Merge remote-tracking branch 'upstream/dev' into dev

This commit is contained in:
Daniël Koek 2024-05-18 15:47:53 +01:00
commit 57d1eb5ca0
166 changed files with 4072 additions and 1081 deletions

View file

@ -1,19 +1,3 @@
[metadata]
license = MIT
license_file = LICENSE
platforms = any
description = Make creating custom firmwares for ESP32/ESP8266 super easy.
long_description = file: README.md
keywords = home, automation
classifier =
Environment :: Console
Intended Audience :: Developers
Intended Audience :: End Users/Desktop
License :: OSI Approved :: MIT License
Programming Language :: C++
Programming Language :: Python :: 3
Topic :: Home Automation
[flake8] [flake8]
max-line-length = 120 max-line-length = 120
# Following 4 for black compatibility # Following 4 for black compatibility
@ -56,6 +40,3 @@ ignore =
D401, D401,
exclude = api_pb2.py exclude = api_pb2.py
[bdist_wheel]
universal = 1

View file

@ -61,7 +61,9 @@ jobs:
ESPHOME_NO_VENV: 1 ESPHOME_NO_VENV: 1
run: script/setup run: script/setup
- name: Build - name: Build
run: python setup.py sdist bdist_wheel run: |-
pip3 install build
python3 -m build
- name: Publish - name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.14 uses: pypa/gh-action-pypi-publish@v1.8.14

View file

@ -44,6 +44,6 @@ repos:
hooks: hooks:
- id: pylint - id: pylint
name: pylint name: pylint
entry: pylint entry: script/run-in-env.sh pylint
language: system language: script
types: [python] types: [python]

View file

@ -6,7 +6,7 @@
# the integration's code owner is automatically notified. # the integration's code owner is automatically notified.
# Core Code # Core Code
setup.py @esphome/core pyproject.toml @esphome/core
esphome/*.py @esphome/core esphome/*.py @esphome/core
esphome/core/* @esphome/core esphome/core/* @esphome/core
@ -51,6 +51,8 @@ esphome/components/bang_bang/* @OttoWinter
esphome/components/bedjet/* @jhansche esphome/components/bedjet/* @jhansche
esphome/components/bedjet/climate/* @jhansche esphome/components/bedjet/climate/* @jhansche
esphome/components/bedjet/fan/* @jhansche esphome/components/bedjet/fan/* @jhansche
esphome/components/bedjet/sensor/* @javawizard @jhansche
esphome/components/beken_spi_led_strip/* @Mat931
esphome/components/bh1750/* @OttoWinter esphome/components/bh1750/* @OttoWinter
esphome/components/binary_sensor/* @esphome/core esphome/components/binary_sensor/* @esphome/core
esphome/components/bk72xx/* @kuba2k2 esphome/components/bk72xx/* @kuba2k2
@ -110,7 +112,10 @@ esphome/components/ee895/* @Stock-M
esphome/components/ektf2232/touchscreen/* @jesserockz esphome/components/ektf2232/touchscreen/* @jesserockz
esphome/components/emc2101/* @ellull esphome/components/emc2101/* @ellull
esphome/components/emmeti/* @E440QF esphome/components/emmeti/* @E440QF
esphome/components/ens160/* @vincentscode esphome/components/ens160/* @latonita
esphome/components/ens160_base/* @latonita @vincentscode
esphome/components/ens160_i2c/* @latonita
esphome/components/ens160_spi/* @latonita
esphome/components/ens210/* @itn3rd77 esphome/components/ens210/* @itn3rd77
esphome/components/esp32/* @esphome/core esphome/components/esp32/* @esphome/core
esphome/components/esp32_ble/* @Rapsssito @jesserockz esphome/components/esp32_ble/* @Rapsssito @jesserockz
@ -176,6 +181,9 @@ esphome/components/improv_base/* @esphome/core
esphome/components/improv_serial/* @esphome/core esphome/components/improv_serial/* @esphome/core
esphome/components/ina226/* @Sergio303 @latonita esphome/components/ina226/* @Sergio303 @latonita
esphome/components/ina260/* @mreditor97 esphome/components/ina260/* @mreditor97
esphome/components/ina2xx_base/* @latonita
esphome/components/ina2xx_i2c/* @latonita
esphome/components/ina2xx_spi/* @latonita
esphome/components/inkbird_ibsth1_mini/* @fkirill esphome/components/inkbird_ibsth1_mini/* @fkirill
esphome/components/inkplate6/* @jesserockz esphome/components/inkplate6/* @jesserockz
esphome/components/integration/* @OttoWinter esphome/components/integration/* @OttoWinter

View file

@ -110,7 +110,7 @@ RUN if [ "$TARGETARCH$TARGETVARIANT" = "armv7" ]; then \
export PIP_EXTRA_INDEX_URL="https://www.piwheels.org/simple"; \ export PIP_EXTRA_INDEX_URL="https://www.piwheels.org/simple"; \
fi; \ fi; \
pip3 install \ pip3 install \
--break-system-packages --no-cache-dir --no-use-pep517 -e /esphome --break-system-packages --no-cache-dir -e /esphome
# Settings for dashboard # Settings for dashboard
ENV USERNAME="" PASSWORD="" ENV USERNAME="" PASSWORD=""
@ -160,7 +160,7 @@ RUN if [ "$TARGETARCH$TARGETVARIANT" = "armv7" ]; then \
export PIP_EXTRA_INDEX_URL="https://www.piwheels.org/simple"; \ export PIP_EXTRA_INDEX_URL="https://www.piwheels.org/simple"; \
fi; \ fi; \
pip3 install \ pip3 install \
--break-system-packages --no-cache-dir --no-use-pep517 -e /esphome --break-system-packages --no-cache-dir -e /esphome
# Labels # Labels
LABEL \ LABEL \

View file

@ -18,22 +18,23 @@ from esphome.const import (
CONF_BAUD_RATE, CONF_BAUD_RATE,
CONF_BROKER, CONF_BROKER,
CONF_DEASSERT_RTS_DTR, CONF_DEASSERT_RTS_DTR,
CONF_DISABLED,
CONF_ESPHOME,
CONF_LOGGER, CONF_LOGGER,
CONF_MDNS,
CONF_MQTT,
CONF_NAME, CONF_NAME,
CONF_OTA, CONF_OTA,
CONF_MQTT,
CONF_MDNS,
CONF_DISABLED,
CONF_PASSWORD, CONF_PASSWORD,
CONF_PORT, CONF_PLATFORM,
CONF_ESPHOME,
CONF_PLATFORMIO_OPTIONS, CONF_PLATFORMIO_OPTIONS,
CONF_PORT,
CONF_SUBSTITUTIONS, CONF_SUBSTITUTIONS,
PLATFORM_BK72XX, PLATFORM_BK72XX,
PLATFORM_RTL87XX,
PLATFORM_ESP32, PLATFORM_ESP32,
PLATFORM_ESP8266, PLATFORM_ESP8266,
PLATFORM_RP2040, PLATFORM_RP2040,
PLATFORM_RTL87XX,
SECRETS_FILES, SECRETS_FILES,
) )
from esphome.core import CORE, EsphomeError, coroutine from esphome.core import CORE, EsphomeError, coroutine
@ -330,15 +331,19 @@ def upload_program(config, args, host):
return 1 # Unknown target platform return 1 # Unknown target platform
if CONF_OTA not in config: ota_conf = {}
for ota_item in config.get(CONF_OTA, []):
if ota_item[CONF_PLATFORM] == CONF_ESPHOME:
ota_conf = ota_item
break
if not ota_conf:
raise EsphomeError( raise EsphomeError(
"Cannot upload Over the Air as the config does not include the ota: " f"Cannot upload Over the Air as the {CONF_OTA} configuration is not present or does not include {CONF_PLATFORM}: {CONF_ESPHOME}"
"component"
) )
from esphome import espota2 from esphome import espota2
ota_conf = config[CONF_OTA]
remote_port = ota_conf[CONF_PORT] remote_port = ota_conf[CONF_PORT]
password = ota_conf.get(CONF_PASSWORD, "") password = ota_conf.get(CONF_PASSWORD, "")

View file

@ -18,11 +18,23 @@ from esphome.components.esp32.const import (
CODEOWNERS = ["@esphome/core"] CODEOWNERS = ["@esphome/core"]
adc_ns = cg.esphome_ns.namespace("adc")
"""
From the below patch versions (and 5.2+) ADC_ATTEN_DB_11 is deprecated and replaced with ADC_ATTEN_DB_12.
4.4.7
5.0.5
5.1.3
5.2+
"""
ATTENUATION_MODES = { ATTENUATION_MODES = {
"0db": cg.global_ns.ADC_ATTEN_DB_0, "0db": cg.global_ns.ADC_ATTEN_DB_0,
"2.5db": cg.global_ns.ADC_ATTEN_DB_2_5, "2.5db": cg.global_ns.ADC_ATTEN_DB_2_5,
"6db": cg.global_ns.ADC_ATTEN_DB_6, "6db": cg.global_ns.ADC_ATTEN_DB_6,
"11db": cg.global_ns.ADC_ATTEN_DB_11, "11db": adc_ns.ADC_ATTEN_DB_12_COMPAT,
"12db": adc_ns.ADC_ATTEN_DB_12_COMPAT,
"auto": "auto", "auto": "auto",
} }

View file

@ -46,27 +46,27 @@ extern "C"
ADCSensor::setup() { ADCSensor::setup() {
ESP_LOGCONFIG(TAG, "Setting up ADC '%s'...", this->get_name().c_str()); ESP_LOGCONFIG(TAG, "Setting up ADC '%s'...", this->get_name().c_str());
#if !defined(USE_ADC_SENSOR_VCC) && !defined(USE_RP2040) #if !defined(USE_ADC_SENSOR_VCC) && !defined(USE_RP2040)
pin_->setup(); this->pin_->setup();
#endif #endif
#ifdef USE_ESP32 #ifdef USE_ESP32
if (channel1_ != ADC1_CHANNEL_MAX) { if (this->channel1_ != ADC1_CHANNEL_MAX) {
adc1_config_width(ADC_WIDTH_MAX_SOC_BITS); adc1_config_width(ADC_WIDTH_MAX_SOC_BITS);
if (!autorange_) { if (!this->autorange_) {
adc1_config_channel_atten(channel1_, attenuation_); adc1_config_channel_atten(this->channel1_, this->attenuation_);
} }
} else if (channel2_ != ADC2_CHANNEL_MAX) { } else if (this->channel2_ != ADC2_CHANNEL_MAX) {
if (!autorange_) { if (!this->autorange_) {
adc2_config_channel_atten(channel2_, attenuation_); adc2_config_channel_atten(this->channel2_, this->attenuation_);
} }
} }
// load characteristics for each attenuation // load characteristics for each attenuation
for (int32_t i = 0; i <= ADC_ATTEN_DB_11; i++) { for (int32_t i = 0; i <= ADC_ATTEN_DB_12_COMPAT; i++) {
auto adc_unit = channel1_ != ADC1_CHANNEL_MAX ? ADC_UNIT_1 : ADC_UNIT_2; auto adc_unit = this->channel1_ != ADC1_CHANNEL_MAX ? ADC_UNIT_1 : ADC_UNIT_2;
auto cal_value = esp_adc_cal_characterize(adc_unit, (adc_atten_t) i, ADC_WIDTH_MAX_SOC_BITS, auto cal_value = esp_adc_cal_characterize(adc_unit, (adc_atten_t) i, ADC_WIDTH_MAX_SOC_BITS,
1100, // default vref 1100, // default vref
&cal_characteristics_[i]); &this->cal_characteristics_[i]);
switch (cal_value) { switch (cal_value) {
case ESP_ADC_CAL_VAL_EFUSE_VREF: case ESP_ADC_CAL_VAL_EFUSE_VREF:
ESP_LOGV(TAG, "Using eFuse Vref for calibration"); ESP_LOGV(TAG, "Using eFuse Vref for calibration");
@ -99,13 +99,13 @@ void ADCSensor::dump_config() {
#ifdef USE_ADC_SENSOR_VCC #ifdef USE_ADC_SENSOR_VCC
ESP_LOGCONFIG(TAG, " Pin: VCC"); ESP_LOGCONFIG(TAG, " Pin: VCC");
#else #else
LOG_PIN(" Pin: ", pin_); LOG_PIN(" Pin: ", this->pin_);
#endif #endif
#endif // USE_ESP8266 || USE_LIBRETINY #endif // USE_ESP8266 || USE_LIBRETINY
#ifdef USE_ESP32 #ifdef USE_ESP32
LOG_PIN(" Pin: ", pin_); LOG_PIN(" Pin: ", this->pin_);
if (autorange_) { if (this->autorange_) {
ESP_LOGCONFIG(TAG, " Attenuation: auto"); ESP_LOGCONFIG(TAG, " Attenuation: auto");
} else { } else {
switch (this->attenuation_) { switch (this->attenuation_) {
@ -118,8 +118,8 @@ void ADCSensor::dump_config() {
case ADC_ATTEN_DB_6: case ADC_ATTEN_DB_6:
ESP_LOGCONFIG(TAG, " Attenuation: 6db"); ESP_LOGCONFIG(TAG, " Attenuation: 6db");
break; break;
case ADC_ATTEN_DB_11: case ADC_ATTEN_DB_12_COMPAT:
ESP_LOGCONFIG(TAG, " Attenuation: 11db"); ESP_LOGCONFIG(TAG, " Attenuation: 12db");
break; break;
default: // This is to satisfy the unused ADC_ATTEN_MAX default: // This is to satisfy the unused ADC_ATTEN_MAX
break; break;
@ -134,11 +134,11 @@ void ADCSensor::dump_config() {
#ifdef USE_ADC_SENSOR_VCC #ifdef USE_ADC_SENSOR_VCC
ESP_LOGCONFIG(TAG, " Pin: VCC"); ESP_LOGCONFIG(TAG, " Pin: VCC");
#else #else
LOG_PIN(" Pin: ", pin_); LOG_PIN(" Pin: ", this->pin_);
#endif // USE_ADC_SENSOR_VCC #endif // USE_ADC_SENSOR_VCC
} }
#endif // USE_RP2040 #endif // USE_RP2040
ESP_LOGCONFIG(TAG, " Samples: %i", this->sample_count_);
LOG_UPDATE_INTERVAL(this); LOG_UPDATE_INTERVAL(this);
} }
@ -149,14 +149,24 @@ void ADCSensor::update() {
this->publish_state(value_v); this->publish_state(value_v);
} }
void ADCSensor::set_sample_count(uint8_t sample_count) {
if (sample_count != 0) {
this->sample_count_ = sample_count;
}
}
#ifdef USE_ESP8266 #ifdef USE_ESP8266
float ADCSensor::sample() { float ADCSensor::sample() {
uint32_t raw = 0;
for (uint8_t sample = 0; sample < this->sample_count_; sample++) {
#ifdef USE_ADC_SENSOR_VCC #ifdef USE_ADC_SENSOR_VCC
int32_t raw = ESP.getVcc(); // NOLINT(readability-static-accessed-through-instance) raw += ESP.getVcc(); // NOLINT(readability-static-accessed-through-instance)
#else #else
int32_t raw = analogRead(this->pin_->get_pin()); // NOLINT raw += analogRead(this->pin_->get_pin()); // NOLINT
#endif #endif
if (output_raw_) { }
raw = (raw + (this->sample_count_ >> 1)) / this->sample_count_; // NOLINT(clang-analyzer-core.DivideZero)
if (this->output_raw_) {
return raw; return raw;
} }
return raw / 1024.0f; return raw / 1024.0f;
@ -165,77 +175,81 @@ float ADCSensor::sample() {
#ifdef USE_ESP32 #ifdef USE_ESP32
float ADCSensor::sample() { float ADCSensor::sample() {
if (!autorange_) { if (!this->autorange_) {
uint32_t sum = 0;
for (uint8_t sample = 0; sample < this->sample_count_; sample++) {
int raw = -1; int raw = -1;
if (channel1_ != ADC1_CHANNEL_MAX) { if (this->channel1_ != ADC1_CHANNEL_MAX) {
raw = adc1_get_raw(channel1_); raw = adc1_get_raw(this->channel1_);
} else if (channel2_ != ADC2_CHANNEL_MAX) { } else if (this->channel2_ != ADC2_CHANNEL_MAX) {
adc2_get_raw(channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw); adc2_get_raw(this->channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw);
} }
if (raw == -1) { if (raw == -1) {
return NAN; return NAN;
} }
if (output_raw_) { sum += raw;
return raw;
} }
uint32_t mv = esp_adc_cal_raw_to_voltage(raw, &cal_characteristics_[(int32_t) attenuation_]); sum = (sum + (this->sample_count_ >> 1)) / this->sample_count_; // NOLINT(clang-analyzer-core.DivideZero)
if (this->output_raw_) {
return sum;
}
uint32_t mv = esp_adc_cal_raw_to_voltage(sum, &this->cal_characteristics_[(int32_t) this->attenuation_]);
return mv / 1000.0f; return mv / 1000.0f;
} }
int raw11 = ADC_MAX, raw6 = ADC_MAX, raw2 = ADC_MAX, raw0 = ADC_MAX; int raw12 = ADC_MAX, raw6 = ADC_MAX, raw2 = ADC_MAX, raw0 = ADC_MAX;
if (channel1_ != ADC1_CHANNEL_MAX) { if (this->channel1_ != ADC1_CHANNEL_MAX) {
adc1_config_channel_atten(channel1_, ADC_ATTEN_DB_11); adc1_config_channel_atten(this->channel1_, ADC_ATTEN_DB_12_COMPAT);
raw11 = adc1_get_raw(channel1_); raw12 = adc1_get_raw(this->channel1_);
if (raw11 < ADC_MAX) { if (raw12 < ADC_MAX) {
adc1_config_channel_atten(channel1_, ADC_ATTEN_DB_6); adc1_config_channel_atten(this->channel1_, ADC_ATTEN_DB_6);
raw6 = adc1_get_raw(channel1_); raw6 = adc1_get_raw(this->channel1_);
if (raw6 < ADC_MAX) { if (raw6 < ADC_MAX) {
adc1_config_channel_atten(channel1_, ADC_ATTEN_DB_2_5); adc1_config_channel_atten(this->channel1_, ADC_ATTEN_DB_2_5);
raw2 = adc1_get_raw(channel1_); raw2 = adc1_get_raw(this->channel1_);
if (raw2 < ADC_MAX) { if (raw2 < ADC_MAX) {
adc1_config_channel_atten(channel1_, ADC_ATTEN_DB_0); adc1_config_channel_atten(this->channel1_, ADC_ATTEN_DB_0);
raw0 = adc1_get_raw(channel1_); raw0 = adc1_get_raw(this->channel1_);
} }
} }
} }
} else if (channel2_ != ADC2_CHANNEL_MAX) { } else if (this->channel2_ != ADC2_CHANNEL_MAX) {
adc2_config_channel_atten(channel2_, ADC_ATTEN_DB_11); adc2_config_channel_atten(this->channel2_, ADC_ATTEN_DB_12_COMPAT);
adc2_get_raw(channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw11); adc2_get_raw(this->channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw12);
if (raw11 < ADC_MAX) { if (raw12 < ADC_MAX) {
adc2_config_channel_atten(channel2_, ADC_ATTEN_DB_6); adc2_config_channel_atten(this->channel2_, ADC_ATTEN_DB_6);
adc2_get_raw(channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw6); adc2_get_raw(this->channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw6);
if (raw6 < ADC_MAX) { if (raw6 < ADC_MAX) {
adc2_config_channel_atten(channel2_, ADC_ATTEN_DB_2_5); adc2_config_channel_atten(this->channel2_, ADC_ATTEN_DB_2_5);
adc2_get_raw(channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw2); adc2_get_raw(this->channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw2);
if (raw2 < ADC_MAX) { if (raw2 < ADC_MAX) {
adc2_config_channel_atten(channel2_, ADC_ATTEN_DB_0); adc2_config_channel_atten(this->channel2_, ADC_ATTEN_DB_0);
adc2_get_raw(channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw0); adc2_get_raw(this->channel2_, ADC_WIDTH_MAX_SOC_BITS, &raw0);
} }
} }
} }
} }
if (raw0 == -1 || raw2 == -1 || raw6 == -1 || raw11 == -1) { if (raw0 == -1 || raw2 == -1 || raw6 == -1 || raw12 == -1) {
return NAN; return NAN;
} }
uint32_t mv11 = esp_adc_cal_raw_to_voltage(raw11, &cal_characteristics_[(int32_t) ADC_ATTEN_DB_11]); uint32_t mv12 = esp_adc_cal_raw_to_voltage(raw12, &this->cal_characteristics_[(int32_t) ADC_ATTEN_DB_12_COMPAT]);
uint32_t mv6 = esp_adc_cal_raw_to_voltage(raw6, &cal_characteristics_[(int32_t) ADC_ATTEN_DB_6]); uint32_t mv6 = esp_adc_cal_raw_to_voltage(raw6, &this->cal_characteristics_[(int32_t) ADC_ATTEN_DB_6]);
uint32_t mv2 = esp_adc_cal_raw_to_voltage(raw2, &cal_characteristics_[(int32_t) ADC_ATTEN_DB_2_5]); uint32_t mv2 = esp_adc_cal_raw_to_voltage(raw2, &this->cal_characteristics_[(int32_t) ADC_ATTEN_DB_2_5]);
uint32_t mv0 = esp_adc_cal_raw_to_voltage(raw0, &cal_characteristics_[(int32_t) ADC_ATTEN_DB_0]); uint32_t mv0 = esp_adc_cal_raw_to_voltage(raw0, &this->cal_characteristics_[(int32_t) ADC_ATTEN_DB_0]);
// Contribution of each value, in range 0-2048 (12 bit ADC) or 0-4096 (13 bit ADC) // Contribution of each value, in range 0-2048 (12 bit ADC) or 0-4096 (13 bit ADC)
uint32_t c11 = std::min(raw11, ADC_HALF); uint32_t c12 = std::min(raw12, ADC_HALF);
uint32_t c6 = ADC_HALF - std::abs(raw6 - ADC_HALF); uint32_t c6 = ADC_HALF - std::abs(raw6 - ADC_HALF);
uint32_t c2 = ADC_HALF - std::abs(raw2 - ADC_HALF); uint32_t c2 = ADC_HALF - std::abs(raw2 - ADC_HALF);
uint32_t c0 = std::min(ADC_MAX - raw0, ADC_HALF); uint32_t c0 = std::min(ADC_MAX - raw0, ADC_HALF);
// max theoretical csum value is 4096*4 = 16384 // max theoretical csum value is 4096*4 = 16384
uint32_t csum = c11 + c6 + c2 + c0; uint32_t csum = c12 + c6 + c2 + c0;
// each mv is max 3900; so max value is 3900*4096*4, fits in unsigned32 // each mv is max 3900; so max value is 3900*4096*4, fits in unsigned32
uint32_t mv_scaled = (mv11 * c11) + (mv6 * c6) + (mv2 * c2) + (mv0 * c0); uint32_t mv_scaled = (mv12 * c12) + (mv6 * c6) + (mv2 * c2) + (mv0 * c0);
return mv_scaled / (float) (csum * 1000U); return mv_scaled / (float) (csum * 1000U);
} }
#endif // USE_ESP32 #endif // USE_ESP32
@ -246,8 +260,11 @@ float ADCSensor::sample() {
adc_set_temp_sensor_enabled(true); adc_set_temp_sensor_enabled(true);
delay(1); delay(1);
adc_select_input(4); adc_select_input(4);
uint32_t raw = 0;
int32_t raw = adc_read(); for (uint8_t sample = 0; sample < this->sample_count_; sample++) {
raw += adc_read();
}
raw = (raw + (this->sample_count_ >> 1)) / this->sample_count_; // NOLINT(clang-analyzer-core.DivideZero)
adc_set_temp_sensor_enabled(false); adc_set_temp_sensor_enabled(false);
if (this->output_raw_) { if (this->output_raw_) {
return raw; return raw;
@ -268,7 +285,11 @@ float ADCSensor::sample() {
adc_gpio_init(pin); adc_gpio_init(pin);
adc_select_input(pin - 26); adc_select_input(pin - 26);
int32_t raw = adc_read(); uint32_t raw = 0;
for (uint8_t sample = 0; sample < this->sample_count_; sample++) {
raw += adc_read();
}
raw = (raw + (this->sample_count_ >> 1)) / this->sample_count_; // NOLINT(clang-analyzer-core.DivideZero)
#ifdef CYW43_USES_VSYS_PIN #ifdef CYW43_USES_VSYS_PIN
if (pin == PICO_VSYS_PIN) { if (pin == PICO_VSYS_PIN) {
@ -276,7 +297,7 @@ float ADCSensor::sample() {
} }
#endif // CYW43_USES_VSYS_PIN #endif // CYW43_USES_VSYS_PIN
if (output_raw_) { if (this->output_raw_) {
return raw; return raw;
} }
float coeff = pin == PICO_VSYS_PIN ? 3.0 : 1.0; float coeff = pin == PICO_VSYS_PIN ? 3.0 : 1.0;
@ -287,10 +308,19 @@ float ADCSensor::sample() {
#ifdef USE_LIBRETINY #ifdef USE_LIBRETINY
float ADCSensor::sample() { float ADCSensor::sample() {
if (output_raw_) { uint32_t raw = 0;
return analogRead(this->pin_->get_pin()); // NOLINT if (this->output_raw_) {
for (uint8_t sample = 0; sample < this->sample_count_; sample++) {
raw += analogRead(this->pin_->get_pin()); // NOLINT
} }
return analogReadVoltage(this->pin_->get_pin()) / 1000.0f; // NOLINT raw = (raw + (this->sample_count_ >> 1)) / this->sample_count_; // NOLINT(clang-analyzer-core.DivideZero)
return raw;
}
for (uint8_t sample = 0; sample < this->sample_count_; sample++) {
raw += analogReadVoltage(this->pin_->get_pin()); // NOLINT
}
raw = (raw + (this->sample_count_ >> 1)) / this->sample_count_; // NOLINT(clang-analyzer-core.DivideZero)
return raw / 1000.0f;
} }
#endif // USE_LIBRETINY #endif // USE_LIBRETINY

