Refactoring – simplified.

Added actuator activation time.
Separated recalibration times for opening and closing.
Rounded position after stopping; saved rounded position and tilt values.
Added debug logging.
Stopped as needed in calibration state after receiving control requests.
This commit is contained in:
klaudiusz223 2024-11-15 23:32:22 +01:00
parent 9fcdbbb02d
commit 48dabe0a80
3 changed files with 154 additions and 88 deletions

View file

@ -1,15 +1,15 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome import automation from esphome import automation
import esphome.codegen as cg
from esphome.components import cover from esphome.components import cover
import esphome.config_validation as cv
from esphome.const import ( from esphome.const import (
CONF_ASSUMED_STATE,
CONF_CLOSE_ACTION, CONF_CLOSE_ACTION,
CONF_CLOSE_DURATION, CONF_CLOSE_DURATION,
CONF_ID, CONF_ID,
CONF_OPEN_ACTION, CONF_OPEN_ACTION,
CONF_OPEN_DURATION, CONF_OPEN_DURATION,
CONF_STOP_ACTION, CONF_STOP_ACTION,
CONF_ASSUMED_STATE,
) )
CODEOWNERS = ["@klaudiusz223"] CODEOWNERS = ["@klaudiusz223"]
@ -22,7 +22,10 @@ TimeBasedTiltCover = time_based_tilt_ns.class_(
CONF_TILT_OPEN_DURATION = "tilt_open_duration" CONF_TILT_OPEN_DURATION = "tilt_open_duration"
CONF_TILT_CLOSE_DURATION = "tilt_close_duration" CONF_TILT_CLOSE_DURATION = "tilt_close_duration"
CONF_INTERLOCK_WAIT_TIME = "interlock_wait_time" CONF_INTERLOCK_WAIT_TIME = "interlock_wait_time"
CONF_RECALIBRATION_TIME = "recalibration_time" CONF_RECALIBRATION_OPEN_TIME = "recalibration_open_time"
CONF_RECALIBRATION_CLOSE_TIME = "recalibration_close_time"
CONF_ACTUATOR_ACTIVATION_OPEN_TIME = "actuator_activation_open_time"
CONF_ACTUATOR_ACTIVATION_CLOSE_TIME = "actuator_activation_close_time"
CONF_INERTIA_OPEN_TIME = "inertia_open_time" CONF_INERTIA_OPEN_TIME = "inertia_open_time"
CONF_INERTIA_CLOSE_TIME = "inertia_close_time" CONF_INERTIA_CLOSE_TIME = "inertia_close_time"
@ -45,7 +48,10 @@ CONFIG_SCHEMA = cover.COVER_SCHEMA.extend(
CONF_INTERLOCK_WAIT_TIME, default="0ms" CONF_INTERLOCK_WAIT_TIME, default="0ms"
): cv.positive_time_period_milliseconds, ): cv.positive_time_period_milliseconds,
cv.Optional( cv.Optional(
CONF_RECALIBRATION_TIME, default="0ms" CONF_RECALIBRATION_OPEN_TIME, default="0ms"
): cv.positive_time_period_milliseconds,
cv.Optional(
CONF_RECALIBRATION_CLOSE_TIME, default="0ms"
): cv.positive_time_period_milliseconds, ): cv.positive_time_period_milliseconds,
cv.Optional( cv.Optional(
CONF_INERTIA_OPEN_TIME, default="0ms" CONF_INERTIA_OPEN_TIME, default="0ms"
@ -53,6 +59,12 @@ CONFIG_SCHEMA = cover.COVER_SCHEMA.extend(
cv.Optional( cv.Optional(
CONF_INERTIA_CLOSE_TIME, default="0ms" CONF_INERTIA_CLOSE_TIME, default="0ms"
): cv.positive_time_period_milliseconds, ): cv.positive_time_period_milliseconds,
cv.Optional(
CONF_ACTUATOR_ACTIVATION_OPEN_TIME, default="0ms"
): cv.positive_time_period_milliseconds,
cv.Optional(
CONF_ACTUATOR_ACTIVATION_CLOSE_TIME, default="0ms"
): cv.positive_time_period_milliseconds,
} }
).extend(cv.COMPONENT_SCHEMA) ).extend(cv.COMPONENT_SCHEMA)
@ -79,7 +91,18 @@ async def to_code(config):
cg.add(var.set_tilt_open_duration(config[CONF_TILT_OPEN_DURATION])) cg.add(var.set_tilt_open_duration(config[CONF_TILT_OPEN_DURATION]))
cg.add(var.set_tilt_close_duration(config[CONF_TILT_CLOSE_DURATION])) cg.add(var.set_tilt_close_duration(config[CONF_TILT_CLOSE_DURATION]))
cg.add(var.set_interlock_wait_time(config[CONF_INTERLOCK_WAIT_TIME])) cg.add(var.set_interlock_wait_time(config[CONF_INTERLOCK_WAIT_TIME]))
