq_accuracy"
ICON_ACCURACY = "mdi:checkbox-marked-circle-outline"
TYPES = {CONF_IAQ_ACCURACY: "set_iaq_accuracy_text_sensor"}
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(CONF_BME680_BSEC_ID): cv.use_id(BME680BSECComponent),
cv.Optional(CONF_IAQ_ACCURACY): text_sensor.TEXT_SENSOR_SCHEMA.extend(
{
cv.GenerateID(): cv.declare_id(text_sensor.TextSensor),
cv.Optional(CONF_ICON, default=ICON_ACCURACY): cv.icon,
}
),
}
)
@coroutine
def setup_conf(config, key, hub, funcName):
if key in config:
conf = config[key]
var = cg.new_Pvariable(conf[CONF_ID])
yield text_sensor.register_text_sensor(var, conf)
func = getattr(hub, funcName)
cg.add(func(var))
def to_code(config):
hub = yield cg.get_variable(config[CONF_BME680_BSEC_ID])
for key, funcName in TYPES.items():
yield setup_conf(config, key, hub, funcName)