View file

@ -1,33 +1,48 @@
#pragma once #pragma once
#include "esphome/core/component.h"
#include "esphome/core/hal.h"
#include "esphome/core/defines.h"
#include "esphome/components/sensor/sensor.h" #include "esphome/components/sensor/sensor.h"
#include "esphome/components/voltage_sampler/voltage_sampler.h" #include "esphome/components/voltage_sampler/voltage_sampler.h"
#include "esphome/core/component.h"
#include "esphome/core/defines.h"
#include "esphome/core/hal.h"
#ifdef USE_ESP32 #ifdef USE_ESP32
#include "driver/adc.h"
#include <esp_adc_cal.h> #include <esp_adc_cal.h>
#include "driver/adc.h"
#endif #endif
namespace esphome { namespace esphome {
namespace adc { namespace adc {
#ifdef USE_ESP32
// clang-format off
#if (ESP_IDF_VERSION_MAJOR == 4 && ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 7)) || \
(ESP_IDF_VERSION_MAJOR == 5 && \
((ESP_IDF_VERSION_MINOR == 0 && ESP_IDF_VERSION_PATCH >= 5) || \
(ESP_IDF_VERSION_MINOR == 1 && ESP_IDF_VERSION_PATCH >= 3) || \
(ESP_IDF_VERSION_MINOR >= 2)) \
)
// clang-format on
static const adc_atten_t ADC_ATTEN_DB_12_COMPAT = ADC_ATTEN_DB_12;
#else
static const adc_atten_t ADC_ATTEN_DB_12_COMPAT = ADC_ATTEN_DB_11;
#endif
#endif // USE_ESP32
class ADCSensor : public sensor::Sensor, public PollingComponent, public voltage_sampler::VoltageSampler { class ADCSensor : public sensor::Sensor, public PollingComponent, public voltage_sampler::VoltageSampler {
public: public:
#ifdef USE_ESP32 #ifdef USE_ESP32
/// Set the attenuation for this pin. Only available on the ESP32. /// Set the attenuation for this pin. Only available on the ESP32.
void set_attenuation(adc_atten_t attenuation) { attenuation_ = attenuation; } void set_attenuation(adc_atten_t attenuation) { this->attenuation_ = attenuation; }
void set_channel1(adc1_channel_t channel) { void set_channel1(adc1_channel_t channel) {
channel1_ = channel; this->channel1_ = channel;
channel2_ = ADC2_CHANNEL_MAX; this->channel2_ = ADC2_CHANNEL_MAX;
} }
void set_channel2(adc2_channel_t channel) { void set_channel2(adc2_channel_t channel) {
channel2_ = channel; this->channel2_ = channel;
channel1_ = ADC1_CHANNEL_MAX; this->channel1_ = ADC1_CHANNEL_MAX;
} }
void set_autorange(bool autorange) { autorange_ = autorange; } void set_autorange(bool autorange) { this->autorange_ = autorange; }
#endif #endif
/// Update ADC values /// Update ADC values
@ -38,7 +53,8 @@ class ADCSensor : public sensor::Sensor, public PollingComponent, public voltage
/// `HARDWARE_LATE` setup priority /// `HARDWARE_LATE` setup priority
float get_setup_priority() const override; float get_setup_priority() const override;
void set_pin(InternalGPIOPin *pin) { this->pin_ = pin; } void set_pin(InternalGPIOPin *pin) { this->pin_ = pin; }
void set_output_raw(bool output_raw) { output_raw_ = output_raw; } void set_output_raw(bool output_raw) { this->output_raw_ = output_raw; }
void set_sample_count(uint8_t sample_count);
float sample() override; float sample() override;
#ifdef USE_ESP8266 #ifdef USE_ESP8266
@ -46,12 +62,13 @@ class ADCSensor : public sensor::Sensor, public PollingComponent, public voltage
#endif #endif
#ifdef USE_RP2040 #ifdef USE_RP2040
void set_is_temperature() { is_temperature_ = true; } void set_is_temperature() { this->is_temperature_ = true; }
#endif #endif
protected: protected:
InternalGPIOPin *pin_; InternalGPIOPin *pin_;
bool output_raw_{false}; bool output_raw_{false};
uint8_t sample_count_{1};
#ifdef USE_RP2040 #ifdef USE_RP2040
bool is_temperature_{false}; bool is_temperature_{false};

View file

@ -1,3 +1,5 @@
import logging
import esphome.codegen as cg import esphome.codegen as cg
import esphome.config_validation as cv import esphome.config_validation as cv
import esphome.final_validate as fv import esphome.final_validate as fv
@ -19,16 +21,35 @@ from . import (
ATTENUATION_MODES, ATTENUATION_MODES,
ESP32_VARIANT_ADC1_PIN_TO_CHANNEL, ESP32_VARIANT_ADC1_PIN_TO_CHANNEL,
ESP32_VARIANT_ADC2_PIN_TO_CHANNEL, ESP32_VARIANT_ADC2_PIN_TO_CHANNEL,
adc_ns,
validate_adc_pin, validate_adc_pin,
) )
_LOGGER = logging.getLogger(__name__)
AUTO_LOAD = ["voltage_sampler"] AUTO_LOAD = ["voltage_sampler"]
CONF_SAMPLES = "samples"
_attenuation = cv.enum(ATTENUATION_MODES, lower=True)
def validate_config(config): def validate_config(config):
if config[CONF_RAW] and config.get(CONF_ATTENUATION, None) == "auto": if config[CONF_RAW] and config.get(CONF_ATTENUATION, None) == "auto":
raise cv.Invalid("Automatic attenuation cannot be used when raw output is set") raise cv.Invalid("Automatic attenuation cannot be used when raw output is set")
if config.get(CONF_ATTENUATION, None) == "auto" and config.get(CONF_SAMPLES, 1) > 1:
raise cv.Invalid(
"Automatic attenuation cannot be used when multisampling is set"
)
if config.get(CONF_ATTENUATION) == "11db":
_LOGGER.warning(
"`attenuation: 11db` is deprecated, use `attenuation: 12db` instead"
)
# Alter value here so `config` command prints the recommended change
config[CONF_ATTENUATION] = _attenuation("12db")
return config return config
@ -47,7 +68,6 @@ def final_validate_config(config):
return config return config
adc_ns = cg.esphome_ns.namespace("adc")
ADCSensor = adc_ns.class_( ADCSensor = adc_ns.class_(
"ADCSensor", sensor.Sensor, cg.PollingComponent, voltage_sampler.VoltageSampler "ADCSensor", sensor.Sensor, cg.PollingComponent, voltage_sampler.VoltageSampler
) )
@ -65,8 +85,9 @@ CONFIG_SCHEMA = cv.All(
cv.Required(CONF_PIN): validate_adc_pin, cv.Required(CONF_PIN): validate_adc_pin,
cv.Optional(CONF_RAW, default=False): cv.boolean, cv.Optional(CONF_RAW, default=False): cv.boolean,
cv.SplitDefault(CONF_ATTENUATION, esp32="0db"): cv.All( cv.SplitDefault(CONF_ATTENUATION, esp32="0db"): cv.All(
cv.only_on_esp32, cv.enum(ATTENUATION_MODES, lower=True) cv.only_on_esp32, _attenuation
), ),
cv.Optional(CONF_SAMPLES, default=1): cv.int_range(min=1, max=255),
} }
) )
.extend(cv.polling_component_schema("60s")), .extend(cv.polling_component_schema("60s")),
@ -90,6 +111,7 @@ async def to_code(config):
cg.add(var.set_pin(pin)) cg.add(var.set_pin(pin))
cg.add(var.set_output_raw(config[CONF_RAW])) cg.add(var.set_output_raw(config[CONF_RAW]))
cg.add(var.set_sample_count(config[CONF_SAMPLES]))
if attenuation := config.get(CONF_ATTENUATION): if attenuation := config.get(CONF_ATTENUATION):
if attenuation == "auto": if attenuation == "auto":

View file

@ -31,7 +31,7 @@ CONFIG_SCHEMA = (
BEDJET_CLIENT_SCHEMA = cv.Schema( BEDJET_CLIENT_SCHEMA = cv.Schema(
{ {
cv.Required(CONF_BEDJET_ID): cv.use_id(BedJetHub), cv.GenerateID(CONF_BEDJET_ID): cv.use_id(BedJetHub),
} }
) )

View file

@ -157,5 +157,11 @@ bool BedjetCodec::compare(const uint8_t *data, uint16_t length) {
return explicit_fields_changed; return explicit_fields_changed;
} }
/// Converts a BedJet temp step into degrees Celsius.
float bedjet_temp_to_c(uint8_t temp) {
// BedJet temp is "C*2"; to get C, divide by 2.
return temp / 2.0f;
}
} // namespace bedjet } // namespace bedjet
} // namespace esphome } // namespace esphome

View file

@ -187,5 +187,8 @@ class BedjetCodec {
BedjetStatusPacket buf_; BedjetStatusPacket buf_;
}; };
/// Converts a BedJet temp step into degrees Celsius.
float bedjet_temp_to_c(uint8_t temp);
} // namespace bedjet } // namespace bedjet
} // namespace esphome } // namespace esphome

View file

@ -40,6 +40,14 @@ enum BedjetHeatMode {
HEAT_MODE_EXTENDED, HEAT_MODE_EXTENDED,
}; };
// Which temperature to use as the climate entity's current temperature reading
enum BedjetTemperatureSource {
// Use the temperature of the air the BedJet is putting out
TEMPERATURE_SOURCE_OUTLET,
// Use the ambient temperature of the room the BedJet is in
TEMPERATURE_SOURCE_AMBIENT
};
enum BedjetButton : uint8_t { enum BedjetButton : uint8_t {
/// Turn BedJet off /// Turn BedJet off
BTN_OFF = 0x1, BTN_OFF = 0x1,

View file

@ -7,6 +7,7 @@ from esphome.const import (
CONF_HEAT_MODE, CONF_HEAT_MODE,
CONF_ID, CONF_ID,
CONF_RECEIVE_TIMEOUT, CONF_RECEIVE_TIMEOUT,
CONF_TEMPERATURE_SOURCE,
CONF_TIME_ID, CONF_TIME_ID,
) )
from .. import ( from .. import (
@ -21,10 +22,15 @@ DEPENDENCIES = ["bedjet"]
BedJetClimate = bedjet_ns.class_("BedJetClimate", climate.Climate, cg.PollingComponent) BedJetClimate = bedjet_ns.class_("BedJetClimate", climate.Climate, cg.PollingComponent)
BedjetHeatMode = bedjet_ns.enum("BedjetHeatMode") BedjetHeatMode = bedjet_ns.enum("BedjetHeatMode")
BedjetTemperatureSource = bedjet_ns.enum("BedjetTemperatureSource")
BEDJET_HEAT_MODES = { BEDJET_HEAT_MODES = {
"heat": BedjetHeatMode.HEAT_MODE_HEAT, "heat": BedjetHeatMode.HEAT_MODE_HEAT,
"extended": BedjetHeatMode.HEAT_MODE_EXTENDED, "extended": BedjetHeatMode.HEAT_MODE_EXTENDED,
} }
BEDJET_TEMPERATURE_SOURCES = {
"outlet": BedjetTemperatureSource.TEMPERATURE_SOURCE_OUTLET,
"ambient": BedjetTemperatureSource.TEMPERATURE_SOURCE_AMBIENT,
}
CONFIG_SCHEMA = ( CONFIG_SCHEMA = (
climate.CLIMATE_SCHEMA.extend( climate.CLIMATE_SCHEMA.extend(
@ -33,6 +39,9 @@ CONFIG_SCHEMA = (
cv.Optional(CONF_HEAT_MODE, default="heat"): cv.enum( cv.Optional(CONF_HEAT_MODE, default="heat"): cv.enum(
BEDJET_HEAT_MODES, lower=True BEDJET_HEAT_MODES, lower=True
), ),
cv.Optional(CONF_TEMPERATURE_SOURCE, default="ambient"): cv.enum(
BEDJET_TEMPERATURE_SOURCES, lower=True
),
} }
) )
.extend(cv.polling_component_schema("60s")) .extend(cv.polling_component_schema("60s"))
@ -63,3 +72,4 @@ async def to_code(config):
await register_bedjet_child(var, config) await register_bedjet_child(var, config)
cg.add(var.set_heating_mode(config[CONF_HEAT_MODE])) cg.add(var.set_heating_mode(config[CONF_HEAT_MODE]))
cg.add(var.set_temperature_source(config[CONF_TEMPERATURE_SOURCE]))

View file

@ -8,12 +8,6 @@ namespace bedjet {
using namespace esphome::climate; using namespace esphome::climate;
/// Converts a BedJet temp step into degrees Celsius.
float bedjet_temp_to_c(const uint8_t temp) {
// BedJet temp is "C*2"; to get C, divide by 2.
return temp / 2.0f;
}
static const std::string *bedjet_fan_step_to_fan_mode(const uint8_t fan_step) { static const std::string *bedjet_fan_step_to_fan_mode(const uint8_t fan_step) {
if (fan_step < BEDJET_FAN_SPEED_COUNT) if (fan_step < BEDJET_FAN_SPEED_COUNT)
return &BEDJET_FAN_STEP_NAME_STRINGS[fan_step]; return &BEDJET_FAN_STEP_NAME_STRINGS[fan_step];
@ -236,9 +230,14 @@ void BedJetClimate::on_status(const BedjetStatusPacket *data) {
if (converted_temp > 0) if (converted_temp > 0)
this->target_temperature = converted_temp; this->target_temperature = converted_temp;
if (this->temperature_source_ == TEMPERATURE_SOURCE_OUTLET) {
converted_temp = bedjet_temp_to_c(data->actual_temp_step);
} else {
converted_temp = bedjet_temp_to_c(data->ambient_temp_step); converted_temp = bedjet_temp_to_c(data->ambient_temp_step);
if (converted_temp > 0) }
if (converted_temp > 0) {
this->current_temperature = converted_temp; this->current_temperature = converted_temp;
}
const auto *fan_mode_name = bedjet_fan_step_to_fan_mode(data->fan_step); const auto *fan_mode_name = bedjet_fan_step_to_fan_mode(data->fan_step);
if (fan_mode_name != nullptr) { if (fan_mode_name != nullptr) {

View file

@ -28,6 +28,8 @@ class BedJetClimate : public climate::Climate, public BedJetClient, public Polli
/** Sets the default strategy to use for climate::CLIMATE_MODE_HEAT. */ /** Sets the default strategy to use for climate::CLIMATE_MODE_HEAT. */
void set_heating_mode(BedjetHeatMode mode) { this->heating_mode_ = mode; } void set_heating_mode(BedjetHeatMode mode) { this->heating_mode_ = mode; }
/** Sets the temperature source to use for the climate entity's current temperature */
void set_temperature_source(BedjetTemperatureSource source) { this->temperature_source_ = source; }
climate::ClimateTraits traits() override { climate::ClimateTraits traits() override {
auto traits = climate::ClimateTraits(); auto traits = climate::ClimateTraits();
@ -74,6 +76,7 @@ class BedJetClimate : public climate::Climate, public BedJetClient, public Polli
void control(const climate::ClimateCall &call) override; void control(const climate::ClimateCall &call) override;
BedjetHeatMode heating_mode_ = HEAT_MODE_HEAT; BedjetHeatMode heating_mode_ = HEAT_MODE_HEAT;
BedjetTemperatureSource temperature_source_ = TEMPERATURE_SOURCE_AMBIENT;
void reset_state_(); void reset_state_();
bool update_status_(); bool update_status_();

View file

@ -0,0 +1,55 @@
import logging
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_ID,
DEVICE_CLASS_TEMPERATURE,
STATE_CLASS_MEASUREMENT,
UNIT_CELSIUS,
)
from .. import (
BEDJET_CLIENT_SCHEMA,
bedjet_ns,
register_bedjet_child,
)
_LOGGER = logging.getLogger(__name__)
CODEOWNERS = ["@jhansche", "@javawizard"]
DEPENDENCIES = ["bedjet"]
CONF_OUTLET_TEMPERATURE = "outlet_temperature"
CONF_AMBIENT_TEMPERATURE = "ambient_temperature"
BedjetSensor = bedjet_ns.class_("BedjetSensor", cg.Component)
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.declare_id(BedjetSensor),
cv.Optional(CONF_OUTLET_TEMPERATURE): sensor.sensor_schema(
unit_of_measurement=UNIT_CELSIUS,
device_class=DEVICE_CLASS_TEMPERATURE,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_AMBIENT_TEMPERATURE): sensor.sensor_schema(
unit_of_measurement=UNIT_CELSIUS,
device_class=DEVICE_CLASS_TEMPERATURE,
state_class=STATE_CLASS_MEASUREMENT,
),
}
).extend(BEDJET_CLIENT_SCHEMA)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await register_bedjet_child(var, config)
if outlet_temperature_sensor := config.get(CONF_OUTLET_TEMPERATURE):
sensor_var = await sensor.new_sensor(outlet_temperature_sensor)
cg.add(var.set_outlet_temperature_sensor(sensor_var))
if ambient_temperature_sensor := config.get(CONF_AMBIENT_TEMPERATURE):
sensor_var = await sensor.new_sensor(ambient_temperature_sensor)
cg.add(var.set_ambient_temperature_sensor(sensor_var))

View file

@ -0,0 +1,34 @@
#include "bedjet_sensor.h"
#include "esphome/core/log.h"
namespace esphome {
namespace bedjet {
std::string BedjetSensor::describe() { return "BedJet Sensor"; }
void BedjetSensor::dump_config() {
ESP_LOGCONFIG(TAG, "BedJet Sensor:");
LOG_SENSOR(" ", "Outlet Temperature", this->outlet_temperature_sensor_);
LOG_SENSOR(" ", "Ambient Temperature", this->ambient_temperature_sensor_);
}
void BedjetSensor::on_bedjet_state(bool is_ready) {}
void BedjetSensor::on_status(const BedjetStatusPacket *data) {
if (this->outlet_temperature_sensor_ != nullptr) {
float converted_temp = bedjet_temp_to_c(data->actual_temp_step);
if (converted_temp > 0) {
this->outlet_temperature_sensor_->publish_state(converted_temp);
}
}
if (this->ambient_temperature_sensor_ != nullptr) {
float converted_temp = bedjet_temp_to_c(data->ambient_temp_step);
if (converted_temp > 0) {
this->ambient_temperature_sensor_->publish_state(converted_temp);
}
}
}
} // namespace bedjet
} // namespace esphome

View file

@ -0,0 +1,32 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/bedjet/bedjet_child.h"
#include "esphome/components/bedjet/bedjet_codec.h"
namespace esphome {
namespace bedjet {
class BedjetSensor : public BedJetClient, public Component {
public:
void dump_config() override;
void on_status(const BedjetStatusPacket *data) override;
void on_bedjet_state(bool is_ready) override;
std::string describe() override;
void set_outlet_temperature_sensor(sensor::Sensor *outlet_temperature_sensor) {
this->outlet_temperature_sensor_ = outlet_temperature_sensor;
}
void set_ambient_temperature_sensor(sensor::Sensor *ambient_temperature_sensor) {
this->ambient_temperature_sensor_ = ambient_temperature_sensor;
}
protected:
sensor::Sensor *outlet_temperature_sensor_{nullptr};
sensor::Sensor *ambient_temperature_sensor_{nullptr};
};
} // namespace bedjet
} // namespace esphome