cg.add(var.set_recalibration_time(config[CONF_RECALIBRATION_TIME])) cg.add(var.set_recalibration_open_time(config[CONF_RECALIBRATION_OPEN_TIME]))
cg.add(var.set_recalibration_close_time(config[CONF_RECALIBRATION_CLOSE_TIME]))
cg.add(var.set_inertia_close_time(config[CONF_INERTIA_CLOSE_TIME])) cg.add(var.set_inertia_close_time(config[CONF_INERTIA_CLOSE_TIME]))
cg.add(var.set_inertia_open_time(config[CONF_INERTIA_OPEN_TIME])) cg.add(var.set_inertia_open_time(config[CONF_INERTIA_OPEN_TIME]))
cg.add(var.set_assumed_state(config[CONF_ASSUMED_STATE])) cg.add(var.set_assumed_state(config[CONF_ASSUMED_STATE]))
cg.add(
var.set_actuator_activation_open_time(
config[CONF_ACTUATOR_ACTIVATION_OPEN_TIME]
)
)
cg.add(
var.set_actuator_activation_close_time(
config[CONF_ACTUATOR_ACTIVATION_CLOSE_TIME]
)
)

View file

@ -20,7 +20,12 @@ void TimeBasedTiltCover::dump_config() {
ESP_LOGCONFIG(TAG, " Interlock wait time: %.3fs", this->interlock_wait_time_ / 1e3f); ESP_LOGCONFIG(TAG, " Interlock wait time: %.3fs", this->interlock_wait_time_ / 1e3f);
ESP_LOGCONFIG(TAG, " Inertia close time: %.3fs", this->inertia_close_time_ / 1e3f); ESP_LOGCONFIG(TAG, " Inertia close time: %.3fs", this->inertia_close_time_ / 1e3f);
ESP_LOGCONFIG(TAG, " Inertia open time: %.3fs", this->inertia_open_time_ / 1e3f); ESP_LOGCONFIG(TAG, " Inertia open time: %.3fs", this->inertia_open_time_ / 1e3f);
ESP_LOGCONFIG(TAG, " Recalibration time: %.3fs", this->recalibration_time_ / 1e3f); ESP_LOGCONFIG(TAG, " Recalibration close time: %.3fs", this->recalibration_close_time_ / 1e3f);
ESP_LOGCONFIG(TAG, " Recalibration open time: %.3fs", this->recalibration_open_time_ / 1e3f);
ESP_LOGCONFIG(TAG, " Actuator activation close time: %.3fs", this->actuator_activation_close_time_ / 1e3f);
ESP_LOGCONFIG(TAG, " Actuator activation open time: %.3fs", this->actuator_activation_open_time_ / 1e3f);
ESP_LOGCONFIG(TAG, " Current position: %.4f", this->position);
ESP_LOGCONFIG(TAG, " Current tilt: %.4f", this->tilt);
} }
void TimeBasedTiltCover::setup() { void TimeBasedTiltCover::setup() {
if (this->tilt_close_duration_ == 0 || this->tilt_open_duration_ == 0) { if (this->tilt_close_duration_ == 0 || this->tilt_open_duration_ == 0) {
@ -59,6 +64,11 @@ bool TimeBasedTiltCover::is_at_target_tilt_() const {
} }
} }
bool TimeBasedTiltCover::is_at_extreme_position_() const {
return (this->position == COVER_CLOSED && (tilt_close_duration_ == 0 || this->tilt == COVER_CLOSED)) ||
(this->position == COVER_OPEN && (tilt_open_duration_ == 0 || this->tilt == COVER_OPEN));
}
void TimeBasedTiltCover::loop() { void TimeBasedTiltCover::loop() {
if (this->fsm_state_ == STATE_IDLE && this->target_position_ == TARGET_NONE && this->target_tilt_ == TARGET_NONE) if (this->fsm_state_ == STATE_IDLE && this->target_position_ == TARGET_NONE && this->target_tilt_ == TARGET_NONE)
return; return;
@ -67,13 +77,14 @@ void TimeBasedTiltCover::loop() {
// recalibrating in extreme postions // recalibrating in extreme postions
if (this->fsm_state_ == STATE_CALIBRATING) { if (this->fsm_state_ == STATE_CALIBRATING) {
if (now - this->last_recompute_time_ >= this->recalibration_time_) { if (now - this->last_recompute_time_ >= this->current_recalibration_time_) {
this->fsm_state_ = STATE_STOPPING; this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
} }
return; return;
} }
// STOPPING - determining the direction of the last movement and the stopping time. Needed to support interlocking // STOPPING determining the direction of the last movement and the stopping time. Necessary to support interlocking.