View file

@ -0,0 +1,384 @@
#include "led_strip.h"
#ifdef USE_BK72XX
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
extern "C" {
#include "rtos_pub.h"
#include "spi.h"
#include "arm_arch.h"
#include "general_dma_pub.h"
#include "gpio_pub.h"
#include "icu_pub.h"
#undef SPI_DAT
#undef SPI_BASE
};
static const uint32_t SPI_TX_DMA_CHANNEL = GDMA_CHANNEL_3;
// TODO: Check if SPI_PERI_CLK_DCO depends on the chip variant
static const uint32_t SPI_PERI_CLK_26M = 26000000;
static const uint32_t SPI_PERI_CLK_DCO = 120000000;
static const uint32_t SPI_BASE = 0x00802700;
static const uint32_t SPI_DAT = SPI_BASE + 3 * 4;
static const uint32_t SPI_CONFIG = SPI_BASE + 1 * 4;
static const uint32_t SPI_TX_EN = 1 << 0;
static const uint32_t CTRL_NSSMD_3 = 1 << 17;
static const uint32_t SPI_TX_FINISH_EN = 1 << 2;
static const uint32_t SPI_RX_FINISH_EN = 1 << 3;
namespace esphome {
namespace beken_spi_led_strip {
static const char *const TAG = "beken_spi_led_strip";
struct spi_data_t {
SemaphoreHandle_t dma_tx_semaphore;
volatile bool tx_in_progress;
bool first_run;
};
static spi_data_t *spi_data = nullptr;
static void set_spi_ctrl_register(unsigned long bit, bool val) {
uint32_t value = REG_READ(SPI_CTRL);
if (val == 0) {
value &= ~bit;
} else if (val == 1) {
value |= bit;
}
REG_WRITE(SPI_CTRL, value);
}
static void set_spi_config_register(unsigned long bit, bool val) {
uint32_t value = REG_READ(SPI_CONFIG);
if (val == 0) {
value &= ~bit;
} else if (val == 1) {
value |= bit;
}
REG_WRITE(SPI_CONFIG, value);
}
void spi_dma_tx_enable(bool enable) {
GDMA_CFG_ST en_cfg;
set_spi_config_register(SPI_TX_EN, enable ? 1 : 0);
en_cfg.channel = SPI_TX_DMA_CHANNEL;
en_cfg.param = enable ? 1 : 0;
sddev_control(GDMA_DEV_NAME, CMD_GDMA_SET_DMA_ENABLE, &en_cfg);
}
static void spi_set_clock(uint32_t max_hz) {
int source_clk = 0;
int spi_clk = 0;
int div = 0;
uint32_t param;
if (max_hz > 4333000) {
if (max_hz > 30000000) {
spi_clk = 30000000;
} else {
spi_clk = max_hz;
}
sddev_control(ICU_DEV_NAME, CMD_CLK_PWR_DOWN, &param);
source_clk = SPI_PERI_CLK_DCO;
param = PCLK_POSI_SPI;
sddev_control(ICU_DEV_NAME, CMD_CONF_PCLK_DCO, &param);
param = PWD_SPI_CLK_BIT;
sddev_control(ICU_DEV_NAME, CMD_CLK_PWR_UP, &param);
} else {
spi_clk = max_hz;
#if CFG_XTAL_FREQUENCE
source_clk = CFG_XTAL_FREQUENCE;
#else
source_clk = SPI_PERI_CLK_26M;
#endif
param = PCLK_POSI_SPI;
sddev_control(ICU_DEV_NAME, CMD_CONF_PCLK_26M, &param);
}
div = ((source_clk >> 1) / spi_clk);
if (div < 2) {
div = 2;
} else if (div >= 255) {
div = 255;
}
param = REG_READ(SPI_CTRL);
param &= ~(SPI_CKR_MASK << SPI_CKR_POSI);
param |= (div << SPI_CKR_POSI);
REG_WRITE(SPI_CTRL, param);
ESP_LOGD(TAG, "target frequency: %d, actual frequency: %d", max_hz, source_clk / 2 / div);
}
void spi_dma_tx_finish_callback(unsigned int param) {
spi_data->tx_in_progress = false;
xSemaphoreGive(spi_data->dma_tx_semaphore);
spi_dma_tx_enable(0);
}
void BekenSPILEDStripLightOutput::setup() {
ESP_LOGCONFIG(TAG, "Setting up Beken SPI LED Strip...");
size_t buffer_size = this->get_buffer_size_();
size_t dma_buffer_size = (buffer_size * 8) + (2 * 64);
ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE);
this->buf_ = allocator.allocate(buffer_size);
if (this->buf_ == nullptr) {
ESP_LOGE(TAG, "Cannot allocate LED buffer!");
this->mark_failed();
return;
}
this->effect_data_ = allocator.allocate(this->num_leds_);
if (this->effect_data_ == nullptr) {
ESP_LOGE(TAG, "Cannot allocate effect data!");
this->mark_failed();
return;
}
this->dma_buf_ = allocator.allocate(dma_buffer_size);
if (this->dma_buf_ == nullptr) {
ESP_LOGE(TAG, "Cannot allocate DMA buffer!");
this->mark_failed();
return;
}
memset(this->buf_, 0, buffer_size);
memset(this->effect_data_, 0, this->num_leds_);
memset(this->dma_buf_, 0, dma_buffer_size);
uint32_t value = PCLK_POSI_SPI;
sddev_control(ICU_DEV_NAME, CMD_CONF_PCLK_26M, &value);
value = PWD_SPI_CLK_BIT;
sddev_control(ICU_DEV_NAME, CMD_CLK_PWR_UP, &value);
if (spi_data != nullptr) {
ESP_LOGE(TAG, "SPI device already initialized!");
this->mark_failed();
return;
}
spi_data = (spi_data_t *) calloc(1, sizeof(spi_data_t));
if (spi_data == nullptr) {
ESP_LOGE(TAG, "Cannot allocate spi_data!");
this->mark_failed();
return;
}
spi_data->dma_tx_semaphore = xSemaphoreCreateBinary();
if (spi_data->dma_tx_semaphore == nullptr) {
ESP_LOGE(TAG, "TX Semaphore init faild!");
this->mark_failed();
return;
}
spi_data->first_run = true;
set_spi_ctrl_register(MSTEN, 0);
set_spi_ctrl_register(BIT_WDTH, 0);
spi_set_clock(this->spi_frequency_);
set_spi_ctrl_register(CKPOL, 0);
set_spi_ctrl_register(CKPHA, 0);
set_spi_ctrl_register(MSTEN, 1);
set_spi_ctrl_register(SPIEN, 1);
set_spi_ctrl_register(TXINT_EN, 0);
set_spi_ctrl_register(RXINT_EN, 0);
set_spi_config_register(SPI_TX_FINISH_EN, 1);
set_spi_config_register(SPI_RX_FINISH_EN, 1);
set_spi_ctrl_register(RXOVR_EN, 0);
set_spi_ctrl_register(TXOVR_EN, 0);
value = REG_READ(SPI_CTRL);
value &= ~CTRL_NSSMD_3;
value |= (1 << 17);
REG_WRITE(SPI_CTRL, value);
value = GFUNC_MODE_SPI_DMA;
sddev_control(GPIO_DEV_NAME, CMD_GPIO_ENABLE_SECOND, &value);
set_spi_ctrl_register(SPI_S_CS_UP_INT_EN, 0);
GDMA_CFG_ST en_cfg;
GDMACFG_TPYES_ST init_cfg;
memset(&init_cfg, 0, sizeof(GDMACFG_TPYES_ST));
init_cfg.dstdat_width = 8;
init_cfg.srcdat_width = 32;
init_cfg.dstptr_incr = 0;
init_cfg.srcptr_incr = 1;
init_cfg.src_start_addr = this->dma_buf_;
init_cfg.dst_start_addr = (void *) SPI_DAT; // SPI_DMA_REG4_TXFIFO
init_cfg.channel = SPI_TX_DMA_CHANNEL;
init_cfg.prio = 0; // 10
init_cfg.u.type4.src_loop_start_addr = this->dma_buf_;
init_cfg.u.type4.src_loop_end_addr = this->dma_buf_ + dma_buffer_size;
init_cfg.half_fin_handler = nullptr;
init_cfg.fin_handler = spi_dma_tx_finish_callback;
init_cfg.src_module = GDMA_X_SRC_DTCM_RD_REQ;
init_cfg.dst_module = GDMA_X_DST_GSPI_TX_REQ; // GDMA_X_DST_HSSPI_TX_REQ
sddev_control(GDMA_DEV_NAME, CMD_GDMA_CFG_TYPE4, (void *) &init_cfg);
en_cfg.channel = SPI_TX_DMA_CHANNEL;
en_cfg.param = dma_buffer_size;
sddev_control(GDMA_DEV_NAME, CMD_GDMA_SET_TRANS_LENGTH, (void *) &en_cfg);
en_cfg.channel = SPI_TX_DMA_CHANNEL;
en_cfg.param = 0;
sddev_control(GDMA_DEV_NAME, CMD_GDMA_CFG_WORK_MODE, (void *) &en_cfg);
en_cfg.channel = SPI_TX_DMA_CHANNEL;
en_cfg.param = 0;
sddev_control(GDMA_DEV_NAME, CMD_GDMA_CFG_SRCADDR_LOOP, &en_cfg);
spi_dma_tx_enable(0);
value = REG_READ(SPI_CONFIG);
value &= ~(0xFFF << 8);
value |= ((dma_buffer_size & 0xFFF) << 8);
REG_WRITE(SPI_CONFIG, value);
}
void BekenSPILEDStripLightOutput::set_led_params(uint8_t bit0, uint8_t bit1, uint32_t spi_frequency) {
this->bit0_ = bit0;
this->bit1_ = bit1;
this->spi_frequency_ = spi_frequency;
}
void BekenSPILEDStripLightOutput::write_state(light::LightState *state) {
// protect from refreshing too often
uint32_t now = micros();
if (*this->max_refresh_rate_ != 0 && (now - this->last_refresh_) < *this->max_refresh_rate_) {
// try again next loop iteration, so that this change won't get lost
this->schedule_show();
return;
}
this->last_refresh_ = now;
this->mark_shown_();
ESP_LOGVV(TAG, "Writing RGB values to bus...");
if (spi_data == nullptr) {
ESP_LOGE(TAG, "SPI not initialized");
this->status_set_warning();
return;
}
if (!spi_data->first_run && !xSemaphoreTake(spi_data->dma_tx_semaphore, 10 / portTICK_PERIOD_MS)) {
ESP_LOGE(TAG, "Timed out waiting for semaphore");
return;
}
if (spi_data->tx_in_progress) {
ESP_LOGE(TAG, "tx_in_progress is set");
this->status_set_warning();
return;
}
spi_data->tx_in_progress = true;
size_t buffer_size = this->get_buffer_size_();
size_t size = 0;
uint8_t *psrc = this->buf_;
uint8_t *pdest = this->dma_buf_ + 64;
// The 64 byte padding is a workaround for a SPI DMA bug where the
// output doesn't exactly start at the beginning of dma_buf_
while (size < buffer_size) {
uint8_t b = *psrc;
for (int i = 0; i < 8; i++) {
*pdest++ = b & (1 << (7 - i)) ? this->bit1_ : this->bit0_;
}
size++;
psrc++;
}
spi_data->first_run = false;
spi_dma_tx_enable(1);
this->status_clear_warning();
}
light::ESPColorView BekenSPILEDStripLightOutput::get_view_internal(int32_t index) const {
int32_t r = 0, g = 0, b = 0;
switch (this->rgb_order_) {
case ORDER_RGB:
r = 0;
g = 1;
b = 2;
break;
case ORDER_RBG:
r = 0;
g = 2;
b = 1;
break;
case ORDER_GRB:
r = 1;
g = 0;
b = 2;
break;
case ORDER_GBR:
r = 2;
g = 0;
b = 1;
break;
case ORDER_BGR:
r = 2;
g = 1;
b = 0;
break;
case ORDER_BRG:
r = 1;
g = 2;
b = 0;
break;
}
uint8_t multiplier = this->is_rgbw_ || this->is_wrgb_ ? 4 : 3;
uint8_t white = this->is_wrgb_ ? 0 : 3;
return {this->buf_ + (index * multiplier) + r + this->is_wrgb_,
this->buf_ + (index * multiplier) + g + this->is_wrgb_,
this->buf_ + (index * multiplier) + b + this->is_wrgb_,
this->is_rgbw_ || this->is_wrgb_ ? this->buf_ + (index * multiplier) + white : nullptr,
&this->effect_data_[index],
&this->correction_};
}
void BekenSPILEDStripLightOutput::dump_config() {
ESP_LOGCONFIG(TAG, "Beken SPI LED Strip:");
ESP_LOGCONFIG(TAG, " Pin: %u", this->pin_);
const char *rgb_order;
switch (this->rgb_order_) {
case ORDER_RGB:
rgb_order = "RGB";
break;
case ORDER_RBG:
rgb_order = "RBG";
break;
case ORDER_GRB:
rgb_order = "GRB";
break;
case ORDER_GBR:
rgb_order = "GBR";
break;
case ORDER_BGR:
rgb_order = "BGR";
break;
case ORDER_BRG:
rgb_order = "BRG";
break;
default:
rgb_order = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " RGB Order: %s", rgb_order);
ESP_LOGCONFIG(TAG, " Max refresh rate: %" PRIu32, *this->max_refresh_rate_);
ESP_LOGCONFIG(TAG, " Number of LEDs: %u", this->num_leds_);
}
float BekenSPILEDStripLightOutput::get_setup_priority() const { return setup_priority::HARDWARE; }
} // namespace beken_spi_led_strip
} // namespace esphome
#endif // USE_BK72XX

View file

@ -0,0 +1,85 @@
#pragma once
#ifdef USE_BK72XX
#include "esphome/components/light/addressable_light.h"
#include "esphome/components/light/light_output.h"
#include "esphome/core/color.h"
#include "esphome/core/component.h"
#include "esphome/core/helpers.h"
namespace esphome {
namespace beken_spi_led_strip {
enum RGBOrder : uint8_t {
ORDER_RGB,
ORDER_RBG,
ORDER_GRB,
ORDER_GBR,
ORDER_BGR,
ORDER_BRG,
};
class BekenSPILEDStripLightOutput : public light::AddressableLight {
public:
void setup() override;
void write_state(light::LightState *state) override;
float get_setup_priority() const override;
int32_t size() const override { return this->num_leds_; }
light::LightTraits get_traits() override {
auto traits = light::LightTraits();
if (this->is_rgbw_ || this->is_wrgb_) {
traits.set_supported_color_modes({light::ColorMode::RGB_WHITE, light::ColorMode::WHITE});
} else {
traits.set_supported_color_modes({light::ColorMode::RGB});
}
return traits;
}
void set_pin(uint8_t pin) { this->pin_ = pin; }
void set_num_leds(uint16_t num_leds) { this->num_leds_ = num_leds; }
void set_is_rgbw(bool is_rgbw) { this->is_rgbw_ = is_rgbw; }
void set_is_wrgb(bool is_wrgb) { this->is_wrgb_ = is_wrgb; }
/// Set a maximum refresh rate in µs as some lights do not like being updated too often.
void set_max_refresh_rate(uint32_t interval_us) { this->max_refresh_rate_ = interval_us; }
void set_led_params(uint8_t bit0, uint8_t bit1, uint32_t spi_frequency);
void set_rgb_order(RGBOrder rgb_order) { this->rgb_order_ = rgb_order; }
void clear_effect_data() override {
for (int i = 0; i < this->size(); i++)
this->effect_data_[i] = 0;
}
void dump_config() override;
protected:
light::ESPColorView get_view_internal(int32_t index) const override;
size_t get_buffer_size_() const { return this->num_leds_ * (this->is_rgbw_ || this->is_wrgb_ ? 4 : 3); }
uint8_t *buf_{nullptr};
uint8_t *effect_data_{nullptr};
uint8_t *dma_buf_{nullptr};
uint8_t pin_;
uint16_t num_leds_;
bool is_rgbw_;
bool is_wrgb_;
uint32_t spi_frequency_{6666666};
uint8_t bit0_{0xE0};
uint8_t bit1_{0xFC};
RGBOrder rgb_order_;
uint32_t last_refresh_{0};
optional<uint32_t> max_refresh_rate_{};
};
} // namespace beken_spi_led_strip
} // namespace esphome
#endif // USE_BK72XX

View file

@ -0,0 +1,134 @@
from dataclasses import dataclass
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome import pins
from esphome.components import libretiny, light
from esphome.const import (
CONF_CHIPSET,
CONF_IS_RGBW,
CONF_MAX_REFRESH_RATE,
CONF_NUM_LEDS,
CONF_OUTPUT_ID,
CONF_PIN,
CONF_RGB_ORDER,
)
CODEOWNERS = ["@Mat931"]
DEPENDENCIES = ["libretiny"]
beken_spi_led_strip_ns = cg.esphome_ns.namespace("beken_spi_led_strip")
BekenSPILEDStripLightOutput = beken_spi_led_strip_ns.class_(
"BekenSPILEDStripLightOutput", light.AddressableLight
)
RGBOrder = beken_spi_led_strip_ns.enum("RGBOrder")
RGB_ORDERS = {
"RGB": RGBOrder.ORDER_RGB,
"RBG": RGBOrder.ORDER_RBG,
"GRB": RGBOrder.ORDER_GRB,
"GBR": RGBOrder.ORDER_GBR,
"BGR": RGBOrder.ORDER_BGR,
"BRG": RGBOrder.ORDER_BRG,
}
@dataclass
class LEDStripTimings:
bit0: int
bit1: int
spi_frequency: int
CHIPSETS = {
"WS2812": LEDStripTimings(
0b11100000, 0b11111100, 6666666
), # Clock divider: 9, Bit time: 1350ns
"SK6812": LEDStripTimings(
0b11000000, 0b11111000, 7500000
), # Clock divider: 8, Bit time: 1200ns
"APA106": LEDStripTimings(
0b11000000, 0b11111110, 5454545
), # Clock divider: 11, Bit time: 1650ns
"SM16703": LEDStripTimings(
0b11000000, 0b11111110, 7500000
), # Clock divider: 8, Bit time: 1200ns
}
CONF_IS_WRGB = "is_wrgb"
SUPPORTED_PINS = {
libretiny.const.FAMILY_BK7231N: [16],
libretiny.const.FAMILY_BK7231T: [16],
libretiny.const.FAMILY_BK7251: [16],
}
def _validate_pin(value):
family = libretiny.get_libretiny_family()
if family not in SUPPORTED_PINS:
raise cv.Invalid(f"Chip family {family} is not supported.")
if value not in SUPPORTED_PINS[family]:
supported_pin_info = ", ".join(f"{x}" for x in SUPPORTED_PINS[family])
raise cv.Invalid(
f"Pin {value} is not supported on the {family}. Supported pins: {supported_pin_info}"
)
return value
def _validate_num_leds(value):
max_num_leds = 165 # 170
if value[CONF_IS_RGBW] or value[CONF_IS_WRGB]:
max_num_leds = 123 # 127
if value[CONF_NUM_LEDS] > max_num_leds:
raise cv.Invalid(
f"The maximum number of LEDs for this configuration is {max_num_leds}.",
path=CONF_NUM_LEDS,
)
return value
CONFIG_SCHEMA = cv.All(
light.ADDRESSABLE_LIGHT_SCHEMA.extend(
{
cv.GenerateID(CONF_OUTPUT_ID): cv.declare_id(BekenSPILEDStripLightOutput),
cv.Required(CONF_PIN): cv.All(
pins.internal_gpio_output_pin_number, _validate_pin
),
cv.Required(CONF_NUM_LEDS): cv.positive_not_null_int,
cv.Required(CONF_RGB_ORDER): cv.enum(RGB_ORDERS, upper=True),
cv.Optional(CONF_MAX_REFRESH_RATE): cv.positive_time_period_microseconds,
cv.Required(CONF_CHIPSET): cv.one_of(*CHIPSETS, upper=True),
cv.Optional(CONF_IS_RGBW, default=False): cv.boolean,
cv.Optional(CONF_IS_WRGB, default=False): cv.boolean,
}
),
_validate_num_leds,
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_OUTPUT_ID])
await light.register_light(var, config)
await cg.register_component(var, config)
cg.add(var.set_num_leds(config[CONF_NUM_LEDS]))
cg.add(var.set_pin(config[CONF_PIN]))
if CONF_MAX_REFRESH_RATE in config:
cg.add(var.set_max_refresh_rate(config[CONF_MAX_REFRESH_RATE]))
chipset = CHIPSETS[config[CONF_CHIPSET]]
cg.add(
var.set_led_params(
chipset.bit0,
chipset.bit1,
chipset.spi_frequency,
)
)
cg.add(var.set_rgb_order(config[CONF_RGB_ORDER]))
cg.add(var.set_is_rgbw(config[CONF_IS_RGBW]))
cg.add(var.set_is_wrgb(config[CONF_IS_WRGB]))

View file

@ -98,6 +98,11 @@ void binary_sensor::MultiClickTrigger::schedule_is_not_valid_(uint32_t max_lengt
this->schedule_cooldown_(); this->schedule_cooldown_();
}); });
} }
void binary_sensor::MultiClickTrigger::cancel() {
ESP_LOGV(TAG, "Multi Click: Sequence explicitly cancelled.");
this->is_valid_ = false;
this->schedule_cooldown_();
}
void binary_sensor::MultiClickTrigger::trigger_() { void binary_sensor::MultiClickTrigger::trigger_() {
ESP_LOGV(TAG, "Multi Click: Hooray, multi click is valid. Triggering!"); ESP_LOGV(TAG, "Multi Click: Hooray, multi click is valid. Triggering!");
this->at_index_.reset(); this->at_index_.reset();

View file

@ -105,6 +105,8 @@ class MultiClickTrigger : public Trigger<>, public Component {
void set_invalid_cooldown(uint32_t invalid_cooldown) { this->invalid_cooldown_ = invalid_cooldown; } void set_invalid_cooldown(uint32_t invalid_cooldown) { this->invalid_cooldown_ = invalid_cooldown; }
void cancel();
protected: protected:
void on_state_(bool state); void on_state_(bool state);
void schedule_cooldown_(); void schedule_cooldown_();

View file

@ -156,7 +156,7 @@ async def new_datetime(config, *args):
return var return var
@coroutine_with_priority(40.0) @coroutine_with_priority(100.0)
async def to_code(config): async def to_code(config):
cg.add_define("USE_DATETIME") cg.add_define("USE_DATETIME")
cg.add_global(datetime_ns.using) cg.add_global(datetime_ns.using)

View file

@ -1 +0,0 @@
CODEOWNERS = ["@vincentscode"]