if (this->fsm_state_ == STATE_STOPPING) { if (this->fsm_state_ == STATE_STOPPING) {
this->stop_trigger_->trigger(); this->stop_trigger_->trigger();
if (this->current_operation != COVER_OPERATION_IDLE) { if (this->current_operation != COVER_OPERATION_IDLE) {
@ -84,30 +95,55 @@ void TimeBasedTiltCover::loop() {
this->interlocked_direction_ = COVER_OPERATION_IDLE; this->interlocked_direction_ = COVER_OPERATION_IDLE;
} }
this->fsm_state_ = STATE_IDLE; this->fsm_state_ = STATE_IDLE;
ESP_LOGD(TAG, "Transition to the idle state");
this->last_operation_ = this->current_operation; this->last_operation_ = this->current_operation;
this->current_operation = COVER_OPERATION_IDLE; this->current_operation = COVER_OPERATION_IDLE;
this->position = this->round_position(this->position);
this->tilt = this->round_position(this->tilt);
this->publish_state(); this->publish_state();
return; return;
} }
// if the cover is not moving, check whether the new targets are set and if they are, compute move direction // If the cover is not moving, check whether new targets are set. If they are, compute the movement direction.
if (this->fsm_state_ == STATE_IDLE && (this->target_position_ != TARGET_NONE || this->target_tilt_ != TARGET_NONE)) { if (this->fsm_state_ == STATE_IDLE && (this->target_position_ != TARGET_NONE || this->target_tilt_ != TARGET_NONE)) {
if (this->target_position_ != TARGET_NONE) { if (this->target_position_ != TARGET_NONE) { // First, calculate based on the target position.
this->current_operation = this->compute_direction(this->target_position_, this->position); this->current_operation = this->compute_direction(this->target_position_, this->position);
} else { if (this->current_operation == COVER_OPERATION_IDLE) { // Already at the target position.
this->current_operation = this->compute_direction(this->target_tilt_, this->tilt); this->target_position_ = TARGET_NONE;
if (this->target_tilt_ != TARGET_NONE) {
this->current_operation = this->compute_direction(
this->target_tilt_, this->tilt); // Calculate the direction based on the target tilt.
} }
// interlocking support }
} else {
this->current_operation =
this->compute_direction(this->target_tilt_, this->tilt); // Calculate the direction based on the target tilt.
}
if (this->current_operation == COVER_OPERATION_IDLE) { // Already at the target tilt and target position.
this->target_tilt_ = TARGET_NONE;
return;
}
// Interlocking support.