View file

@ -1,87 +1,7 @@
import esphome.codegen as cg
import esphome.config_validation as cv import esphome.config_validation as cv
from esphome.components import i2c, sensor
from esphome.const import ( CODEOWNERS = ["@latonita"]
CONF_COMPENSATION,
CONF_ECO2, CONFIG_SCHEMA = CONFIG_SCHEMA = cv.invalid(
CONF_HUMIDITY, "The ens160 sensor component has been renamed to ens160_i2c."
CONF_ID,
CONF_TEMPERATURE,
CONF_TVOC,
DEVICE_CLASS_AQI,
DEVICE_CLASS_CARBON_DIOXIDE,
DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS_PARTS,
ICON_CHEMICAL_WEAPON,
ICON_MOLECULE_CO2,
ICON_RADIATOR,
STATE_CLASS_MEASUREMENT,
UNIT_PARTS_PER_BILLION,
UNIT_PARTS_PER_MILLION,
) )
CODEOWNERS = ["@vincentscode"]
DEPENDENCIES = ["i2c"]
ens160_ns = cg.esphome_ns.namespace("ens160")
ENS160Component = ens160_ns.class_(
"ENS160Component", cg.PollingComponent, i2c.I2CDevice, sensor.Sensor
)
CONF_AQI = "aqi"
UNIT_INDEX = "index"
CONFIG_SCHEMA = (
cv.Schema(
{
cv.GenerateID(): cv.declare_id(ENS160Component),
cv.Required(CONF_ECO2): sensor.sensor_schema(
unit_of_measurement=UNIT_PARTS_PER_MILLION,
icon=ICON_MOLECULE_CO2,
accuracy_decimals=0,
device_class=DEVICE_CLASS_CARBON_DIOXIDE,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Required(CONF_TVOC): sensor.sensor_schema(
unit_of_measurement=UNIT_PARTS_PER_BILLION,
icon=ICON_RADIATOR,
accuracy_decimals=0,
device_class=DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS_PARTS,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Required(CONF_AQI): sensor.sensor_schema(
icon=ICON_CHEMICAL_WEAPON,
accuracy_decimals=0,
device_class=DEVICE_CLASS_AQI,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_COMPENSATION): cv.Schema(
{
cv.Required(CONF_TEMPERATURE): cv.use_id(sensor.Sensor),
cv.Required(CONF_HUMIDITY): cv.use_id(sensor.Sensor),
}
),
}
)
.extend(cv.polling_component_schema("60s"))
.extend(i2c.i2c_device_schema(0x53))
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await i2c.register_i2c_device(var, config)
sens = await sensor.new_sensor(config[CONF_ECO2])
cg.add(var.set_co2(sens))
sens = await sensor.new_sensor(config[CONF_TVOC])
cg.add(var.set_tvoc(sens))
sens = await sensor.new_sensor(config[CONF_AQI])
cg.add(var.set_aqi(sens))
if CONF_COMPENSATION in config:
compensation_config = config[CONF_COMPENSATION]
sens = await cg.get_variable(compensation_config[CONF_TEMPERATURE])
cg.add(var.set_temperature(sens))
sens = await cg.get_variable(compensation_config[CONF_HUMIDITY])
cg.add(var.set_humidity(sens))

View file

@ -0,0 +1,78 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_COMPENSATION,
CONF_ECO2,
CONF_HUMIDITY,
CONF_ID,
CONF_TEMPERATURE,
CONF_TVOC,
DEVICE_CLASS_AQI,
DEVICE_CLASS_CARBON_DIOXIDE,
DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS_PARTS,
ICON_CHEMICAL_WEAPON,
ICON_MOLECULE_CO2,
ICON_RADIATOR,
STATE_CLASS_MEASUREMENT,
UNIT_PARTS_PER_BILLION,
UNIT_PARTS_PER_MILLION,
)
CODEOWNERS = ["@vincentscode", "@latonita"]
ens160_ns = cg.esphome_ns.namespace("ens160_base")
CONF_AQI = "aqi"
UNIT_INDEX = "index"
CONFIG_SCHEMA_BASE = cv.Schema(
{
cv.Required(CONF_ECO2): sensor.sensor_schema(
unit_of_measurement=UNIT_PARTS_PER_MILLION,
icon=ICON_MOLECULE_CO2,
accuracy_decimals=0,
device_class=DEVICE_CLASS_CARBON_DIOXIDE,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Required(CONF_TVOC): sensor.sensor_schema(
unit_of_measurement=UNIT_PARTS_PER_BILLION,
icon=ICON_RADIATOR,
accuracy_decimals=0,
device_class=DEVICE_CLASS_VOLATILE_ORGANIC_COMPOUNDS_PARTS,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Required(CONF_AQI): sensor.sensor_schema(
icon=ICON_CHEMICAL_WEAPON,
accuracy_decimals=0,
device_class=DEVICE_CLASS_AQI,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_COMPENSATION): cv.Schema(
{
cv.Required(CONF_TEMPERATURE): cv.use_id(sensor.Sensor),
cv.Required(CONF_HUMIDITY): cv.use_id(sensor.Sensor),
}
),
}
).extend(cv.polling_component_schema("60s"))
async def to_code_base(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
sens = await sensor.new_sensor(config[CONF_ECO2])
cg.add(var.set_co2(sens))
sens = await sensor.new_sensor(config[CONF_TVOC])
cg.add(var.set_tvoc(sens))
sens = await sensor.new_sensor(config[CONF_AQI])
cg.add(var.set_aqi(sens))
if compensation_config := config.get(CONF_COMPENSATION):
sens = await cg.get_variable(compensation_config[CONF_TEMPERATURE])
cg.add(var.set_temperature(sens))
sens = await cg.get_variable(compensation_config[CONF_HUMIDITY])
cg.add(var.set_humidity(sens))
return var

View file

@ -5,12 +5,12 @@
// Implementation based on: // Implementation based on:
// https://github.com/sciosense/ENS160_driver // https://github.com/sciosense/ENS160_driver
#include "ens160.h" #include "ens160_base.h"
#include "esphome/core/log.h" #include "esphome/core/log.h"
#include "esphome/core/hal.h" #include "esphome/core/hal.h"
namespace esphome { namespace esphome {
namespace ens160 { namespace ens160_base {
static const char *const TAG = "ens160"; static const char *const TAG = "ens160";
@ -303,7 +303,6 @@ void ENS160Component::dump_config() {
ESP_LOGI(TAG, "Firmware Version: %d.%d.%d", this->firmware_ver_major_, this->firmware_ver_minor_, ESP_LOGI(TAG, "Firmware Version: %d.%d.%d", this->firmware_ver_major_, this->firmware_ver_minor_,
this->firmware_ver_build_); this->firmware_ver_build_);
LOG_I2C_DEVICE(this);
LOG_UPDATE_INTERVAL(this); LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "CO2 Sensor:", this->co2_); LOG_SENSOR(" ", "CO2 Sensor:", this->co2_);
LOG_SENSOR(" ", "TVOC Sensor:", this->tvoc_); LOG_SENSOR(" ", "TVOC Sensor:", this->tvoc_);
@ -317,5 +316,5 @@ void ENS160Component::dump_config() {
} }
} }
} // namespace ens160 } // namespace ens160_base
} // namespace esphome } // namespace esphome

View file

@ -2,12 +2,11 @@
#include "esphome/core/component.h" #include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h" #include "esphome/components/sensor/sensor.h"
#include "esphome/components/i2c/i2c.h"
namespace esphome { namespace esphome {
namespace ens160 { namespace ens160_base {
class ENS160Component : public PollingComponent, public i2c::I2CDevice, public sensor::Sensor { class ENS160Component : public PollingComponent, public sensor::Sensor {
public: public:
void set_co2(sensor::Sensor *co2) { co2_ = co2; } void set_co2(sensor::Sensor *co2) { co2_ = co2; }
void set_tvoc(sensor::Sensor *tvoc) { tvoc_ = tvoc; } void set_tvoc(sensor::Sensor *tvoc) { tvoc_ = tvoc; }
@ -44,6 +43,11 @@ class ENS160Component : public PollingComponent, public i2c::I2CDevice, public s
bool warming_up_{false}; bool warming_up_{false};
bool initial_startup_{false}; bool initial_startup_{false};
virtual bool read_byte(uint8_t a_register, uint8_t *data) = 0;
virtual bool write_byte(uint8_t a_register, uint8_t data) = 0;
virtual bool read_bytes(uint8_t a_register, uint8_t *data, size_t len) = 0;
virtual bool write_bytes(uint8_t a_register, uint8_t *data, size_t len) = 0;
uint8_t firmware_ver_major_{0}; uint8_t firmware_ver_major_{0};
uint8_t firmware_ver_minor_{0}; uint8_t firmware_ver_minor_{0};
uint8_t firmware_ver_build_{0}; uint8_t firmware_ver_build_{0};
@ -56,5 +60,5 @@ class ENS160Component : public PollingComponent, public i2c::I2CDevice, public s
sensor::Sensor *temperature_{nullptr}; sensor::Sensor *temperature_{nullptr};
}; };
} // namespace ens160 } // namespace ens160_base
} // namespace esphome } // namespace esphome

View file

@ -0,0 +1,32 @@
#include <cstddef>
#include <cstdint>
#include "ens160_i2c.h"
#include "esphome/components/i2c/i2c.h"
#include "../ens160_base/ens160_base.h"
namespace esphome {
namespace ens160_i2c {
static const char *const TAG = "ens160_i2c.sensor";
bool ENS160I2CComponent::read_byte(uint8_t a_register, uint8_t *data) {
return I2CDevice::read_byte(a_register, data);
};
bool ENS160I2CComponent::write_byte(uint8_t a_register, uint8_t data) {
return I2CDevice::write_byte(a_register, data);
};
bool ENS160I2CComponent::read_bytes(uint8_t a_register, uint8_t *data, size_t len) {
return I2CDevice::read_bytes(a_register, data, len);
};
bool ENS160I2CComponent::write_bytes(uint8_t a_register, uint8_t *data, size_t len) {
return I2CDevice::write_bytes(a_register, data, len);
};
void ENS160I2CComponent::dump_config() {
ENS160Component::dump_config();
LOG_I2C_DEVICE(this);
}
} // namespace ens160_i2c
} // namespace esphome

View file

@ -0,0 +1,19 @@
#pragma once
#include "esphome/components/ens160_base/ens160_base.h"
#include "esphome/components/i2c/i2c.h"
namespace esphome {
namespace ens160_i2c {
class ENS160I2CComponent : public esphome::ens160_base::ENS160Component, public i2c::I2CDevice {
void dump_config() override;
bool read_byte(uint8_t a_register, uint8_t *data) override;
bool write_byte(uint8_t a_register, uint8_t data) override;
bool read_bytes(uint8_t a_register, uint8_t *data, size_t len) override;
bool write_bytes(uint8_t a_register, uint8_t *data, size_t len) override;
};
} // namespace ens160_i2c
} // namespace esphome

View file

@ -0,0 +1,22 @@
import esphome.codegen as cg
from esphome.components import i2c
from ..ens160_base import to_code_base, cv, CONFIG_SCHEMA_BASE
AUTO_LOAD = ["ens160_base"]
CODEOWNERS = ["@latonita"]
DEPENDENCIES = ["i2c"]
ens160_ns = cg.esphome_ns.namespace("ens160_i2c")
ENS160I2CComponent = ens160_ns.class_(
"ENS160I2CComponent", cg.PollingComponent, i2c.I2CDevice
)
CONFIG_SCHEMA = CONFIG_SCHEMA_BASE.extend(
i2c.i2c_device_schema(default_address=0x52)
).extend({cv.GenerateID(): cv.declare_id(ENS160I2CComponent)})
async def to_code(config):
var = await to_code_base(config)
await i2c.register_i2c_device(var, config)

View file

@ -0,0 +1,59 @@
#include <cstdint>
#include <cstddef>
#include "ens160_spi.h"
#include <esphome/components/ens160_base/ens160_base.h>
namespace esphome {
namespace ens160_spi {
static const char *const TAG = "ens160_spi.sensor";
inline uint8_t reg_read(uint8_t reg) { return (reg << 1) | 0x01; }
inline uint8_t reg_write(uint8_t reg) { return (reg << 1) & 0xFE; }
void ENS160SPIComponent::setup() {
this->spi_setup();
ENS160Component::setup();
};
void ENS160SPIComponent::dump_config() {
ENS160Component::dump_config();
LOG_PIN(" CS Pin: ", this->cs_);
}
bool ENS160SPIComponent::read_byte(uint8_t a_register, uint8_t *data) {
this->enable();
this->transfer_byte(reg_read(a_register));
*data = this->transfer_byte(0);
this->disable();
return true;
}
bool ENS160SPIComponent::write_byte(uint8_t a_register, uint8_t data) {
this->enable();
this->transfer_byte(reg_write(a_register));
this->transfer_byte(data);
this->disable();
return true;
}
bool ENS160SPIComponent::read_bytes(uint8_t a_register, uint8_t *data, size_t len) {
this->enable();
this->transfer_byte(reg_read(a_register));
this->read_array(data, len);
this->disable();
return true;
}
bool ENS160SPIComponent::write_bytes(uint8_t a_register, uint8_t *data, size_t len) {
this->enable();
this->transfer_byte(reg_write(a_register));
this->transfer_array(data, len);
this->disable();
return true;
}
} // namespace ens160_spi
} // namespace esphome

View file

@ -0,0 +1,22 @@
#pragma once
#include "esphome/components/ens160_base/ens160_base.h"
#include "esphome/components/spi/spi.h"
namespace esphome {
namespace ens160_spi {
class ENS160SPIComponent : public esphome::ens160_base::ENS160Component,
public spi::SPIDevice<spi::BIT_ORDER_MSB_FIRST, spi::CLOCK_POLARITY_LOW,
spi::CLOCK_PHASE_LEADING, spi::DATA_RATE_200KHZ> {
void setup() override;
void dump_config() override;
bool read_byte(uint8_t a_register, uint8_t *data) override;
bool write_byte(uint8_t a_register, uint8_t data) override;
bool read_bytes(uint8_t a_register, uint8_t *data, size_t len) override;
bool write_bytes(uint8_t a_register, uint8_t *data, size_t len) override;
};
} // namespace ens160_spi
} // namespace esphome

View file

@ -0,0 +1,22 @@
import esphome.codegen as cg
from esphome.components import spi
from ..ens160_base import to_code_base, cv, CONFIG_SCHEMA_BASE
AUTO_LOAD = ["ens160_base"]
CODEOWNERS = ["@latonita"]
DEPENDENCIES = ["spi"]
ens160_spi_ns = cg.esphome_ns.namespace("ens160_spi")
ENS160SPIComponent = ens160_spi_ns.class_(
"ENS160SPIComponent", cg.PollingComponent, spi.SPIDevice
)
CONFIG_SCHEMA = CONFIG_SCHEMA_BASE.extend(spi.spi_device_schema()).extend(
{cv.GenerateID(): cv.declare_id(ENS160SPIComponent)}
)
async def to_code(config):
var = await to_code_base(config)
await spi.register_spi_device(var, config)

View file

@ -1,5 +1,6 @@
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any from typing import Any
import logging
from esphome.const import ( from esphome.const import (
CONF_ID, CONF_ID,
@ -8,6 +9,7 @@ from esphome.const import (
CONF_NUMBER, CONF_NUMBER,
CONF_OPEN_DRAIN, CONF_OPEN_DRAIN,
CONF_OUTPUT, CONF_OUTPUT,
CONF_IGNORE_PIN_VALIDATION_ERROR,
CONF_IGNORE_STRAPPING_WARNING, CONF_IGNORE_STRAPPING_WARNING,
PLATFORM_ESP32, PLATFORM_ESP32,
) )
@ -42,6 +44,9 @@ from .gpio_esp32_h2 import esp32_h2_validate_gpio_pin, esp32_h2_validate_support
ESP32InternalGPIOPin = esp32_ns.class_("ESP32InternalGPIOPin", cg.InternalGPIOPin) ESP32InternalGPIOPin = esp32_ns.class_("ESP32InternalGPIOPin", cg.InternalGPIOPin)
_LOGGER = logging.getLogger(__name__)
def _lookup_pin(value): def _lookup_pin(value):
board = CORE.data[KEY_ESP32][KEY_BOARD] board = CORE.data[KEY_ESP32][KEY_BOARD]
board_pins = boards.ESP32_BOARD_PINS.get(board, {}) board_pins = boards.ESP32_BOARD_PINS.get(board, {})
@ -111,7 +116,7 @@ _esp32_validations = {
} }
def validate_gpio_pin(value): def gpio_pin_number_validator(value):
value = _translate_pin(value) value = _translate_pin(value)
board = CORE.data[KEY_ESP32][KEY_BOARD] board = CORE.data[KEY_ESP32][KEY_BOARD]
board_pins = boards.ESP32_BOARD_PINS.get(board, {}) board_pins = boards.ESP32_BOARD_PINS.get(board, {})
@ -127,7 +132,33 @@ def validate_gpio_pin(value):
if variant not in _esp32_validations: if variant not in _esp32_validations:
raise cv.Invalid(f"Unsupported ESP32 variant {variant}") raise cv.Invalid(f"Unsupported ESP32 variant {variant}")
return _esp32_validations[variant].pin_validation(value) return value
def validate_gpio_pin(pin):
variant = CORE.data[KEY_ESP32][KEY_VARIANT]
if variant not in _esp32_validations:
raise cv.Invalid(f"Unsupported ESP32 variant {variant}")
ignore_pin_validation_warning = pin[CONF_IGNORE_PIN_VALIDATION_ERROR]
try:
pin[CONF_NUMBER] = _esp32_validations[variant].pin_validation(pin[CONF_NUMBER])
except cv.Invalid as exc:
if not ignore_pin_validation_warning:
raise
_LOGGER.warning(
"Ignoring validation error on pin %d; error: %s",
pin[CONF_NUMBER],
exc,
)
else:
# Throw an exception if used for a pin that would not have resulted
# in a validation error anyway!
if ignore_pin_validation_warning:
raise cv.Invalid(f"GPIO{pin[CONF_NUMBER]} is not a reserved pin")
return pin
def validate_supports(value): def validate_supports(value):
@ -158,9 +189,11 @@ DRIVE_STRENGTHS = {
gpio_num_t = cg.global_ns.enum("gpio_num_t") gpio_num_t = cg.global_ns.enum("gpio_num_t")
CONF_DRIVE_STRENGTH = "drive_strength" CONF_DRIVE_STRENGTH = "drive_strength"
ESP32_PIN_SCHEMA = cv.All( ESP32_PIN_SCHEMA = cv.All(
pins.gpio_base_schema(ESP32InternalGPIOPin, validate_gpio_pin).extend( pins.gpio_base_schema(ESP32InternalGPIOPin, gpio_pin_number_validator).extend(
{ {
cv.Optional(CONF_IGNORE_PIN_VALIDATION_ERROR, default=False): cv.boolean,
cv.Optional(CONF_IGNORE_STRAPPING_WARNING, default=False): cv.boolean, cv.Optional(CONF_IGNORE_STRAPPING_WARNING, default=False): cv.boolean,
cv.Optional(CONF_DRIVE_STRENGTH, default="20mA"): cv.All( cv.Optional(CONF_DRIVE_STRENGTH, default="20mA"): cv.All(
cv.float_with_unit("current", "mA", optional_unit=True), cv.float_with_unit("current", "mA", optional_unit=True),
@ -168,6 +201,7 @@ ESP32_PIN_SCHEMA = cv.All(
), ),
} }
), ),
validate_gpio_pin,
validate_supports, validate_supports,
) )

View file

@ -18,7 +18,7 @@
#include <cinttypes> #include <cinttypes>
#ifdef USE_OTA #ifdef USE_OTA
#include "esphome/components/ota/ota_component.h" #include "esphome/components/ota/ota_backend.h"
#endif #endif
#ifdef USE_ARDUINO #ifdef USE_ARDUINO
@ -61,7 +61,8 @@ void ESP32BLETracker::setup() {
this->scanner_idle_ = true; this->scanner_idle_ = true;
#ifdef USE_OTA #ifdef USE_OTA
ota::global_ota_component->add_on_state_callback([this](ota::OTAState state, float progress, uint8_t error) { ota::get_global_ota_callback()->add_on_state_callback(
[this](ota::OTAState state, float progress, uint8_t error, ota::OTAComponent *comp) {
if (state == ota::OTA_STARTED) { if (state == ota::OTA_STARTED) {
this->stop_scan(); this->stop_scan();
} }

View file

@ -6,6 +6,7 @@ from esphome import pins
from esphome.components import esp32_rmt, light from esphome.components import esp32_rmt, light
from esphome.const import ( from esphome.const import (
CONF_CHIPSET, CONF_CHIPSET,
CONF_IS_RGBW,
CONF_MAX_REFRESH_RATE, CONF_MAX_REFRESH_RATE,
CONF_NUM_LEDS, CONF_NUM_LEDS,
CONF_OUTPUT_ID, CONF_OUTPUT_ID,
@ -52,7 +53,6 @@ CHIPSETS = {
} }
CONF_IS_RGBW = "is_rgbw"
CONF_IS_WRGB = "is_wrgb" CONF_IS_WRGB = "is_wrgb"
CONF_BIT0_HIGH = "bit0_high" CONF_BIT0_HIGH = "bit0_high"
CONF_BIT0_LOW = "bit0_low" CONF_BIT0_LOW = "bit0_low"

View file

@ -150,7 +150,7 @@ TOUCH_PAD_WATERPROOF_SHIELD_DRIVER = {
def validate_touch_pad(value): def validate_touch_pad(value):
value = gpio.validate_gpio_pin(value) value = gpio.gpio_pin_number_validator(value)
variant = get_esp32_variant() variant = get_esp32_variant()
if variant not in TOUCH_PADS: if variant not in TOUCH_PADS:
raise cv.Invalid(f"ESP32 variant {variant} does not support touch pads.") raise cv.Invalid(f"ESP32 variant {variant} does not support touch pads.")