if (this->current_operation == this->interlocked_direction_ && if (this->current_operation == this->interlocked_direction_ &&
now - this->interlocked_time_ < this->interlock_wait_time_) now - this->interlocked_time_ < this->interlock_wait_time_)
return; return;
Trigger<> *trig = this->current_operation == COVER_OPERATION_CLOSING ? this->close_trigger_ : this->open_trigger_; Trigger<> *trig = this->current_operation == COVER_OPERATION_CLOSING ? this->close_trigger_ : this->open_trigger_;
this->current_recalibration_time_ = this->current_operation == COVER_OPERATION_CLOSING
? this->recalibration_close_time_
: this->recalibration_open_time_;
this->current_actuator_activation_time_ = this->current_operation == COVER_OPERATION_CLOSING
? this->actuator_activation_close_time_
: this->actuator_activation_open_time_;
trig->trigger(); trig->trigger();
this->last_recompute_time_ = now; this->last_recompute_time_ = now;
this->fsm_state_ = STATE_MOVING; this->fsm_state_ = STATE_MOVING;
ESP_LOGD(TAG, "Transition to the moving state");
return; return;
} }
@ -116,46 +152,58 @@ void TimeBasedTiltCover::loop() {
auto travel_time = now - this->last_recompute_time_; auto travel_time = now - this->last_recompute_time_;
this->last_recompute_time_ = now; this->last_recompute_time_ = now;
// Actuator activation time support.
if (this->current_actuator_activation_time_ > 0) {
if (travel_time <= this->current_actuator_activation_time_) {
this->current_actuator_activation_time_ = this->current_actuator_activation_time_ - travel_time;
return;
} else {
travel_time = travel_time - this->current_actuator_activation_time_;
this->current_actuator_activation_time_ = 0;
}
}
float dir_factor = this->current_operation == COVER_OPERATION_CLOSING ? -1.0 : 1.0; float dir_factor = this->current_operation == COVER_OPERATION_CLOSING ? -1.0 : 1.0;
auto inertia_time = auto inertia_time =
this->current_operation == COVER_OPERATION_CLOSING ? this->inertia_close_time_ : this->inertia_open_time_; this->current_operation == COVER_OPERATION_CLOSING ? this->inertia_close_time_ : this->inertia_open_time_;
if (inertia_time > 0 && this->inertia_ * dir_factor < 0.5f) { // inertia before movement if (inertia_time > 0 && this->inertia_ * dir_factor < 0.5f) { // Inertia before movement
auto inertia_step = dir_factor * travel_time / inertia_time; auto inertia_step = dir_factor * travel_time / inertia_time;
this->inertia_ += inertia_step; this->inertia_ += inertia_step;
auto rest = this->inertia_ - clamp(this->inertia_, -0.5f, 0.5f); auto inertia_rest = this->inertia_ - clamp(this->inertia_, -0.5f, 0.5f);
this->inertia_ = clamp(this->inertia_, -0.5f, 0.5f); this->inertia_ = clamp(this->inertia_, -0.5f, 0.5f);
if (!rest) if (!inertia_rest)
return; // the movement has not yet actually started return; // The movement has not yet started.
travel_time = dir_factor * rest * inertia_time; // actual movement time taking inertia into account travel_time = dir_factor * inertia_rest * inertia_time; // Actual movement time, taking inertia into account.
} }
auto tilt_time = auto tilt_time =
this->current_operation == COVER_OPERATION_CLOSING ? this->tilt_close_duration_ : this->tilt_open_duration_; this->current_operation == COVER_OPERATION_CLOSING ? this->tilt_close_duration_ : this->tilt_open_duration_;
if (tilt_time > 0 && (this->tilt - 0.5f) * dir_factor < 0.5f) { // tilting before movement if (tilt_time > 0 && (this->tilt - 0.5f) * dir_factor < 0.5f) { // Tilting before movement.
auto tilt_step = dir_factor * travel_time / tilt_time; auto tilt_step = dir_factor * travel_time / tilt_time;
this->tilt += tilt_step; this->tilt += tilt_step;
auto rest = this->tilt - 0.5f - clamp(this->tilt - 0.5f, -0.5f, 0.5f); auto tilt_rest = this->tilt - 0.5f - clamp(this->tilt - 0.5f, -0.5f, 0.5f);
this->tilt = clamp(this->tilt, 0.0f, 1.0f); this->tilt = clamp(this->tilt, 0.0f, 1.0f);
if (this->target_position_ == TARGET_NONE && this->is_at_target_tilt_()) { // only tilting w/o position change if (this->target_position_ == TARGET_NONE && this->is_at_target_tilt_()) { // Only tilting w/o position change
this->last_recompute_time_ = now; this->last_recompute_time_ = now;
this->target_tilt_ = TARGET_NONE; this->target_tilt_ = TARGET_NONE;
this->last_publish_time_ = now; this->last_publish_time_ = now;
this->tilt = this->round_position(this->tilt);
// If the cover is in extreme positions, run recalibration // If the cover is in extreme positions, perform recalibration.
if (this->recalibration_time_ > 0 && if (this->current_recalibration_time_ > 0 && this->is_at_extreme_position_()) {
(((this->position == COVER_CLOSED && (tilt_time == 0 || this->tilt == COVER_CLOSED)) ||
(this->position == COVER_OPEN && (tilt_time == 0 || this->tilt == COVER_OPEN))))) {
this->fsm_state_ = STATE_CALIBRATING; this->fsm_state_ = STATE_CALIBRATING;
this->publish_state(false); this->publish_state(false);
ESP_LOGD(TAG, "Transition to the calibration state");
} else { } else {
this->fsm_state_ = STATE_STOPPING; this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
} }
return; // only tilting w/o position change so no need to recompute position return; // Only tilting w/o position change, so there is no need to recompute the position.
} }
if (now - this->last_publish_time_ > ((tilt_time / 5) > 1000 ? 1000 : (tilt_time / 5))) { if (now - this->last_publish_time_ > ((tilt_time / 5) > 1000 ? 1000 : (tilt_time / 5))) {
@ -163,15 +211,15 @@ void TimeBasedTiltCover::loop() {
this->last_publish_time_ = now; this->last_publish_time_ = now;
} }
if (!rest) if (!tilt_rest)
return; // the movement has not yet actually started return; // The movement has not started yet.
travel_time = dir_factor * rest * tilt_time; // actual movement time taking tilt into account travel_time = dir_factor * tilt_rest * tilt_time; // Actual movement time, taking tilt into account.
} }
auto move_time = this->current_operation == COVER_OPERATION_CLOSING ? this->close_duration_ : this->open_duration_; auto move_time = this->current_operation == COVER_OPERATION_CLOSING ? this->close_duration_ : this->open_duration_;
if (move_time > 0 && (this->position - 0.5f) * dir_factor < 0.5f) { if ((this->position - 0.5f) * dir_factor < 0.5f) {
auto move_step = dir_factor * travel_time / move_time; auto move_step = dir_factor * travel_time / move_time;
this->position += move_step; this->position += move_step;
this->position = clamp(this->position, 0.0f, 1.0f); this->position = clamp(this->position, 0.0f, 1.0f);
@ -181,15 +229,16 @@ void TimeBasedTiltCover::loop() {
this->last_recompute_time_ = now; this->last_recompute_time_ = now;
this->target_position_ = TARGET_NONE; this->target_position_ = TARGET_NONE;
this->last_publish_time_ = now; this->last_publish_time_ = now;
this->position = this->round_position(this->position);
// If the cover is in extreme positions, run recalibration // If the cover is in extreme positions, perform recalibration.
if (this->recalibration_time_ > 0 && if (this->current_recalibration_time_ > 0 && this->is_at_extreme_position_()) {
(((this->position == COVER_CLOSED && (tilt_time == 0 || this->tilt == COVER_CLOSED)) ||
(this->position == COVER_OPEN && (tilt_time == 0 || this->tilt == COVER_OPEN))))) {
this->fsm_state_ = STATE_CALIBRATING; this->fsm_state_ = STATE_CALIBRATING;
this->publish_state(false); this->publish_state(false);
ESP_LOGD(TAG, "Transition to the calibration state");
} else { } else {
this->fsm_state_ = STATE_STOPPING; this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
} }
} }
@ -215,77 +264,51 @@ void TimeBasedTiltCover::control(const CoverCall &call) {
this->target_position_ = TARGET_NONE; this->target_position_ = TARGET_NONE;
this->target_tilt_ = TARGET_NONE; this->target_tilt_ = TARGET_NONE;
this->fsm_state_ = STATE_STOPPING; this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
return; return;
} }
if (call.get_position().has_value() && call.get_tilt().has_value()) {
auto pos = *call.get_position();
auto til = *call.get_tilt();
if (this->round_position(pos) == this->round_position(this->position)) if (call.get_position().has_value() || call.get_tilt().has_value()) {
pos = TARGET_NONE; if (call.get_position().has_value()) {
if (this->round_position(til) == this->round_position(this->tilt)) this->target_position_ = *call.get_position();