View file

@ -0,0 +1,72 @@
from esphome.cpp_generator import RawExpression
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components.ota import BASE_OTA_SCHEMA, ota_to_code, OTAComponent
from esphome.const import (
CONF_ID,
CONF_NUM_ATTEMPTS,
CONF_OTA,
CONF_PASSWORD,
CONF_PORT,
CONF_REBOOT_TIMEOUT,
CONF_SAFE_MODE,
CONF_VERSION,
KEY_PAST_SAFE_MODE,
)
from esphome.core import CORE, coroutine_with_priority
CODEOWNERS = ["@esphome/core"]
AUTO_LOAD = ["md5", "socket"]
DEPENDENCIES = ["network"]
esphome = cg.esphome_ns.namespace("esphome")
ESPHomeOTAComponent = esphome.class_("ESPHomeOTAComponent", OTAComponent)
CONFIG_SCHEMA = (
cv.Schema(
{
cv.GenerateID(): cv.declare_id(ESPHomeOTAComponent),
cv.Optional(CONF_SAFE_MODE, default=True): cv.boolean,
cv.Optional(CONF_VERSION, default=2): cv.one_of(1, 2, int=True),
cv.SplitDefault(
CONF_PORT,
esp8266=8266,
esp32=3232,
rp2040=2040,
bk72xx=8892,
rtl87xx=8892,
): cv.port,
cv.Optional(CONF_PASSWORD): cv.string,
cv.Optional(
CONF_REBOOT_TIMEOUT, default="5min"
): cv.positive_time_period_milliseconds,
cv.Optional(CONF_NUM_ATTEMPTS, default="10"): cv.positive_not_null_int,
}
)
.extend(BASE_OTA_SCHEMA)
.extend(cv.COMPONENT_SCHEMA)
)
@coroutine_with_priority(50.0)
async def to_code(config):
CORE.data[CONF_OTA] = {}
var = cg.new_Pvariable(config[CONF_ID])
await ota_to_code(var, config)
cg.add(var.set_port(config[CONF_PORT]))
if CONF_PASSWORD in config:
cg.add(var.set_auth_password(config[CONF_PASSWORD]))
cg.add_define("USE_OTA_PASSWORD")
cg.add_define("USE_OTA_VERSION", config[CONF_VERSION])
await cg.register_component(var, config)
if config[CONF_SAFE_MODE]:
condition = var.should_enter_safe_mode(
config[CONF_NUM_ATTEMPTS], config[CONF_REBOOT_TIMEOUT]
)
cg.add(RawExpression(f"if ({condition}) return"))
CORE.data[CONF_OTA][KEY_PAST_SAFE_MODE] = True

View file

@ -1,55 +1,34 @@
#include "ota_component.h" #include "ota_esphome.h"
#include "ota_backend.h"
#include "ota_backend_arduino_esp32.h"
#include "ota_backend_arduino_esp8266.h"
#include "ota_backend_arduino_rp2040.h"
#include "ota_backend_arduino_libretiny.h"
#include "ota_backend_esp_idf.h"
#include "esphome/core/log.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/util.h"
#include "esphome/components/md5/md5.h" #include "esphome/components/md5/md5.h"
#include "esphome/components/network/util.h" #include "esphome/components/network/util.h"
#include "esphome/components/ota/ota_backend.h"
#include "esphome/components/ota/ota_backend_arduino_esp32.h"
#include "esphome/components/ota/ota_backend_arduino_esp8266.h"
#include "esphome/components/ota/ota_backend_arduino_libretiny.h"
#include "esphome/components/ota/ota_backend_arduino_rp2040.h"
#include "esphome/components/ota/ota_backend_esp_idf.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include "esphome/core/util.h"
#include <cerrno> #include <cerrno>
#include <cstdio> #include <cstdio>
namespace esphome { namespace esphome {
namespace ota {
static const char *const TAG = "ota"; static const char *const TAG = "esphome.ota";
static constexpr u_int16_t OTA_BLOCK_SIZE = 8192; static constexpr u_int16_t OTA_BLOCK_SIZE = 8192;
OTAComponent *global_ota_component = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) void ESPHomeOTAComponent::setup() {
#ifdef USE_OTA_STATE_CALLBACK
std::unique_ptr<OTABackend> make_ota_backend() { ota::register_ota_platform(this);
#ifdef USE_ARDUINO
#ifdef USE_ESP8266
return make_unique<ArduinoESP8266OTABackend>();
#endif // USE_ESP8266
#ifdef USE_ESP32
return make_unique<ArduinoESP32OTABackend>();
#endif // USE_ESP32
#endif // USE_ARDUINO
#ifdef USE_ESP_IDF
return make_unique<IDFOTABackend>();
#endif // USE_ESP_IDF
#ifdef USE_RP2040
return make_unique<ArduinoRP2040OTABackend>();
#endif // USE_RP2040
#ifdef USE_LIBRETINY
return make_unique<ArduinoLibreTinyOTABackend>();
#endif #endif
}
OTAComponent::OTAComponent() { global_ota_component = this; }
void OTAComponent::setup() {
server_ = socket::socket_ip(SOCK_STREAM, 0); server_ = socket::socket_ip(SOCK_STREAM, 0);
if (server_ == nullptr) { if (server_ == nullptr) {
ESP_LOGW(TAG, "Could not create socket."); ESP_LOGW(TAG, "Could not create socket");
this->mark_failed(); this->mark_failed();
return; return;
} }
@ -88,41 +67,39 @@ void OTAComponent::setup() {
this->mark_failed(); this->mark_failed();
return; return;
} }
this->dump_config();
} }
void OTAComponent::dump_config() { void ESPHomeOTAComponent::dump_config() {
ESP_LOGCONFIG(TAG, "Over-The-Air Updates:"); ESP_LOGCONFIG(TAG, "Over-The-Air updates:");
ESP_LOGCONFIG(TAG, " Address: %s:%u", network::get_use_address().c_str(), this->port_); ESP_LOGCONFIG(TAG, " Address: %s:%u", network::get_use_address().c_str(), this->port_);
ESP_LOGCONFIG(TAG, " Version: %d", USE_OTA_VERSION);
#ifdef USE_OTA_PASSWORD #ifdef USE_OTA_PASSWORD
if (!this->password_.empty()) { if (!this->password_.empty()) {
ESP_LOGCONFIG(TAG, " Using Password."); ESP_LOGCONFIG(TAG, " Password configured");
} }
#endif #endif
ESP_LOGCONFIG(TAG, " OTA version: %d.", USE_OTA_VERSION);
if (this->has_safe_mode_ && this->safe_mode_rtc_value_ > 1 && if (this->has_safe_mode_ && this->safe_mode_rtc_value_ > 1 &&
this->safe_mode_rtc_value_ != esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC) { this->safe_mode_rtc_value_ != ESPHomeOTAComponent::ENTER_SAFE_MODE_MAGIC) {
ESP_LOGW(TAG, "Last Boot was an unhandled reset, will proceed to safe mode in %" PRIu32 " restarts", ESP_LOGW(TAG, "Last reset occurred too quickly; safe mode will be invoked in %" PRIu32 " restarts",
this->safe_mode_num_attempts_ - this->safe_mode_rtc_value_); this->safe_mode_num_attempts_ - this->safe_mode_rtc_value_);
} }
} }
void OTAComponent::loop() { void ESPHomeOTAComponent::loop() {
this->handle_(); this->handle_();
if (this->has_safe_mode_ && (millis() - this->safe_mode_start_time_) > this->safe_mode_enable_time_) { if (this->has_safe_mode_ && (millis() - this->safe_mode_start_time_) > this->safe_mode_enable_time_) {
this->has_safe_mode_ = false; this->has_safe_mode_ = false;
// successful boot, reset counter // successful boot, reset counter
ESP_LOGI(TAG, "Boot seems successful, resetting boot loop counter."); ESP_LOGI(TAG, "Boot seems successful; resetting boot loop counter");
this->clean_rtc(); this->clean_rtc();
} }
} }
static const uint8_t FEATURE_SUPPORTS_COMPRESSION = 0x01; static const uint8_t FEATURE_SUPPORTS_COMPRESSION = 0x01;
void OTAComponent::handle_() { void ESPHomeOTAComponent::handle_() {
OTAResponseTypes error_code = OTA_RESPONSE_ERROR_UNKNOWN; ota::OTAResponseTypes error_code = ota::OTA_RESPONSE_ERROR_UNKNOWN;
bool update_started = false; bool update_started = false;
size_t total = 0; size_t total = 0;
uint32_t last_progress = 0; uint32_t last_progress = 0;
@ -130,7 +107,7 @@ void OTAComponent::handle_() {
char *sbuf = reinterpret_cast<char *>(buf); char *sbuf = reinterpret_cast<char *>(buf);
size_t ota_size; size_t ota_size;
uint8_t ota_features; uint8_t ota_features;
std::unique_ptr<OTABackend> backend; std::unique_ptr<ota::OTABackend> backend;
(void) ota_features; (void) ota_features;
#if USE_OTA_VERSION == 2 #if USE_OTA_VERSION == 2
size_t size_acknowledged = 0; size_t size_acknowledged = 0;
@ -147,54 +124,54 @@ void OTAComponent::handle_() {
int enable = 1; int enable = 1;
int err = client_->setsockopt(IPPROTO_TCP, TCP_NODELAY, &enable, sizeof(int)); int err = client_->setsockopt(IPPROTO_TCP, TCP_NODELAY, &enable, sizeof(int));
if (err != 0) { if (err != 0) {
ESP_LOGW(TAG, "Socket could not enable tcp nodelay, errno: %d", errno); ESP_LOGW(TAG, "Socket could not enable TCP nodelay, errno %d", errno);
return; return;
} }
ESP_LOGD(TAG, "Starting OTA Update from %s...", this->client_->getpeername().c_str()); ESP_LOGD(TAG, "Starting update from %s...", this->client_->getpeername().c_str());
this->status_set_warning(); this->status_set_warning();
#ifdef USE_OTA_STATE_CALLBACK #ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_STARTED, 0.0f, 0); this->state_callback_.call(ota::OTA_STARTED, 0.0f, 0);
#endif #endif
if (!this->readall_(buf, 5)) { if (!this->readall_(buf, 5)) {
ESP_LOGW(TAG, "Reading magic bytes failed!"); ESP_LOGW(TAG, "Reading magic bytes failed");
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
// 0x6C, 0x26, 0xF7, 0x5C, 0x45 // 0x6C, 0x26, 0xF7, 0x5C, 0x45
if (buf[0] != 0x6C || buf[1] != 0x26 || buf[2] != 0xF7 || buf[3] != 0x5C || buf[4] != 0x45) { if (buf[0] != 0x6C || buf[1] != 0x26 || buf[2] != 0xF7 || buf[3] != 0x5C || buf[4] != 0x45) {
ESP_LOGW(TAG, "Magic bytes do not match! 0x%02X-0x%02X-0x%02X-0x%02X-0x%02X", buf[0], buf[1], buf[2], buf[3], ESP_LOGW(TAG, "Magic bytes do not match! 0x%02X-0x%02X-0x%02X-0x%02X-0x%02X", buf[0], buf[1], buf[2], buf[3],
buf[4]); buf[4]);
error_code = OTA_RESPONSE_ERROR_MAGIC; error_code = ota::OTA_RESPONSE_ERROR_MAGIC;
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
// Send OK and version - 2 bytes // Send OK and version - 2 bytes
buf[0] = OTA_RESPONSE_OK; buf[0] = ota::OTA_RESPONSE_OK;
buf[1] = USE_OTA_VERSION; buf[1] = USE_OTA_VERSION;
this->writeall_(buf, 2); this->writeall_(buf, 2);
backend = make_ota_backend(); backend = ota::make_ota_backend();
// Read features - 1 byte // Read features - 1 byte
if (!this->readall_(buf, 1)) { if (!this->readall_(buf, 1)) {
ESP_LOGW(TAG, "Reading features failed!"); ESP_LOGW(TAG, "Reading features failed");
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
ota_features = buf[0]; // NOLINT ota_features = buf[0]; // NOLINT
ESP_LOGV(TAG, "OTA features is 0x%02X", ota_features); ESP_LOGV(TAG, "Features: 0x%02X", ota_features);
// Acknowledge header - 1 byte // Acknowledge header - 1 byte
buf[0] = OTA_RESPONSE_HEADER_OK; buf[0] = ota::OTA_RESPONSE_HEADER_OK;
if ((ota_features & FEATURE_SUPPORTS_COMPRESSION) != 0 && backend->supports_compression()) { if ((ota_features & FEATURE_SUPPORTS_COMPRESSION) != 0 && backend->supports_compression()) {
buf[0] = OTA_RESPONSE_SUPPORTS_COMPRESSION; buf[0] = ota::OTA_RESPONSE_SUPPORTS_COMPRESSION;
} }
this->writeall_(buf, 1); this->writeall_(buf, 1);
#ifdef USE_OTA_PASSWORD #ifdef USE_OTA_PASSWORD
if (!this->password_.empty()) { if (!this->password_.empty()) {
buf[0] = OTA_RESPONSE_REQUEST_AUTH; buf[0] = ota::OTA_RESPONSE_REQUEST_AUTH;
this->writeall_(buf, 1); this->writeall_(buf, 1);
md5::MD5Digest md5{}; md5::MD5Digest md5{};
md5.init(); md5.init();
@ -206,7 +183,7 @@ void OTAComponent::handle_() {
// Send nonce, 32 bytes hex MD5 // Send nonce, 32 bytes hex MD5
if (!this->writeall_(reinterpret_cast<uint8_t *>(sbuf), 32)) { if (!this->writeall_(reinterpret_cast<uint8_t *>(sbuf), 32)) {
ESP_LOGW(TAG, "Auth: Writing nonce failed!"); ESP_LOGW(TAG, "Auth: Writing nonce failed");
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
@ -218,7 +195,7 @@ void OTAComponent::handle_() {
// Receive cnonce, 32 bytes hex MD5 // Receive cnonce, 32 bytes hex MD5
if (!this->readall_(buf, 32)) { if (!this->readall_(buf, 32)) {
ESP_LOGW(TAG, "Auth: Reading cnonce failed!"); ESP_LOGW(TAG, "Auth: Reading cnonce failed");
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
sbuf[32] = '\0'; sbuf[32] = '\0';
@ -233,7 +210,7 @@ void OTAComponent::handle_() {
// Receive result, 32 bytes hex MD5 // Receive result, 32 bytes hex MD5
if (!this->readall_(buf + 64, 32)) { if (!this->readall_(buf + 64, 32)) {
ESP_LOGW(TAG, "Auth: Reading response failed!"); ESP_LOGW(TAG, "Auth: Reading response failed");
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
sbuf[64 + 32] = '\0'; sbuf[64 + 32] = '\0';
@ -244,20 +221,20 @@ void OTAComponent::handle_() {
matches = matches && buf[i] == buf[64 + i]; matches = matches && buf[i] == buf[64 + i];
if (!matches) { if (!matches) {
ESP_LOGW(TAG, "Auth failed! Passwords do not match!"); ESP_LOGW(TAG, "Auth failed! Passwords do not match");
error_code = OTA_RESPONSE_ERROR_AUTH_INVALID; error_code = ota::OTA_RESPONSE_ERROR_AUTH_INVALID;
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
} }
#endif // USE_OTA_PASSWORD #endif // USE_OTA_PASSWORD
// Acknowledge auth OK - 1 byte // Acknowledge auth OK - 1 byte
buf[0] = OTA_RESPONSE_AUTH_OK; buf[0] = ota::OTA_RESPONSE_AUTH_OK;
this->writeall_(buf, 1); this->writeall_(buf, 1);
// Read size, 4 bytes MSB first // Read size, 4 bytes MSB first
if (!this->readall_(buf, 4)) { if (!this->readall_(buf, 4)) {
ESP_LOGW(TAG, "Reading size failed!"); ESP_LOGW(TAG, "Reading size failed");
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
ota_size = 0; ota_size = 0;
@ -265,20 +242,20 @@ void OTAComponent::handle_() {
ota_size <<= 8; ota_size <<= 8;
ota_size |= buf[i]; ota_size |= buf[i];
} }
ESP_LOGV(TAG, "OTA size is %u bytes", ota_size); ESP_LOGV(TAG, "Size is %u bytes", ota_size);
error_code = backend->begin(ota_size); error_code = backend->begin(ota_size);
if (error_code != OTA_RESPONSE_OK) if (error_code != ota::OTA_RESPONSE_OK)
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
update_started = true; update_started = true;
// Acknowledge prepare OK - 1 byte // Acknowledge prepare OK - 1 byte
buf[0] = OTA_RESPONSE_UPDATE_PREPARE_OK; buf[0] = ota::OTA_RESPONSE_UPDATE_PREPARE_OK;
this->writeall_(buf, 1); this->writeall_(buf, 1);
// Read binary MD5, 32 bytes // Read binary MD5, 32 bytes
if (!this->readall_(buf, 32)) { if (!this->readall_(buf, 32)) {
ESP_LOGW(TAG, "Reading binary MD5 checksum failed!"); ESP_LOGW(TAG, "Reading binary MD5 checksum failed");
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
sbuf[32] = '\0'; sbuf[32] = '\0';
@ -286,7 +263,7 @@ void OTAComponent::handle_() {
backend->set_update_md5(sbuf); backend->set_update_md5(sbuf);
// Acknowledge MD5 OK - 1 byte // Acknowledge MD5 OK - 1 byte
buf[0] = OTA_RESPONSE_BIN_MD5_OK; buf[0] = ota::OTA_RESPONSE_BIN_MD5_OK;
this->writeall_(buf, 1); this->writeall_(buf, 1);
while (total < ota_size) { while (total < ota_size) {
@ -299,7 +276,7 @@ void OTAComponent::handle_() {
delay(1); delay(1);
continue; continue;
} }
ESP_LOGW(TAG, "Error receiving data for update, errno: %d", errno); ESP_LOGW(TAG, "Error receiving data for update, errno %d", errno);
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} else if (read == 0) { } else if (read == 0) {
// $ man recv // $ man recv
@ -310,14 +287,14 @@ void OTAComponent::handle_() {
} }
error_code = backend->write(buf, read); error_code = backend->write(buf, read);
if (error_code != OTA_RESPONSE_OK) { if (error_code != ota::OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Error writing binary data to flash!, error_code: %d", error_code); ESP_LOGW(TAG, "Error writing binary data to flash!, error_code: %d", error_code);
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
total += read; total += read;
#if USE_OTA_VERSION == 2 #if USE_OTA_VERSION == 2
while (size_acknowledged + OTA_BLOCK_SIZE <= total || (total == ota_size && size_acknowledged < ota_size)) { while (size_acknowledged + OTA_BLOCK_SIZE <= total || (total == ota_size && size_acknowledged < ota_size)) {
buf[0] = OTA_RESPONSE_CHUNK_OK; buf[0] = ota::OTA_RESPONSE_CHUNK_OK;
this->writeall_(buf, 1); this->writeall_(buf, 1);
size_acknowledged += OTA_BLOCK_SIZE; size_acknowledged += OTA_BLOCK_SIZE;
} }
@ -327,9 +304,9 @@ void OTAComponent::handle_() {
if (now - last_progress > 1000) { if (now - last_progress > 1000) {
last_progress = now; last_progress = now;
float percentage = (total * 100.0f) / ota_size; float percentage = (total * 100.0f) / ota_size;
ESP_LOGD(TAG, "OTA in progress: %0.1f%%", percentage); ESP_LOGD(TAG, "Progress: %0.1f%%", percentage);
#ifdef USE_OTA_STATE_CALLBACK #ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_IN_PROGRESS, percentage, 0); this->state_callback_.call(ota::OTA_IN_PROGRESS, percentage, 0);
#endif #endif
// feed watchdog and give other tasks a chance to run // feed watchdog and give other tasks a chance to run
App.feed_wdt(); App.feed_wdt();
@ -338,32 +315,32 @@ void OTAComponent::handle_() {
} }
// Acknowledge receive OK - 1 byte // Acknowledge receive OK - 1 byte
buf[0] = OTA_RESPONSE_RECEIVE_OK; buf[0] = ota::OTA_RESPONSE_RECEIVE_OK;
this->writeall_(buf, 1); this->writeall_(buf, 1);
error_code = backend->end(); error_code = backend->end();
if (error_code != OTA_RESPONSE_OK) { if (error_code != ota::OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Error ending OTA!, error_code: %d", error_code); ESP_LOGW(TAG, "Error ending update! error_code: %d", error_code);
goto error; // NOLINT(cppcoreguidelines-avoid-goto) goto error; // NOLINT(cppcoreguidelines-avoid-goto)
} }
// Acknowledge Update end OK - 1 byte // Acknowledge Update end OK - 1 byte
buf[0] = OTA_RESPONSE_UPDATE_END_OK; buf[0] = ota::OTA_RESPONSE_UPDATE_END_OK;
this->writeall_(buf, 1); this->writeall_(buf, 1);
// Read ACK // Read ACK
if (!this->readall_(buf, 1) || buf[0] != OTA_RESPONSE_OK) { if (!this->readall_(buf, 1) || buf[0] != ota::OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Reading back acknowledgement failed!"); ESP_LOGW(TAG, "Reading back acknowledgement failed");
// do not go to error, this is not fatal // do not go to error, this is not fatal
} }
this->client_->close(); this->client_->close();
this->client_ = nullptr; this->client_ = nullptr;
delay(10); delay(10);
ESP_LOGI(TAG, "OTA update finished!"); ESP_LOGI(TAG, "Update complete");
this->status_clear_warning(); this->status_clear_warning();
#ifdef USE_OTA_STATE_CALLBACK #ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_COMPLETED, 100.0f, 0); this->state_callback_.call(ota::OTA_COMPLETED, 100.0f, 0);
#endif #endif
delay(100); // NOLINT delay(100); // NOLINT
App.safe_reboot(); App.safe_reboot();
@ -380,11 +357,11 @@ error:
this->status_momentary_error("onerror", 5000); this->status_momentary_error("onerror", 5000);
#ifdef USE_OTA_STATE_CALLBACK #ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_ERROR, 0.0f, static_cast<uint8_t>(error_code)); this->state_callback_.call(ota::OTA_ERROR, 0.0f, static_cast<uint8_t>(error_code));
#endif #endif
} }
bool OTAComponent::readall_(uint8_t *buf, size_t len) { bool ESPHomeOTAComponent::readall_(uint8_t *buf, size_t len) {
uint32_t start = millis(); uint32_t start = millis();
uint32_t at = 0; uint32_t at = 0;
while (len - at > 0) { while (len - at > 0) {
@ -401,7 +378,7 @@ bool OTAComponent::readall_(uint8_t *buf, size_t len) {
delay(1); delay(1);
continue; continue;
} }
ESP_LOGW(TAG, "Failed to read %d bytes of data, errno: %d", len, errno); ESP_LOGW(TAG, "Failed to read %d bytes of data, errno %d", len, errno);
return false; return false;
} else if (read == 0) { } else if (read == 0) {
ESP_LOGW(TAG, "Remote closed connection"); ESP_LOGW(TAG, "Remote closed connection");
@ -415,7 +392,7 @@ bool OTAComponent::readall_(uint8_t *buf, size_t len) {
return true; return true;
} }
bool OTAComponent::writeall_(const uint8_t *buf, size_t len) { bool ESPHomeOTAComponent::writeall_(const uint8_t *buf, size_t len) {
uint32_t start = millis(); uint32_t start = millis();
uint32_t at = 0; uint32_t at = 0;
while (len - at > 0) { while (len - at > 0) {
@ -432,7 +409,7 @@ bool OTAComponent::writeall_(const uint8_t *buf, size_t len) {
delay(1); delay(1);
continue; continue;
} }
ESP_LOGW(TAG, "Failed to write %d bytes of data, errno: %d", len, errno); ESP_LOGW(TAG, "Failed to write %d bytes of data, errno %d", len, errno);
return false; return false;
} else { } else {
at += written; at += written;
@ -443,31 +420,31 @@ bool OTAComponent::writeall_(const uint8_t *buf, size_t len) {
return true; return true;
} }
float OTAComponent::get_setup_priority() const { return setup_priority::AFTER_WIFI; } float ESPHomeOTAComponent::get_setup_priority() const { return setup_priority::AFTER_WIFI; }
uint16_t OTAComponent::get_port() const { return this->port_; } uint16_t ESPHomeOTAComponent::get_port() const { return this->port_; }
void OTAComponent::set_port(uint16_t port) { this->port_ = port; } void ESPHomeOTAComponent::set_port(uint16_t port) { this->port_ = port; }
void OTAComponent::set_safe_mode_pending(const bool &pending) { void ESPHomeOTAComponent::set_safe_mode_pending(const bool &pending) {
if (!this->has_safe_mode_) if (!this->has_safe_mode_)
return; return;
uint32_t current_rtc = this->read_rtc_(); uint32_t current_rtc = this->read_rtc_();
if (pending && current_rtc != esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC) { if (pending && current_rtc != ESPHomeOTAComponent::ENTER_SAFE_MODE_MAGIC) {
ESP_LOGI(TAG, "Device will enter safe mode on next boot."); ESP_LOGI(TAG, "Device will enter safe mode on next boot");
this->write_rtc_(esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC); this->write_rtc_(ESPHomeOTAComponent::ENTER_SAFE_MODE_MAGIC);
} }
if (!pending && current_rtc == esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC) { if (!pending && current_rtc == ESPHomeOTAComponent::ENTER_SAFE_MODE_MAGIC) {
ESP_LOGI(TAG, "Safe mode pending has been cleared"); ESP_LOGI(TAG, "Safe mode pending has been cleared");
this->clean_rtc(); this->clean_rtc();
} }
} }
bool OTAComponent::get_safe_mode_pending() { bool ESPHomeOTAComponent::get_safe_mode_pending() {
return this->has_safe_mode_ && this->read_rtc_() == esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC; return this->has_safe_mode_ && this->read_rtc_() == ESPHomeOTAComponent::ENTER_SAFE_MODE_MAGIC;
} }
bool OTAComponent::should_enter_safe_mode(uint8_t num_attempts, uint32_t enable_time) { bool ESPHomeOTAComponent::should_enter_safe_mode(uint8_t num_attempts, uint32_t enable_time) {
this->has_safe_mode_ = true; this->has_safe_mode_ = true;
this->safe_mode_start_time_ = millis(); this->safe_mode_start_time_ = millis();
this->safe_mode_enable_time_ = enable_time; this->safe_mode_enable_time_ = enable_time;
@ -475,24 +452,24 @@ bool OTAComponent::should_enter_safe_mode(uint8_t num_attempts, uint32_t enable_
this->rtc_ = global_preferences->make_preference<uint32_t>(233825507UL, false); this->rtc_ = global_preferences->make_preference<uint32_t>(233825507UL, false);
this->safe_mode_rtc_value_ = this->read_rtc_(); this->safe_mode_rtc_value_ = this->read_rtc_();
bool is_manual_safe_mode = this->safe_mode_rtc_value_ == esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC; bool is_manual_safe_mode = this->safe_mode_rtc_value_ == ESPHomeOTAComponent::ENTER_SAFE_MODE_MAGIC;
if (is_manual_safe_mode) { if (is_manual_safe_mode) {
ESP_LOGI(TAG, "Safe mode has been entered manually"); ESP_LOGI(TAG, "Safe mode has been entered manually");
} else { } else {
ESP_LOGCONFIG(TAG, "There have been %" PRIu32 " suspected unsuccessful boot attempts.", this->safe_mode_rtc_value_); ESP_LOGCONFIG(TAG, "There have been %" PRIu32 " suspected unsuccessful boot attempts", this->safe_mode_rtc_value_);
} }
if (this->safe_mode_rtc_value_ >= num_attempts || is_manual_safe_mode) { if (this->safe_mode_rtc_value_ >= num_attempts || is_manual_safe_mode) {
this->clean_rtc(); this->clean_rtc();
if (!is_manual_safe_mode) { if (!is_manual_safe_mode) {
ESP_LOGE(TAG, "Boot loop detected. Proceeding to safe mode."); ESP_LOGE(TAG, "Boot loop detected. Proceeding to safe mode");
} }
this->status_set_error(); this->status_set_error();
this->set_timeout(enable_time, []() { this->set_timeout(enable_time, []() {
ESP_LOGE(TAG, "No OTA attempt made, restarting."); ESP_LOGE(TAG, "No OTA attempt made, restarting");
App.reboot(); App.reboot();
}); });
@ -500,7 +477,7 @@ bool OTAComponent::should_enter_safe_mode(uint8_t num_attempts, uint32_t enable_
delay(300); // NOLINT delay(300); // NOLINT
App.setup(); App.setup();
ESP_LOGI(TAG, "Waiting for OTA attempt."); ESP_LOGI(TAG, "Waiting for OTA attempt");
return true; return true;
} else { } else {
@ -509,27 +486,23 @@ bool OTAComponent::should_enter_safe_mode(uint8_t num_attempts, uint32_t enable_
return false; return false;
} }
} }
void OTAComponent::write_rtc_(uint32_t val) {
void ESPHomeOTAComponent::write_rtc_(uint32_t val) {
this->rtc_.save(&val); this->rtc_.save(&val);
global_preferences->sync(); global_preferences->sync();
} }
uint32_t OTAComponent::read_rtc_() {
uint32_t ESPHomeOTAComponent::read_rtc_() {
uint32_t val; uint32_t val;
if (!this->rtc_.load(&val)) if (!this->rtc_.load(&val))
return 0; return 0;
return val; return val;
} }
void OTAComponent::clean_rtc() { this->write_rtc_(0); }
void OTAComponent::on_safe_shutdown() { void ESPHomeOTAComponent::clean_rtc() { this->write_rtc_(0); }
if (this->has_safe_mode_ && this->read_rtc_() != esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC)
void ESPHomeOTAComponent::on_safe_shutdown() {
if (this->has_safe_mode_ && this->read_rtc_() != ESPHomeOTAComponent::ENTER_SAFE_MODE_MAGIC)
this->clean_rtc(); this->clean_rtc();
} }
#ifdef USE_OTA_STATE_CALLBACK
void OTAComponent::add_on_state_callback(std::function<void(OTAState, float, uint8_t)> &&callback) {
this->state_callback_.add(std::move(callback));
}
#endif
} // namespace ota
} // namespace esphome } // namespace esphome

View file

@ -1,49 +1,16 @@
#pragma once #pragma once
#include "esphome/components/socket/socket.h"
#include "esphome/core/component.h"
#include "esphome/core/preferences.h"
#include "esphome/core/helpers.h"
#include "esphome/core/defines.h" #include "esphome/core/defines.h"
#include "esphome/core/helpers.h"
#include "esphome/core/preferences.h"
#include "esphome/components/ota/ota_backend.h"
#include "esphome/components/socket/socket.h"
namespace esphome { namespace esphome {
namespace ota {
enum OTAResponseTypes { /// ESPHomeOTAComponent provides a simple way to integrate Over-the-Air updates into your app using ArduinoOTA.
OTA_RESPONSE_OK = 0x00, class ESPHomeOTAComponent : public ota::OTAComponent {
OTA_RESPONSE_REQUEST_AUTH = 0x01,
OTA_RESPONSE_HEADER_OK = 0x40,
OTA_RESPONSE_AUTH_OK = 0x41,
OTA_RESPONSE_UPDATE_PREPARE_OK = 0x42,
OTA_RESPONSE_BIN_MD5_OK = 0x43,
OTA_RESPONSE_RECEIVE_OK = 0x44,
OTA_RESPONSE_UPDATE_END_OK = 0x45,
OTA_RESPONSE_SUPPORTS_COMPRESSION = 0x46,
OTA_RESPONSE_CHUNK_OK = 0x47,
OTA_RESPONSE_ERROR_MAGIC = 0x80,
OTA_RESPONSE_ERROR_UPDATE_PREPARE = 0x81,
OTA_RESPONSE_ERROR_AUTH_INVALID = 0x82,
OTA_RESPONSE_ERROR_WRITING_FLASH = 0x83,
OTA_RESPONSE_ERROR_UPDATE_END = 0x84,
OTA_RESPONSE_ERROR_INVALID_BOOTSTRAPPING = 0x85,
OTA_RESPONSE_ERROR_WRONG_CURRENT_FLASH_CONFIG = 0x86,
OTA_RESPONSE_ERROR_WRONG_NEW_FLASH_CONFIG = 0x87,
OTA_RESPONSE_ERROR_ESP8266_NOT_ENOUGH_SPACE = 0x88,
OTA_RESPONSE_ERROR_ESP32_NOT_ENOUGH_SPACE = 0x89,
OTA_RESPONSE_ERROR_NO_UPDATE_PARTITION = 0x8A,
OTA_RESPONSE_ERROR_MD5_MISMATCH = 0x8B,
OTA_RESPONSE_ERROR_RP2040_NOT_ENOUGH_SPACE = 0x8C,
OTA_RESPONSE_ERROR_UNKNOWN = 0xFF,
};
enum OTAState { OTA_COMPLETED = 0, OTA_STARTED, OTA_IN_PROGRESS, OTA_ERROR };
/// OTAComponent provides a simple way to integrate Over-the-Air updates into your app using ArduinoOTA.
class OTAComponent : public Component {
public: public:
OTAComponent();
#ifdef USE_OTA_PASSWORD #ifdef USE_OTA_PASSWORD
void set_auth_password(const std::string &password) { password_ = password; } void set_auth_password(const std::string &password) { password_ = password; }
#endif // USE_OTA_PASSWORD #endif // USE_OTA_PASSWORD
@ -57,10 +24,6 @@ class OTAComponent : public Component {
void set_safe_mode_pending(const bool &pending); void set_safe_mode_pending(const bool &pending);
bool get_safe_mode_pending(); bool get_safe_mode_pending();
#ifdef USE_OTA_STATE_CALLBACK
void add_on_state_callback(std::function<void(OTAState, float, uint8_t)> &&callback);
#endif
// ========== INTERNAL METHODS ========== // ========== INTERNAL METHODS ==========
// (In most use cases you won't need these) // (In most use cases you won't need these)
void setup() override; void setup() override;
@ -91,22 +54,15 @@ class OTAComponent : public Component {
std::unique_ptr<socket::Socket> server_; std::unique_ptr<socket::Socket> server_;
std::unique_ptr<socket::Socket> client_; std::unique_ptr<socket::Socket> client_;
bool has_safe_mode_{false}; ///< stores whether safe mode can be enabled. bool has_safe_mode_{false}; ///< stores whether safe mode can be enabled
uint32_t safe_mode_start_time_; ///< stores when safe mode was enabled. uint32_t safe_mode_start_time_; ///< stores when safe mode was enabled
uint32_t safe_mode_enable_time_{60000}; ///< The time safe mode should be on for. uint32_t safe_mode_enable_time_{60000}; ///< The time safe mode should be on for
uint32_t safe_mode_rtc_value_; uint32_t safe_mode_rtc_value_;
uint8_t safe_mode_num_attempts_; uint8_t safe_mode_num_attempts_;
ESPPreferenceObject rtc_; ESPPreferenceObject rtc_;
static const uint32_t ENTER_SAFE_MODE_MAGIC = static const uint32_t ENTER_SAFE_MODE_MAGIC =
0x5afe5afe; ///< a magic number to indicate that safe mode should be entered on next boot 0x5afe5afe; ///< a magic number to indicate that safe mode should be entered on next boot
#ifdef USE_OTA_STATE_CALLBACK
CallbackManager<void(OTAState, float, uint8_t)> state_callback_{};
#endif
}; };
extern OTAComponent *global_ota_component; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
} // namespace ota
} // namespace esphome } // namespace esphome

View file

@ -56,7 +56,7 @@ void IDFI2CBus::setup() {
this->mark_failed(); this->mark_failed();
return; return;
} else { } else {
ESP_LOGV(TAG, "i2c_timeout set to %d ticks (%d us)", timeout_ * 80, timeout_); ESP_LOGV(TAG, "i2c_timeout set to %" PRIu32 " ticks (%" PRIu32 " us)", timeout_ * 80, timeout_);
} }
} }
err = i2c_driver_install(port_, I2C_MODE_MASTER, 0, 0, ESP_INTR_FLAG_IRAM); err = i2c_driver_install(port_, I2C_MODE_MASTER, 0, 0, ESP_INTR_FLAG_IRAM);

View file

@ -0,0 +1,255 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_BUS_VOLTAGE,
CONF_CURRENT,
CONF_ENERGY,
CONF_MAX_CURRENT,
CONF_MODEL,
CONF_NAME,
CONF_POWER,
CONF_SHUNT_RESISTANCE,
CONF_SHUNT_VOLTAGE,
CONF_TEMPERATURE,
DEVICE_CLASS_CURRENT,
DEVICE_CLASS_ENERGY,
DEVICE_CLASS_POWER,
DEVICE_CLASS_TEMPERATURE,
DEVICE_CLASS_VOLTAGE,
STATE_CLASS_MEASUREMENT,
UNIT_AMPERE,
UNIT_CELSIUS,
UNIT_VOLT,
UNIT_WATT_HOURS,
UNIT_WATT,
)
CODEOWNERS = ["@latonita"]
CONF_ADC_AVERAGING = "adc_averaging"
CONF_ADC_RANGE = "adc_range"
CONF_ADC_TIME = "adc_time"
CONF_CHARGE = "charge"
CONF_CHARGE_COULOMBS = "charge_coulombs"
CONF_ENERGY_JOULES = "energy_joules"
CONF_TEMPERATURE_COEFFICIENT = "temperature_coefficient"
UNIT_AMPERE_HOURS = "Ah"
UNIT_COULOMB = "C"
UNIT_JOULE = "J"
UNIT_MILLIVOLT = "mV"
ina2xx_base_ns = cg.esphome_ns.namespace("ina2xx_base")
INA2XX = ina2xx_base_ns.class_("INA2XX", cg.PollingComponent)
AdcTime = ina2xx_base_ns.enum("AdcTime")
ADC_TIMES = {
50: AdcTime.ADC_TIME_50US,
84: AdcTime.ADC_TIME_84US,
150: AdcTime.ADC_TIME_150US,
280: AdcTime.ADC_TIME_280US,
540: AdcTime.ADC_TIME_540US,
1052: AdcTime.ADC_TIME_1052US,
2074: AdcTime.ADC_TIME_2074US,
4120: AdcTime.ADC_TIME_4120US,
}
AdcAvgSamples = ina2xx_base_ns.enum("AdcAvgSamples")
ADC_SAMPLES = {
1: AdcAvgSamples.ADC_AVG_SAMPLES_1,
4: AdcAvgSamples.ADC_AVG_SAMPLES_4,
16: AdcAvgSamples.ADC_AVG_SAMPLES_16,
64: AdcAvgSamples.ADC_AVG_SAMPLES_64,
128: AdcAvgSamples.ADC_AVG_SAMPLES_128,
256: AdcAvgSamples.ADC_AVG_SAMPLES_256,
512: AdcAvgSamples.ADC_AVG_SAMPLES_512,
1024: AdcAvgSamples.ADC_AVG_SAMPLES_1024,
}
SENSOR_MODEL_OPTIONS = {
CONF_ENERGY: ["INA228", "INA229"],
CONF_ENERGY_JOULES: ["INA228", "INA229"],
CONF_CHARGE: ["INA228", "INA229"],
CONF_CHARGE_COULOMBS: ["INA228", "INA229"],
}
def validate_model_config(config):
model = config[CONF_MODEL]
for key in config:
if key in SENSOR_MODEL_OPTIONS:
if model not in SENSOR_MODEL_OPTIONS[key]:
raise cv.Invalid(
f"Device model '{model}' does not support '{key}' sensor"
)
tempco = config[CONF_TEMPERATURE_COEFFICIENT]
if tempco > 0 and model not in ["INA228", "INA229"]:
raise cv.Invalid(
f"Device model '{model}' does not support temperature coefficient"
)
return config
def validate_adc_time(value):
value = cv.positive_time_period_microseconds(value).total_microseconds
return cv.enum(ADC_TIMES, int=True)(value)
INA2XX_SCHEMA = cv.Schema(
{
cv.Required(CONF_SHUNT_RESISTANCE): cv.All(cv.resistance, cv.Range(min=0.0)),
cv.Required(CONF_MAX_CURRENT): cv.All(cv.current, cv.Range(min=0.0)),
cv.Optional(CONF_ADC_RANGE, default=0): cv.int_range(min=0, max=1),
cv.Optional(CONF_ADC_TIME, default="4120 us"): cv.Any(
validate_adc_time,
{
cv.Optional(CONF_BUS_VOLTAGE, default="4120 us"): validate_adc_time,
cv.Optional(CONF_SHUNT_VOLTAGE, default="4120 us"): validate_adc_time,
cv.Optional(CONF_TEMPERATURE, default="4120 us"): validate_adc_time,
},
),
cv.Optional(CONF_ADC_AVERAGING, default=128): cv.enum(ADC_SAMPLES, int=True),
cv.Optional(CONF_TEMPERATURE_COEFFICIENT, default=0): cv.int_range(
min=0, max=16383
),
cv.Optional(CONF_SHUNT_VOLTAGE): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_MILLIVOLT,
accuracy_decimals=5,
device_class=DEVICE_CLASS_VOLTAGE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_BUS_VOLTAGE): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=5,
device_class=DEVICE_CLASS_VOLTAGE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_TEMPERATURE): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_CELSIUS,
accuracy_decimals=5,
device_class=DEVICE_CLASS_TEMPERATURE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_CURRENT): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=8,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_POWER): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=6,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_ENERGY): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_WATT_HOURS,
accuracy_decimals=8,
device_class=DEVICE_CLASS_ENERGY,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_ENERGY_JOULES): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_JOULE,
accuracy_decimals=8,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_CHARGE): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE_HOURS,
accuracy_decimals=8,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_CHARGE_COULOMBS): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_COULOMB,
accuracy_decimals=8,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
}
).extend(cv.polling_component_schema("60s"))
async def setup_ina2xx(var, config):
await cg.register_component(var, config)
cg.add(var.set_model(config[CONF_MODEL]))
cg.add(var.set_shunt_resistance_ohm(config[CONF_SHUNT_RESISTANCE]))
cg.add(var.set_max_current_a(config[CONF_MAX_CURRENT]))
cg.add(var.set_adc_range(config[CONF_ADC_RANGE]))
cg.add(var.set_adc_avg_samples(config[CONF_ADC_AVERAGING]))
cg.add(var.set_shunt_tempco(config[CONF_TEMPERATURE_COEFFICIENT]))
adc_time_config = config[CONF_ADC_TIME]
if isinstance(adc_time_config, dict):
cg.add(var.set_adc_time_bus_voltage(adc_time_config[CONF_BUS_VOLTAGE]))
cg.add(var.set_adc_time_shunt_voltage(adc_time_config[CONF_SHUNT_VOLTAGE]))
cg.add(var.set_adc_time_die_temperature(adc_time_config[CONF_TEMPERATURE]))
else:
cg.add(var.set_adc_time_bus_voltage(adc_time_config))
cg.add(var.set_adc_time_shunt_voltage(adc_time_config))
cg.add(var.set_adc_time_die_temperature(adc_time_config))
if conf := config.get(CONF_SHUNT_VOLTAGE):
sens = await sensor.new_sensor(conf)
cg.add(var.set_shunt_voltage_sensor(sens))
if conf := config.get(CONF_BUS_VOLTAGE):
sens = await sensor.new_sensor(conf)
cg.add(var.set_bus_voltage_sensor(sens))
if conf := config.get(CONF_TEMPERATURE):
sens = await sensor.new_sensor(conf)
cg.add(var.set_die_temperature_sensor(sens))
if conf := config.get(CONF_CURRENT):
sens = await sensor.new_sensor(conf)
cg.add(var.set_current_sensor(sens))
if conf := config.get(CONF_POWER):
sens = await sensor.new_sensor(conf)
cg.add(var.set_power_sensor(sens))
if conf := config.get(CONF_ENERGY):
sens = await sensor.new_sensor(conf)
cg.add(var.set_energy_sensor_wh(sens))
if conf := config.get(CONF_ENERGY_JOULES):
sens = await sensor.new_sensor(conf)
cg.add(var.set_energy_sensor_j(sens))
if conf := config.get(CONF_CHARGE):
sens = await sensor.new_sensor(conf)
cg.add(var.set_charge_sensor_ah(sens))
if conf := config.get(CONF_CHARGE_COULOMBS):
sens = await sensor.new_sensor(conf)
cg.add(var.set_charge_sensor_c(sens))