til = TARGET_NONE; } else {
this->target_position_ = pos;
this->target_tilt_ = til;
if (this->fsm_state_ == STATE_MOVING) {
auto direction = COVER_OPERATION_IDLE;
if (this->target_position_ != TARGET_NONE && this->target_position_ != this->position) {
direction = this->compute_direction(this->target_position_, this->position);
} else if (this->target_tilt_ != TARGET_NONE && this->target_tilt_ != this->tilt) {
direction = this->compute_direction(this->target_tilt_, this->tilt);
}
if (direction != this->current_operation) {
this->fsm_state_ = STATE_STOPPING;
}
}
} else if (call.get_position().has_value()) {
auto pos = *call.get_position();
if (pos == COVER_CLOSED && this->position == COVER_CLOSED && this->tilt != COVER_CLOSED) {
pos = TARGET_NONE;
this->target_tilt_ = COVER_CLOSED;
} else if (pos == COVER_OPEN && this->position == COVER_OPEN && this->tilt != COVER_OPEN) {
pos = TARGET_NONE;
this->target_tilt_ = COVER_OPEN;
} else if (this->round_position(pos) == this->round_position(this->position)) {
pos = TARGET_NONE;
}
this->target_position_ = pos;
if (this->fsm_state_ == STATE_MOVING) {
auto direction = COVER_OPERATION_IDLE;
if (this->target_position_ != TARGET_NONE && this->target_position_ != this->position) {
direction = this->compute_direction(this->target_position_, this->position);
this->target_tilt_ = TARGET_NONE; // unset previous target tilt
} else if (this->target_tilt_ != TARGET_NONE && this->target_tilt_ != this->tilt) {
direction = this->compute_direction(this->target_tilt_, this->tilt);
}
if (direction != this->current_operation) {
this->fsm_state_ = STATE_STOPPING;
}
}
} else if (call.get_tilt().has_value()) {
auto til = *call.get_tilt();
if (this->round_position(til) == this->round_position(this->tilt)) {
til = TARGET_NONE;
}
this->target_tilt_ = til;
if (this->fsm_state_ == STATE_MOVING) {
auto direction = COVER_OPERATION_IDLE;
if (this->target_tilt_ != TARGET_NONE && this->target_tilt_ != this->tilt) {
direction = this->compute_direction(this->target_tilt_, this->tilt);
this->target_position_ = TARGET_NONE; this->target_position_ = TARGET_NONE;
} }
if (call.get_tilt().has_value()) {
this->target_tilt_ = *call.get_tilt();
} else {
this->target_tilt_ = TARGET_NONE;
}
if (this->fsm_state_ == STATE_MOVING) {
auto direction = COVER_OPERATION_IDLE;
if (this->target_position_ != TARGET_NONE && this->target_position_ != this->position) {
direction = this->compute_direction(this->target_position_, this->position);
} else if (this->target_tilt_ != TARGET_NONE && this->target_tilt_ != this->tilt) {
direction = this->compute_direction(this->target_tilt_, this->tilt);
}
if (direction != this->current_operation) { if (direction != this->current_operation) {
this->fsm_state_ = STATE_STOPPING; this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
}
}
if (this->fsm_state_ == STATE_CALIBRATING) {
if (this->target_position_ != TARGET_NONE) {
if ((this->position == COVER_CLOSED && this->target_position_ != COVER_CLOSED) ||
(this->position == COVER_OPEN && this->target_position_ != COVER_OPEN)) {
this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
}
}
if (this->target_tilt_ != TARGET_NONE) {
if ((this->tilt == COVER_CLOSED && this->target_tilt_ != COVER_CLOSED) ||
(this->tilt == COVER_OPEN && this->target_tilt_ != COVER_OPEN)) {
this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
}
} }
} }
} }
@ -293,6 +316,7 @@ void TimeBasedTiltCover::control(const CoverCall &call) {
if (call.get_toggle().has_value()) { if (call.get_toggle().has_value()) {
if (this->current_operation != COVER_OPERATION_IDLE) { if (this->current_operation != COVER_OPERATION_IDLE) {
this->fsm_state_ = STATE_STOPPING; this->fsm_state_ = STATE_STOPPING;
ESP_LOGD(TAG, "Transition to the stopping state");