View file

@ -0,0 +1,604 @@
#include "ina2xx_base.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include "esphome/core/helpers.h"
#include <cinttypes>
#include <cmath>
namespace esphome {
namespace ina2xx_base {
static const char *const TAG = "ina2xx";
#define OKFAILED(b) ((b) ? "OK" : "FAILED")
static const uint16_t ADC_TIMES[8] = {50, 84, 150, 280, 540, 1052, 2074, 4120};
static const uint16_t ADC_SAMPLES[8] = {1, 4, 16, 64, 128, 256, 512, 1024};
static const char *get_device_name(INAModel model) {
switch (model) {
case INAModel::INA_228:
return "INA228";
case INAModel::INA_229:
return "INA229";
case INAModel::INA_238:
return "INA238";
case INAModel::INA_239:
return "INA239";
case INAModel::INA_237:
return "INA237";
default:
return "UNKNOWN";
}
};
static bool check_model_and_device_match(INAModel model, uint16_t dev_id) {
switch (model) {
case INAModel::INA_228:
return dev_id == 0x228;
case INAModel::INA_229:
return dev_id == 0x229;
case INAModel::INA_238:
return dev_id == 0x238;
case INAModel::INA_239:
return dev_id == 0x239;
case INAModel::INA_237:
return dev_id == 0x237;
default:
return false;
}
}
void INA2XX::setup() {
ESP_LOGCONFIG(TAG, "Setting up INA2xx...");
if (!this->reset_config_()) {
ESP_LOGE(TAG, "Reset failed, check connection");
this->mark_failed();
return;
}
delay(2);
if (!this->check_device_model_()) {
ESP_LOGE(TAG, "Device not supported or model selected improperly in yaml file");
this->mark_failed();
return;
}
delay(1);
this->configure_adc_range_();
delay(1);
this->configure_adc_();
delay(1);
this->configure_shunt_();
delay(1);
this->configure_shunt_tempco_();
delay(1);
this->state_ = State::IDLE;
}
float INA2XX::get_setup_priority() const { return setup_priority::DATA; }
void INA2XX::update() {
ESP_LOGD(TAG, "Updating");
if (this->is_ready() && this->state_ == State::IDLE) {
ESP_LOGD(TAG, "Initiating new data collection");
this->state_ = State::DATA_COLLECTION_1;
return;
}
}
void INA2XX::loop() {
if (this->is_ready()) {
switch (this->state_) {
case State::NOT_INITIALIZED:
case State::IDLE:
break;
case State::DATA_COLLECTION_1:
this->full_loop_is_okay_ = true;
if (this->shunt_voltage_sensor_ != nullptr) {
float shunt_voltage{0};
this->full_loop_is_okay_ &= this->read_shunt_voltage_mv_(shunt_voltage);
this->shunt_voltage_sensor_->publish_state(shunt_voltage);
}
this->state_ = State::DATA_COLLECTION_2;
break;
case State::DATA_COLLECTION_2:
if (this->bus_voltage_sensor_ != nullptr) {
float bus_voltage{0};
this->full_loop_is_okay_ &= this->read_bus_voltage_(bus_voltage);
this->bus_voltage_sensor_->publish_state(bus_voltage);
}
this->state_ = State::DATA_COLLECTION_3;
break;
case State::DATA_COLLECTION_3:
if (this->die_temperature_sensor_ != nullptr) {
float die_temperature{0};
this->full_loop_is_okay_ &= this->read_die_temp_c_(die_temperature);
this->die_temperature_sensor_->publish_state(die_temperature);
}
this->state_ = State::DATA_COLLECTION_4;
break;
case State::DATA_COLLECTION_4:
if (this->current_sensor_ != nullptr) {
float current{0};
this->full_loop_is_okay_ &= this->read_current_a_(current);
this->current_sensor_->publish_state(current);
}
this->state_ = State::DATA_COLLECTION_5;
break;
case State::DATA_COLLECTION_5:
if (this->power_sensor_ != nullptr) {
float power{0};
this->full_loop_is_okay_ &= this->read_power_w_(power);
this->power_sensor_->publish_state(power);
}
this->state_ = State::DATA_COLLECTION_6;
break;
case State::DATA_COLLECTION_6:
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
if (this->energy_sensor_j_ != nullptr || this->energy_sensor_wh_ != nullptr ||
this->charge_sensor_c_ != nullptr || this->charge_sensor_ah_ != nullptr) {
this->read_diagnostics_and_act_();
}
if (this->energy_sensor_j_ != nullptr || this->energy_sensor_wh_ != nullptr) {
double energy_j{0}, energy_wh{0};
this->full_loop_is_okay_ &= this->read_energy_(energy_j, energy_wh);
if (this->energy_sensor_j_ != nullptr)
this->energy_sensor_j_->publish_state(energy_j);
if (this->energy_sensor_wh_ != nullptr)
this->energy_sensor_wh_->publish_state(energy_wh);
}
}
this->state_ = State::DATA_COLLECTION_7;
break;
case State::DATA_COLLECTION_7:
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
if (this->charge_sensor_c_ != nullptr || this->charge_sensor_ah_ != nullptr) {
double charge_c{0}, charge_ah{0};
this->full_loop_is_okay_ &= this->read_charge_(charge_c, charge_ah);
if (this->charge_sensor_c_ != nullptr)
this->charge_sensor_c_->publish_state(charge_c);
if (this->charge_sensor_ah_ != nullptr)
this->charge_sensor_ah_->publish_state(charge_ah);
}
}
this->state_ = State::DATA_COLLECTION_8;
break;
case State::DATA_COLLECTION_8:
if (this->full_loop_is_okay_) {
this->status_clear_warning();
} else {
this->status_set_warning();
}
this->state_ = State::IDLE;
break;
default:
ESP_LOGW(TAG, "Unknown state of the component, might be due to memory corruption");
break;
}
}
}
void INA2XX::dump_config() {
ESP_LOGCONFIG(TAG, "INA2xx:");
ESP_LOGCONFIG(TAG, " Device model = %s", get_device_name(this->ina_model_));
if (this->device_mismatch_) {
ESP_LOGE(TAG, " Device model mismatch. Found device with ID = %x. Please check your configuration.",
this->dev_id_);
}
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication with INA2xx failed!");
}
LOG_UPDATE_INTERVAL(this);
ESP_LOGCONFIG(TAG, " Shunt resistance = %f Ohm", this->shunt_resistance_ohm_);
ESP_LOGCONFIG(TAG, " Max current = %f A", this->max_current_a_);
ESP_LOGCONFIG(TAG, " Shunt temp coeff = %d ppm/°C", this->shunt_tempco_ppm_c_);
ESP_LOGCONFIG(TAG, " ADCRANGE = %d (%s)", (uint8_t) this->adc_range_, this->adc_range_ ? "±40.96 mV" : "±163.84 mV");
ESP_LOGCONFIG(TAG, " CURRENT_LSB = %f", this->current_lsb_);
ESP_LOGCONFIG(TAG, " SHUNT_CAL = %d", this->shunt_cal_);
ESP_LOGCONFIG(TAG, " ADC Samples = %d; ADC times: Bus = %d μs, Shunt = %d μs, Temp = %d μs",
ADC_SAMPLES[0b111 & (uint8_t) this->adc_avg_samples_],
ADC_TIMES[0b111 & (uint8_t) this->adc_time_bus_voltage_],
ADC_TIMES[0b111 & (uint8_t) this->adc_time_shunt_voltage_],
ADC_TIMES[0b111 & (uint8_t) this->adc_time_die_temperature_]);
ESP_LOGCONFIG(TAG, " Device is %s", get_device_name(this->ina_model_));
LOG_SENSOR(" ", "Shunt Voltage", this->shunt_voltage_sensor_);
LOG_SENSOR(" ", "Bus Voltage", this->bus_voltage_sensor_);
LOG_SENSOR(" ", "Die Temperature", this->die_temperature_sensor_);
LOG_SENSOR(" ", "Current", this->current_sensor_);
LOG_SENSOR(" ", "Power", this->power_sensor_);
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
LOG_SENSOR(" ", "Energy J", this->energy_sensor_j_);
LOG_SENSOR(" ", "Energy Wh", this->energy_sensor_wh_);
LOG_SENSOR(" ", "Charge C", this->charge_sensor_c_);
LOG_SENSOR(" ", "Charge Ah", this->charge_sensor_ah_);
}
}
bool INA2XX::reset_energy_counters() {
if (this->ina_model_ != INAModel::INA_228 && this->ina_model_ != INAModel::INA_229) {
return false;
}
ESP_LOGV(TAG, "reset_energy_counters");
ConfigurationRegister cfg{0};
auto ret = this->read_unsigned_16_(RegisterMap::REG_CONFIG, cfg.raw_u16);
cfg.RSTACC = true;
cfg.ADCRANGE = this->adc_range_;
ret = ret && this->write_unsigned_16_(RegisterMap::REG_CONFIG, cfg.raw_u16);
this->energy_overflows_count_ = 0;
this->charge_overflows_count_ = 0;
return ret;
}
bool INA2XX::reset_config_() {
ESP_LOGV(TAG, "Reset");
ConfigurationRegister cfg{0};
cfg.RST = true;
return this->write_unsigned_16_(RegisterMap::REG_CONFIG, cfg.raw_u16);
}
bool INA2XX::check_device_model_() {
constexpr uint16_t manufacturer_ti = 0x5449; // "TI"
uint16_t manufacturer_id{0}, rev_id{0};
this->read_unsigned_16_(RegisterMap::REG_MANUFACTURER_ID, manufacturer_id);
if (!this->read_unsigned_16_(RegisterMap::REG_DEVICE_ID, this->dev_id_)) {
this->dev_id_ = 0;
ESP_LOGV(TAG, "Can't read device ID");
};
rev_id = this->dev_id_ & 0x0F;
this->dev_id_ >>= 4;
ESP_LOGI(TAG, "Manufacturer: 0x%04X, Device ID: 0x%04X, Revision: %d", manufacturer_id, this->dev_id_, rev_id);
if (manufacturer_id != manufacturer_ti) {
ESP_LOGE(TAG, "Manufacturer ID doesn't match original 0x5449");
this->device_mismatch_ = true;
return false;
}
if (this->dev_id_ == 0x228 || this->dev_id_ == 0x229) {
ESP_LOGI(TAG, "Supported device found: INA%x, 85-V, 20-Bit, Ultra-Precise Power/Energy/Charge Monitor",
this->dev_id_);
} else if (this->dev_id_ == 0x238 || this->dev_id_ == 0x239) {
ESP_LOGI(TAG, "Supported device found: INA%x, 85-V, 16-Bit, High-Precision Power Monitor", this->dev_id_);
} else if (this->dev_id_ == 0x0 || this->dev_id_ == 0xFF) {
ESP_LOGI(TAG, "We assume device is: INA237 85-V, 16-Bit, Precision Power Monitor");
this->dev_id_ = 0x237;
} else {
ESP_LOGE(TAG, "Unknown device ID %x.", this->dev_id_);
this->device_mismatch_ = true;
return false;
}
// Check user-selected model agains what we have found. Mark as failed if selected model != found model
if (!check_model_and_device_match(this->ina_model_, this->dev_id_)) {
ESP_LOGE(TAG, "Selected model %s doesn't match found device INA%x", get_device_name(this->ina_model_),
this->dev_id_);
this->device_mismatch_ = true;
return false;
}
// setup device coefficients
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
this->cfg_.vbus_lsb = 0.0001953125f;
this->cfg_.v_shunt_lsb_range0 = 0.0003125f;
this->cfg_.v_shunt_lsb_range1 = 0.000078125f;
this->cfg_.shunt_cal_scale = 13107.2f * 1000000.0f;
this->cfg_.current_lsb_scale_factor = -19;
this->cfg_.die_temp_lsb = 0.0078125f;
this->cfg_.power_coeff = 3.2f;
this->cfg_.energy_coeff = 16.0f * 3.2f;
} else {
this->cfg_.vbus_lsb = 0.0031250000f;
this->cfg_.v_shunt_lsb_range0 = 0.0050000f;
this->cfg_.v_shunt_lsb_range1 = 0.001250000f;
this->cfg_.shunt_cal_scale = 819.2f * 1000000.0f;
this->cfg_.current_lsb_scale_factor = -15;
this->cfg_.die_temp_lsb = 0.1250000f;
this->cfg_.power_coeff = 0.2f;
this->cfg_.energy_coeff = 0.0f; // N/A
}
return true;
}
bool INA2XX::configure_adc_range_() {
ESP_LOGV(TAG, "Setting ADCRANGE = %d", (uint8_t) this->adc_range_);
ConfigurationRegister cfg{0};
auto ret = this->read_unsigned_16_(RegisterMap::REG_CONFIG, cfg.raw_u16);
cfg.ADCRANGE = this->adc_range_;
ret = ret && this->write_unsigned_16_(RegisterMap::REG_CONFIG, cfg.raw_u16);
return ret;
}
bool INA2XX::configure_adc_() {
bool ret{false};
AdcConfigurationRegister adc_cfg{0};
adc_cfg.MODE = 0x0F; // Fh = Continuous bus voltage, shunt voltage and temperature
adc_cfg.VBUSCT = this->adc_time_bus_voltage_;
adc_cfg.VSHCT = this->adc_time_shunt_voltage_;
adc_cfg.VTCT = this->adc_time_die_temperature_;
adc_cfg.AVG = this->adc_avg_samples_;
ret = this->write_unsigned_16_(RegisterMap::REG_ADC_CONFIG, adc_cfg.raw_u16);
return ret;
}
bool INA2XX::configure_shunt_() {
this->current_lsb_ = ldexp(this->max_current_a_, this->cfg_.current_lsb_scale_factor);
this->shunt_cal_ = (uint16_t) (this->cfg_.shunt_cal_scale * this->current_lsb_ * this->shunt_resistance_ohm_);
if (this->adc_range_)
this->shunt_cal_ *= 4;
if (this->shunt_cal_ & 0x8000) {
// cant be more than 15 bits
ESP_LOGW(TAG, "Shunt value too high");
}
this->shunt_cal_ &= 0x7FFF;
ESP_LOGV(TAG, "Given Rshunt=%f Ohm and Max_current=%.3f", this->shunt_resistance_ohm_, this->max_current_a_);
ESP_LOGV(TAG, "New CURRENT_LSB=%f, SHUNT_CAL=%u", this->current_lsb_, this->shunt_cal_);
return this->write_unsigned_16_(RegisterMap::REG_SHUNT_CAL, this->shunt_cal_);
}
bool INA2XX::configure_shunt_tempco_() {
// Only for 228/229
// unsigned 14-bit value
// 0x0000 = 0 ppm/°C
// 0x3FFF = 16383 ppm/°C
if ((this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) &&
this->shunt_tempco_ppm_c_ > 0) {
return this->write_unsigned_16_(RegisterMap::REG_SHUNT_TEMPCO, this->shunt_tempco_ppm_c_ & 0x3FFF);
}
return true;
}
bool INA2XX::read_shunt_voltage_mv_(float &volt_out) {
// Two's complement value
// 228, 229 - 24bit: 20(23-4) + 4(3-0) res
// 237, 238, 239 - 16bit
bool ret{false};
float volt_reading{0};
uint64_t raw{0};
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
ret = this->read_unsigned_(RegisterMap::REG_VSHUNT, 3, raw);
raw >>= 4;
volt_reading = this->two_complement_(raw, 20);
} else {
ret = this->read_unsigned_(RegisterMap::REG_VSHUNT, 2, raw);
volt_reading = this->two_complement_(raw, 16);
}
if (ret) {
volt_out = (this->adc_range_ ? this->cfg_.v_shunt_lsb_range1 : this->cfg_.v_shunt_lsb_range0) * volt_reading;
}
ESP_LOGV(TAG, "read_shunt_voltage_mv_ ret=%s, shunt_cal=%d, reading_lsb=%f", OKFAILED(ret), this->shunt_cal_,
volt_reading);
return ret;
}
bool INA2XX::read_bus_voltage_(float &volt_out) {
// Two's complement value
// 228, 229 - 24bit: 20(23-4) + 4(3-0) res
// 237, 238, 239 - 16bit
bool ret{false};
float volt_reading{0};
uint64_t raw{0};
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
ret = this->read_unsigned_(RegisterMap::REG_VBUS, 3, raw);
raw >>= 4;
volt_reading = this->two_complement_(raw, 20);
} else {
ret = this->read_unsigned_(RegisterMap::REG_VBUS, 2, raw);
volt_reading = this->two_complement_(raw, 16);
}
if (ret) {
volt_out = this->cfg_.vbus_lsb * (float) volt_reading;
}
ESP_LOGV(TAG, "read_bus_voltage_ ret=%s, reading_lsb=%f", OKFAILED(ret), volt_reading);
return ret;
}
bool INA2XX::read_die_temp_c_(float &temp_out) {
// Two's complement value
// 228, 229 - 16bit
// 237, 238, 239 - 16bit: 12(15-4) + 4(3-0) res
bool ret{false};
float temp_reading{0};
uint64_t raw{0};
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
ret = this->read_unsigned_(RegisterMap::REG_DIETEMP, 2, raw);
temp_reading = this->two_complement_(raw, 16);
} else {
ret = this->read_unsigned_(RegisterMap::REG_DIETEMP, 2, raw);
raw >>= 4;
temp_reading = this->two_complement_(raw, 12);
}
if (ret) {
temp_out = this->cfg_.die_temp_lsb * (float) temp_reading;
}
ESP_LOGV(TAG, "read_die_temp_c_ ret=%s, reading_lsb=%f", OKFAILED(ret), temp_reading);
return ret;
}
bool INA2XX::read_current_a_(float &amps_out) {
// Two's complement value
// 228, 229 - 24bit: 20(23-4) + 4(3-0) res
// 237, 238, 239 - 16bit
bool ret{false};
float amps_reading{0};
uint64_t raw{0};
if (this->ina_model_ == INAModel::INA_228 || this->ina_model_ == INAModel::INA_229) {
ret = this->read_unsigned_(RegisterMap::REG_CURRENT, 3, raw);
raw >>= 4;
amps_reading = this->two_complement_(raw, 20);
} else {
ret = this->read_unsigned_(RegisterMap::REG_CURRENT, 2, raw);
amps_reading = this->two_complement_(raw, 16);
}
ESP_LOGV(TAG, "read_current_a_ ret=%s. current_lsb=%f. reading_lsb=%f", OKFAILED(ret), this->current_lsb_,
amps_reading);
if (ret) {
amps_out = this->current_lsb_ * (float) amps_reading;
}
return ret;
}
bool INA2XX::read_power_w_(float &power_out) {
// Unsigned value
// 228, 229 - 24bit
// 237, 238, 239 - 24bit
uint64_t power_reading{0};
auto ret = this->read_unsigned_((uint8_t) RegisterMap::REG_POWER, 3, power_reading);
ESP_LOGV(TAG, "read_power_w_ ret=%s, reading_lsb=%d", OKFAILED(ret), (uint32_t) power_reading);
if (ret) {
power_out = this->cfg_.power_coeff * this->current_lsb_ * (float) power_reading;
}
return ret;
}
bool INA2XX::read_energy_(double &joules_out, double &watt_hours_out) {
// Unsigned value
// 228, 229 - 40bit
// 237, 238, 239 - not available
if (this->ina_model_ != INAModel::INA_228 && this->ina_model_ != INAModel::INA_229) {
joules_out = 0;
return false;
}
uint64_t joules_reading = 0;
uint64_t previous_energy = this->energy_overflows_count_ * (((uint64_t) 1) << 40);
auto ret = this->read_unsigned_((uint8_t) RegisterMap::REG_ENERGY, 5, joules_reading);
ESP_LOGV(TAG, "read_energy_j_ ret=%s, reading_lsb=0x%" PRIX64 ", current_lsb=%f, overflow_cnt=%d", OKFAILED(ret),
joules_reading, this->current_lsb_, this->energy_overflows_count_);
if (ret) {
joules_out = this->cfg_.energy_coeff * this->current_lsb_ * (double) joules_reading + (double) previous_energy;
watt_hours_out = joules_out / 3600.0;
}
return ret;
}
bool INA2XX::read_charge_(double &coulombs_out, double &amp_hours_out) {
// Two's complement value
// 228, 229 - 40bit
// 237, 238, 239 - not available
if (this->ina_model_ != INAModel::INA_228 && this->ina_model_ != INAModel::INA_229) {
coulombs_out = 0;
return false;
}
// and what to do with this? datasheet doesnt tell us what if charge is negative
uint64_t previous_charge = this->charge_overflows_count_ * (((uint64_t) 1) << 39);
double coulombs_reading = 0;
uint64_t raw{0};
auto ret = this->read_unsigned_((uint8_t) RegisterMap::REG_CHARGE, 5, raw);
coulombs_reading = this->two_complement_(raw, 40);
ESP_LOGV(TAG, "read_charge_c_ ret=%d, curr_charge=%f + 39-bit overflow_cnt=%d", ret, coulombs_reading,
this->charge_overflows_count_);
if (ret) {
coulombs_out = this->current_lsb_ * (double) coulombs_reading + (double) previous_charge;
amp_hours_out = coulombs_out / 3600.0;
}
return ret;
}
bool INA2XX::read_diagnostics_and_act_() {
if (this->ina_model_ != INAModel::INA_228 && this->ina_model_ != INAModel::INA_229) {
return false;
}
DiagnosticRegister diag{0};
auto ret = this->read_unsigned_16_(RegisterMap::REG_DIAG_ALRT, diag.raw_u16);
ESP_LOGV(TAG, "read_diagnostics_and_act_ ret=%s, 0x%04X", OKFAILED(ret), diag.raw_u16);
if (diag.ENERGYOF) {
this->energy_overflows_count_++; // 40-bit overflow
}
if (diag.CHARGEOF) {
this->charge_overflows_count_++; // 39-bit overflow
}
return ret;
}
bool INA2XX::write_unsigned_16_(uint8_t reg, uint16_t val) {
uint16_t data_out = byteswap(val);
auto ret = this->write_ina_register(reg, (uint8_t *) &data_out, 2);
if (!ret) {
ESP_LOGV(TAG, "write_unsigned_16_ FAILED reg=0x%02X, val=0x%04X", reg, val);
}
return ret;
}
bool INA2XX::read_unsigned_(uint8_t reg, uint8_t reg_size, uint64_t &data_out) {
static uint8_t rx_buf[5] = {0}; // max buffer size
if (reg_size > 5) {
return false;
}
auto ret = this->read_ina_register(reg, rx_buf, reg_size);
// Combine bytes
data_out = rx_buf[0];
for (uint8_t i = 1; i < reg_size; i++) {
data_out = (data_out << 8) | rx_buf[i];
}
ESP_LOGV(TAG, "read_unsigned_ reg=0x%02X, ret=%s, len=%d, val=0x%" PRIX64, reg, OKFAILED(ret), reg_size, data_out);
return ret;
}
bool INA2XX::read_unsigned_16_(uint8_t reg, uint16_t &out) {
uint16_t data_in{0};
auto ret = this->read_ina_register(reg, (uint8_t *) &data_in, 2);
out = byteswap(data_in);
ESP_LOGV(TAG, "read_unsigned_16_ 0x%02X, ret= %s, val=0x%04X", reg, OKFAILED(ret), out);
return ret;
}
int64_t INA2XX::two_complement_(uint64_t value, uint8_t bits) {
if (value > (1ULL << (bits - 1))) {
return (int64_t) (value - (1ULL << bits));
} else {
return (int64_t) value;
}
}
} // namespace ina2xx_base
} // namespace esphome