this->target_position_ = TARGET_NONE; this->target_position_ = TARGET_NONE;
this->target_tilt_ = TARGET_NONE; this->target_tilt_ = TARGET_NONE;
} else { } else {

View file

@ -22,10 +22,22 @@ class TimeBasedTiltCover : public cover::Cover, public Component {
void set_tilt_open_duration(uint32_t tilt_open_duration) { this->tilt_open_duration_ = tilt_open_duration; } void set_tilt_open_duration(uint32_t tilt_open_duration) { this->tilt_open_duration_ = tilt_open_duration; }
void set_tilt_close_duration(uint32_t tilt_close_duration) { this->tilt_close_duration_ = tilt_close_duration; } void set_tilt_close_duration(uint32_t tilt_close_duration) { this->tilt_close_duration_ = tilt_close_duration; }
void set_interlock_wait_time(uint32_t interlock_wait_time) { this->interlock_wait_time_ = interlock_wait_time; } void set_interlock_wait_time(uint32_t interlock_wait_time) { this->interlock_wait_time_ = interlock_wait_time; }
void set_recalibration_time(uint32_t recalibration_time) { this->recalibration_time_ = recalibration_time; } void set_recalibration_open_time(uint32_t recalibration_time) { this->recalibration_open_time_ = recalibration_time; }
void set_recalibration_close_time(uint32_t recalibration_time) {
this->recalibration_close_time_ = recalibration_time;
}
void set_inertia_open_time(uint32_t inertia_time) { this->inertia_open_time_ = inertia_time; } void set_inertia_open_time(uint32_t inertia_time) { this->inertia_open_time_ = inertia_time; }
void set_inertia_close_time(uint32_t inertia_time) { this->inertia_close_time_ = inertia_time; } void set_inertia_close_time(uint32_t inertia_time) { this->inertia_close_time_ = inertia_time; }
void set_actuator_activation_open_time(uint32_t activation_time) {
this->actuator_activation_open_time_ = activation_time;
}
void set_actuator_activation_close_time(uint32_t activation_time) {
this->actuator_activation_close_time_ = activation_time;
}
cover::CoverOperation compute_direction(float target, float current) { cover::CoverOperation compute_direction(float target, float current) {
if (target == current) {
return cover::COVER_OPERATION_IDLE;
}
return target < current ? cover::COVER_OPERATION_CLOSING : cover::COVER_OPERATION_OPENING; return target < current ? cover::COVER_OPERATION_CLOSING : cover::COVER_OPERATION_OPENING;
}; };
float round_position(float pos) { return round(100 * pos) / 100; }; float round_position(float pos) { return round(100 * pos) / 100; };
@ -36,6 +48,7 @@ class TimeBasedTiltCover : public cover::Cover, public Component {
void control(const cover::CoverCall &call) override; void control(const cover::CoverCall &call) override;
bool is_at_target_position_() const; bool is_at_target_position_() const;
bool is_at_target_tilt_() const; bool is_at_target_tilt_() const;
bool is_at_extreme_position_() const;
Trigger<> *open_trigger_{new Trigger<>()}; Trigger<> *open_trigger_{new Trigger<>()};
Trigger<> *close_trigger_{new Trigger<>()}; Trigger<> *close_trigger_{new Trigger<>()};
@ -48,9 +61,15 @@ class TimeBasedTiltCover : public cover::Cover, public Component {
uint32_t tilt_open_duration_; uint32_t tilt_open_duration_;
uint32_t interlock_wait_time_; uint32_t interlock_wait_time_;
uint32_t recalibration_time_; uint32_t recalibration_open_time_;
uint32_t recalibration_close_time_;
uint32_t inertia_open_time_; uint32_t inertia_open_time_;
uint32_t inertia_close_time_; uint32_t inertia_close_time_;
uint32_t actuator_activation_open_time_;
uint32_t actuator_activation_close_time_;
uint32_t current_recalibration_time_;
uint32_t current_actuator_activation_time_;
const static float TARGET_NONE; const static float TARGET_NONE;
enum State : uint8_t { STATE_IDLE, STATE_MOVING, STATE_STOPPING, STATE_CALIBRATING }; enum State : uint8_t { STATE_IDLE, STATE_MOVING, STATE_STOPPING, STATE_CALIBRATING };