View file

@ -0,0 +1,253 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
namespace esphome {
namespace ina2xx_base {
enum RegisterMap : uint8_t {
REG_CONFIG = 0x00,
REG_ADC_CONFIG = 0x01,
REG_SHUNT_CAL = 0x02,
REG_SHUNT_TEMPCO = 0x03,
REG_VSHUNT = 0x04,
REG_VBUS = 0x05,
REG_DIETEMP = 0x06,
REG_CURRENT = 0x07,
REG_POWER = 0x08,
REG_ENERGY = 0x09,
REG_CHARGE = 0x0A,
REG_DIAG_ALRT = 0x0B,
REG_SOVL = 0x0C,
REG_SUVL = 0x0D,
REG_BOVL = 0x0E,
REG_BUVL = 0x0F,
REG_TEMP_LIMIT = 0x10,
REG_PWR_LIMIT = 0x11,
REG_MANUFACTURER_ID = 0x3E,
REG_DEVICE_ID = 0x3F
};
enum AdcRange : uint16_t {
ADC_RANGE_0 = 0,
ADC_RANGE_1 = 1,
};
enum AdcTime : uint16_t {
ADC_TIME_50US = 0,
ADC_TIME_84US = 1,
ADC_TIME_150US = 2,
ADC_TIME_280US = 3,
ADC_TIME_540US = 4,
ADC_TIME_1052US = 5,
ADC_TIME_2074US = 6,
ADC_TIME_4120US = 7,
};
enum AdcAvgSamples : uint16_t {
ADC_AVG_SAMPLES_1 = 0,
ADC_AVG_SAMPLES_4 = 1,
ADC_AVG_SAMPLES_16 = 2,
ADC_AVG_SAMPLES_64 = 3,
ADC_AVG_SAMPLES_128 = 4,
ADC_AVG_SAMPLES_256 = 5,
ADC_AVG_SAMPLES_512 = 6,
ADC_AVG_SAMPLES_1024 = 7,
};
union ConfigurationRegister {
uint16_t raw_u16;
struct {
uint16_t reserved_0_3 : 4; // Reserved
AdcRange ADCRANGE : 1; // Shunt measurement range 0: ±163.84 mV, 1: ±40.96 mV
bool TEMPCOMP : 1; // Temperature compensation enable
uint16_t CONVDLY : 8; // Sets the Delay for initial ADC conversion in steps of 2 ms.
bool RSTACC : 1; // Reset counters
bool RST : 1; // Full device reset
} __attribute__((packed));
};
union AdcConfigurationRegister {
uint16_t raw_u16;
struct {
AdcAvgSamples AVG : 3;
AdcTime VTCT : 3; // Voltage conversion time
AdcTime VSHCT : 3; // Shunt voltage conversion time
AdcTime VBUSCT : 3; // Bus voltage conversion time
uint16_t MODE : 4;
} __attribute__((packed));
};
union TempCompensationRegister {
uint16_t raw_u16;
struct {
uint16_t TEMPCO : 14;
uint16_t reserved : 2;
} __attribute__((packed));
};
union DiagnosticRegister {
uint16_t raw_u16;
struct {
bool MEMSTAT : 1;
bool CNVRF : 1;
bool POL : 1;
bool BUSUL : 1;
bool BUSOL : 1;
bool SHNTUL : 1;
bool SHNTOL : 1;
bool TMPOL : 1;
bool RESERVED1 : 1;
bool MATHOF : 1;
bool CHARGEOF : 1;
bool ENERGYOF : 1;
bool APOL : 1;
bool SLOWALERT : 1;
bool CNVR : 1;
bool ALATCH : 1;
} __attribute__((packed));
};
enum INAModel : uint8_t { INA_UNKNOWN = 0, INA_228, INA_229, INA_238, INA_239, INA_237 };
class INA2XX : public PollingComponent {
public:
void setup() override;
float get_setup_priority() const override;
void update() override;
void loop() override;
void dump_config() override;
void set_shunt_resistance_ohm(float shunt_resistance_ohm) { this->shunt_resistance_ohm_ = shunt_resistance_ohm; }
void set_max_current_a(float max_current_a) { this->max_current_a_ = max_current_a; }
void set_adc_range(uint8_t range) { this->adc_range_ = (range == 0) ? AdcRange::ADC_RANGE_0 : AdcRange::ADC_RANGE_1; }
void set_adc_time_bus_voltage(AdcTime time) { this->adc_time_bus_voltage_ = time; }
void set_adc_time_shunt_voltage(AdcTime time) { this->adc_time_shunt_voltage_ = time; }
void set_adc_time_die_temperature(AdcTime time) { this->adc_time_die_temperature_ = time; }
void set_adc_avg_samples(AdcAvgSamples samples) { this->adc_avg_samples_ = samples; }
void set_shunt_tempco(uint16_t coeff) { this->shunt_tempco_ppm_c_ = coeff; }
void set_shunt_voltage_sensor(sensor::Sensor *sensor) { this->shunt_voltage_sensor_ = sensor; }
void set_bus_voltage_sensor(sensor::Sensor *sensor) { this->bus_voltage_sensor_ = sensor; }
void set_die_temperature_sensor(sensor::Sensor *sensor) { this->die_temperature_sensor_ = sensor; }
void set_current_sensor(sensor::Sensor *sensor) { this->current_sensor_ = sensor; }
void set_power_sensor(sensor::Sensor *sensor) { this->power_sensor_ = sensor; }
void set_energy_sensor_j(sensor::Sensor *sensor) { this->energy_sensor_j_ = sensor; }
void set_energy_sensor_wh(sensor::Sensor *sensor) { this->energy_sensor_wh_ = sensor; }
void set_charge_sensor_c(sensor::Sensor *sensor) { this->charge_sensor_c_ = sensor; }
void set_charge_sensor_ah(sensor::Sensor *sensor) { this->charge_sensor_ah_ = sensor; }
void set_model(INAModel model) { this->ina_model_ = model; }
bool reset_energy_counters();
protected:
bool reset_config_();
bool check_device_model_();
bool configure_adc_();
bool configure_shunt_();
bool configure_shunt_tempco_();
bool configure_adc_range_();
bool read_shunt_voltage_mv_(float &volt_out);
bool read_bus_voltage_(float &volt_out);
bool read_die_temp_c_(float &temp);
bool read_current_a_(float &amps_out);
bool read_power_w_(float &power_out);
bool read_energy_(double &joules_out, double &watt_hours_out);
bool read_charge_(double &coulombs_out, double &amp_hours_out);
bool read_diagnostics_and_act_();
//
// User configuration
//
float shunt_resistance_ohm_;
float max_current_a_;
AdcRange adc_range_{AdcRange::ADC_RANGE_0};
AdcTime adc_time_bus_voltage_{AdcTime::ADC_TIME_4120US};
AdcTime adc_time_shunt_voltage_{AdcTime::ADC_TIME_4120US};
AdcTime adc_time_die_temperature_{AdcTime::ADC_TIME_4120US};
AdcAvgSamples adc_avg_samples_{AdcAvgSamples::ADC_AVG_SAMPLES_128};
uint16_t shunt_tempco_ppm_c_{0};
//
// Calculated coefficients
//
uint16_t shunt_cal_{0};
float current_lsb_{0};
uint32_t energy_overflows_count_{0};
uint32_t charge_overflows_count_{0};
//
// Sensor objects
//
sensor::Sensor *shunt_voltage_sensor_{nullptr};
sensor::Sensor *bus_voltage_sensor_{nullptr};
sensor::Sensor *die_temperature_sensor_{nullptr};
sensor::Sensor *current_sensor_{nullptr};
sensor::Sensor *power_sensor_{nullptr};
sensor::Sensor *energy_sensor_j_{nullptr};
sensor::Sensor *energy_sensor_wh_{nullptr};
sensor::Sensor *charge_sensor_c_{nullptr};
sensor::Sensor *charge_sensor_ah_{nullptr};
//
// FSM states
//
enum class State : uint8_t {
NOT_INITIALIZED = 0x0,
IDLE,
DATA_COLLECTION_1,
DATA_COLLECTION_2,
DATA_COLLECTION_3,
DATA_COLLECTION_4,
DATA_COLLECTION_5,
DATA_COLLECTION_6,
DATA_COLLECTION_7,
DATA_COLLECTION_8,
} state_{State::NOT_INITIALIZED};
bool full_loop_is_okay_{true};
//
// Device model
//
INAModel ina_model_{INAModel::INA_UNKNOWN};
uint16_t dev_id_{0};
bool device_mismatch_{false};
//
// Device specific parameters
//
struct {
float vbus_lsb;
float v_shunt_lsb_range0;
float v_shunt_lsb_range1;
float shunt_cal_scale;
int8_t current_lsb_scale_factor;
float die_temp_lsb;
float power_coeff;
float energy_coeff;
} cfg_;
//
// Register read/write
//
bool read_unsigned_(uint8_t reg, uint8_t reg_size, uint64_t &data_out);
bool read_unsigned_16_(uint8_t reg, uint16_t &out);
bool write_unsigned_16_(uint8_t reg, uint16_t val);
int64_t two_complement_(uint64_t value, uint8_t bits);
//
// Interface-specific implementation
//
virtual bool read_ina_register(uint8_t a_register, uint8_t *data, size_t len) = 0;
virtual bool write_ina_register(uint8_t a_register, const uint8_t *data, size_t len) = 0;
};
} // namespace ina2xx_base
} // namespace esphome

View file

@ -0,0 +1,39 @@
#include "ina2xx_i2c.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ina2xx_i2c {
static const char *const TAG = "ina2xx_i2c";
void INA2XXI2C::setup() {
auto err = this->write(nullptr, 0);
if (err != i2c::ERROR_OK) {
this->mark_failed();
return;
}
INA2XX::setup();
}
void INA2XXI2C::dump_config() {
INA2XX::dump_config();
LOG_I2C_DEVICE(this);
}
bool INA2XXI2C::read_ina_register(uint8_t reg, uint8_t *data, size_t len) {
auto ret = this->read_register(reg, data, len, false);
if (ret != i2c::ERROR_OK) {
ESP_LOGE(TAG, "read_ina_register_ failed. Reg=0x%02X Err=%d", reg, ret);
}
return ret == i2c::ERROR_OK;
}
bool INA2XXI2C::write_ina_register(uint8_t reg, const uint8_t *data, size_t len) {
auto ret = this->write_register(reg, data, len);
if (ret != i2c::ERROR_OK) {
ESP_LOGE(TAG, "write_register failed. Reg=0x%02X Err=%d", reg, ret);
}
return ret == i2c::ERROR_OK;
}
} // namespace ina2xx_i2c
} // namespace esphome

View file

@ -0,0 +1,21 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/ina2xx_base/ina2xx_base.h"
#include "esphome/components/i2c/i2c.h"
namespace esphome {
namespace ina2xx_i2c {
class INA2XXI2C : public ina2xx_base::INA2XX, public i2c::I2CDevice {
public:
void setup() override;
void dump_config() override;
protected:
bool read_ina_register(uint8_t reg, uint8_t *data, size_t len) override;
bool write_ina_register(uint8_t reg, const uint8_t *data, size_t len) override;
};
} // namespace ina2xx_i2c
} // namespace esphome

View file

@ -0,0 +1,34 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import ina2xx_base, i2c
from esphome.const import CONF_ID, CONF_MODEL
AUTO_LOAD = ["ina2xx_base"]
CODEOWNERS = ["@latonita"]
DEPENDENCIES = ["i2c"]
ina2xx_i2c = cg.esphome_ns.namespace("ina2xx_i2c")
INA2XX_I2C = ina2xx_i2c.class_("INA2XXI2C", ina2xx_base.INA2XX, i2c.I2CDevice)
INAModel = ina2xx_base.ina2xx_base_ns.enum("INAModel")
INA_MODELS = {
"INA228": INAModel.INA_228,
"INA238": INAModel.INA_238,
"INA237": INAModel.INA_237,
}
CONFIG_SCHEMA = cv.All(
ina2xx_base.INA2XX_SCHEMA.extend(
{
cv.GenerateID(): cv.declare_id(INA2XX_I2C),
cv.Required(CONF_MODEL): cv.enum(INA_MODELS, upper=True),
}
).extend(i2c.i2c_device_schema(0x40)),
ina2xx_base.validate_model_config,
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await ina2xx_base.setup_ina2xx(var, config)
await i2c.register_i2c_device(var, config)

View file

@ -0,0 +1,38 @@
#include "ina2xx_spi.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ina2xx_spi {
static const char *const TAG = "ina2xx_spi";
void INA2XXSPI::setup() {
this->spi_setup();
INA2XX::setup();
}
void INA2XXSPI::dump_config() {
INA2XX::dump_config();
LOG_PIN(" CS Pin: ", this->cs_);
}
bool INA2XXSPI::read_ina_register(uint8_t reg, uint8_t *data, size_t len) {
reg = (reg << 2); // top 6 bits
reg |= 0x01; // read
this->enable();
this->write_byte(reg);
this->read_array(data, len);
this->disable();
return true;
}
bool INA2XXSPI::write_ina_register(uint8_t reg, const uint8_t *data, size_t len) {
reg = (reg << 2); // top 6 bits
this->enable();
this->write_byte(reg);
this->write_array(data, len);
this->disable();
return true;
}
} // namespace ina2xx_spi
} // namespace esphome

View file

@ -0,0 +1,22 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/ina2xx_base/ina2xx_base.h"
#include "esphome/components/spi/spi.h"
namespace esphome {
namespace ina2xx_spi {
class INA2XXSPI : public ina2xx_base::INA2XX,
public spi::SPIDevice<spi::BIT_ORDER_MSB_FIRST, spi::CLOCK_POLARITY_LOW, spi::CLOCK_PHASE_TRAILING,
spi::DATA_RATE_1MHZ> {
public:
void setup() override;
void dump_config() override;
protected:
bool read_ina_register(uint8_t reg, uint8_t *data, size_t len) override;
bool write_ina_register(uint8_t reg, const uint8_t *data, size_t len) override;
};
} // namespace ina2xx_spi
} // namespace esphome

View file

@ -0,0 +1,33 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import ina2xx_base, spi
from esphome.const import CONF_ID, CONF_MODEL
AUTO_LOAD = ["ina2xx_base"]
CODEOWNERS = ["@latonita"]
DEPENDENCIES = ["spi"]
ina2xx_spi = cg.esphome_ns.namespace("ina2xx_spi")
INA2XX_SPI = ina2xx_spi.class_("INA2XXSPI", ina2xx_base.INA2XX, spi.SPIDevice)
INAModel = ina2xx_base.ina2xx_base_ns.enum("INAModel")
INA_MODELS = {
"INA229": INAModel.INA_229,
"INA239": INAModel.INA_239,
}
CONFIG_SCHEMA = cv.All(
ina2xx_base.INA2XX_SCHEMA.extend(
{
cv.GenerateID(): cv.declare_id(INA2XX_SPI),
cv.Required(CONF_MODEL): cv.enum(INA_MODELS, upper=True),
}
).extend(spi.spi_device_schema(cs_pin_required=True)),
ina2xx_base.validate_model_config,
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await ina2xx_base.setup_ina2xx(var, config)
await spi.register_spi_device(var, config)

View file

@ -260,7 +260,7 @@ bool Nextion::upload_tft(uint32_t baud_rate, bool exit_reparse) {
// Tells the Nextion the content length of the tft file and baud rate it will be sent at // Tells the Nextion the content length of the tft file and baud rate it will be sent at
// Once the Nextion accepts the command it will wait until the file is successfully uploaded // Once the Nextion accepts the command it will wait until the file is successfully uploaded
// If it fails for any reason a power cycle of the display will be needed // If it fails for any reason a power cycle of the display will be needed
sprintf(command, "whmi-wris %d,%" PRIu32 ",1", this->content_length_, baud_rate); sprintf(command, "whmi-wris %" PRIu32 ",%" PRIu32 ",1", this->content_length_, baud_rate);
// Clear serial receive buffer // Clear serial receive buffer
ESP_LOGV(TAG, "Clear serial receive buffer"); ESP_LOGV(TAG, "Clear serial receive buffer");

View file

@ -293,7 +293,7 @@ async def number_in_range_to_code(config, condition_id, template_arg, args):
return var return var
@coroutine_with_priority(40.0) @coroutine_with_priority(100.0)
async def to_code(config): async def to_code(config):
cg.add_define("USE_NUMBER") cg.add_define("USE_NUMBER")
cg.add_global(number_ns.using) cg.add_global(number_ns.using)

View file

@ -1,71 +1,67 @@
from esphome.cpp_generator import RawExpression
import esphome.codegen as cg import esphome.codegen as cg
import esphome.config_validation as cv import esphome.config_validation as cv
from esphome import automation from esphome import automation
from esphome.const import (
CONF_ID,
CONF_NUM_ATTEMPTS,
CONF_PASSWORD,
CONF_PORT,
CONF_REBOOT_TIMEOUT,
CONF_SAFE_MODE,
CONF_TRIGGER_ID,
CONF_OTA,
KEY_PAST_SAFE_MODE,
CONF_VERSION,
)
from esphome.core import CORE, coroutine_with_priority from esphome.core import CORE, coroutine_with_priority
CODEOWNERS = ["@esphome/core"] from esphome.const import CONF_ESPHOME, CONF_OTA, CONF_PLATFORM, CONF_TRIGGER_ID
DEPENDENCIES = ["network"]
AUTO_LOAD = ["socket", "md5"]
CONF_ON_STATE_CHANGE = "on_state_change" CODEOWNERS = ["@esphome/core"]
AUTO_LOAD = ["md5"]
IS_PLATFORM_COMPONENT = True
CONF_ON_ABORT = "on_abort"
CONF_ON_BEGIN = "on_begin" CONF_ON_BEGIN = "on_begin"
CONF_ON_PROGRESS = "on_progress"
CONF_ON_END = "on_end" CONF_ON_END = "on_end"
CONF_ON_ERROR = "on_error" CONF_ON_ERROR = "on_error"
CONF_ON_PROGRESS = "on_progress"
CONF_ON_STATE_CHANGE = "on_state_change"
ota_ns = cg.esphome_ns.namespace("ota") ota_ns = cg.esphome_ns.namespace("ota")
OTAState = ota_ns.enum("OTAState")
OTAComponent = ota_ns.class_("OTAComponent", cg.Component) OTAComponent = ota_ns.class_("OTAComponent", cg.Component)
OTAState = ota_ns.enum("OTAState")
OTAAbortTrigger = ota_ns.class_("OTAAbortTrigger", automation.Trigger.template())
OTAEndTrigger = ota_ns.class_("OTAEndTrigger", automation.Trigger.template())
OTAErrorTrigger = ota_ns.class_("OTAErrorTrigger", automation.Trigger.template())
OTAProgressTrigger = ota_ns.class_("OTAProgressTrigger", automation.Trigger.template())
OTAStartTrigger = ota_ns.class_("OTAStartTrigger", automation.Trigger.template())
OTAStateChangeTrigger = ota_ns.class_( OTAStateChangeTrigger = ota_ns.class_(
"OTAStateChangeTrigger", automation.Trigger.template() "OTAStateChangeTrigger", automation.Trigger.template()
) )
OTAStartTrigger = ota_ns.class_("OTAStartTrigger", automation.Trigger.template())
OTAProgressTrigger = ota_ns.class_("OTAProgressTrigger", automation.Trigger.template())
OTAEndTrigger = ota_ns.class_("OTAEndTrigger", automation.Trigger.template())
OTAErrorTrigger = ota_ns.class_("OTAErrorTrigger", automation.Trigger.template())
CONFIG_SCHEMA = cv.Schema( def _ota_final_validate(config):
if len(config) < 1:
raise cv.Invalid(
f"At least one platform must be specified for '{CONF_OTA}'; add '{CONF_PLATFORM}: {CONF_ESPHOME}' for original OTA functionality"
)
FINAL_VALIDATE_SCHEMA = _ota_final_validate
BASE_OTA_SCHEMA = cv.Schema(
{ {
cv.GenerateID(): cv.declare_id(OTAComponent),
cv.Optional(CONF_SAFE_MODE, default=True): cv.boolean,
cv.Optional(CONF_VERSION, default=2): cv.one_of(1, 2, int=True),
cv.SplitDefault(
CONF_PORT,
esp8266=8266,
esp32=3232,
rp2040=2040,
bk72xx=8892,
rtl87xx=8892,
): cv.port,
cv.Optional(CONF_PASSWORD): cv.string,
cv.Optional(
CONF_REBOOT_TIMEOUT, default="5min"
): cv.positive_time_period_milliseconds,
cv.Optional(CONF_NUM_ATTEMPTS, default="10"): cv.positive_not_null_int,
cv.Optional(CONF_ON_STATE_CHANGE): automation.validate_automation( cv.Optional(CONF_ON_STATE_CHANGE): automation.validate_automation(
{ {
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAStateChangeTrigger), cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAStateChangeTrigger),
} }
), ),
cv.Optional(CONF_ON_ABORT): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAAbortTrigger),
}
),
cv.Optional(CONF_ON_BEGIN): automation.validate_automation( cv.Optional(CONF_ON_BEGIN): automation.validate_automation(
{ {
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAStartTrigger), cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAStartTrigger),
} }
), ),
cv.Optional(CONF_ON_END): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAEndTrigger),
}
),
cv.Optional(CONF_ON_ERROR): automation.validate_automation( cv.Optional(CONF_ON_ERROR): automation.validate_automation(
{ {
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAErrorTrigger), cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAErrorTrigger),
@ -76,35 +72,13 @@ CONFIG_SCHEMA = cv.Schema(
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAProgressTrigger), cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAProgressTrigger),
} }
), ),
cv.Optional(CONF_ON_END): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(OTAEndTrigger),
} }
),
}
).extend(cv.COMPONENT_SCHEMA)
@coroutine_with_priority(50.0)
async def to_code(config):
CORE.data[CONF_OTA] = {}
var = cg.new_Pvariable(config[CONF_ID])
cg.add(var.set_port(config[CONF_PORT]))
cg.add_define("USE_OTA")
if CONF_PASSWORD in config:
cg.add(var.set_auth_password(config[CONF_PASSWORD]))
cg.add_define("USE_OTA_PASSWORD")
cg.add_define("USE_OTA_VERSION", config[CONF_VERSION])
await cg.register_component(var, config)
if config[CONF_SAFE_MODE]:
condition = var.should_enter_safe_mode(
config[CONF_NUM_ATTEMPTS], config[CONF_REBOOT_TIMEOUT]
) )
cg.add(RawExpression(f"if ({condition}) return"))
CORE.data[CONF_OTA][KEY_PAST_SAFE_MODE] = True
@coroutine_with_priority(51.0)
async def to_code(config):
cg.add_define("USE_OTA")
if CORE.is_esp32 and CORE.using_arduino: if CORE.is_esp32 and CORE.using_arduino:
cg.add_library("Update", None) cg.add_library("Update", None)
@ -112,11 +86,17 @@ async def to_code(config):
if CORE.is_rp2040 and CORE.using_arduino: if CORE.is_rp2040 and CORE.using_arduino:
cg.add_library("Updater", None) cg.add_library("Updater", None)
async def ota_to_code(var, config):
use_state_callback = False use_state_callback = False
for conf in config.get(CONF_ON_STATE_CHANGE, []): for conf in config.get(CONF_ON_STATE_CHANGE, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var) trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [(OTAState, "state")], conf) await automation.build_automation(trigger, [(OTAState, "state")], conf)
use_state_callback = True use_state_callback = True
for conf in config.get(CONF_ON_ABORT, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [], conf)
use_state_callback = True
for conf in config.get(CONF_ON_BEGIN, []): for conf in config.get(CONF_ON_BEGIN, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var) trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [], conf) await automation.build_automation(trigger, [], conf)

View file

@ -1,11 +1,8 @@
#pragma once #pragma once
#include "esphome/core/defines.h"
#ifdef USE_OTA_STATE_CALLBACK #ifdef USE_OTA_STATE_CALLBACK
#include "ota_backend.h"
#include "esphome/core/component.h"
#include "esphome/core/automation.h" #include "esphome/core/automation.h"
#include "esphome/components/ota/ota_component.h"
namespace esphome { namespace esphome {
namespace ota { namespace ota {
@ -54,6 +51,17 @@ class OTAEndTrigger : public Trigger<> {
} }
}; };
class OTAAbortTrigger : public Trigger<> {
public:
explicit OTAAbortTrigger(OTAComponent *parent) {
parent->add_on_state_callback([this, parent](OTAState state, float progress, uint8_t error) {
if (state == OTA_ABORT && !parent->is_failed()) {
trigger();
}
});
}
};
class OTAErrorTrigger : public Trigger<uint8_t> { class OTAErrorTrigger : public Trigger<uint8_t> {
public: public:
explicit OTAErrorTrigger(OTAComponent *parent) { explicit OTAErrorTrigger(OTAComponent *parent) {
@ -67,5 +75,4 @@ class OTAErrorTrigger : public Trigger<uint8_t> {
} // namespace ota } // namespace ota
} // namespace esphome } // namespace esphome
#endif
#endif // USE_OTA_STATE_CALLBACK

View file

@ -0,0 +1,20 @@
#include "ota_backend.h"
namespace esphome {
namespace ota {
#ifdef USE_OTA_STATE_CALLBACK
OTAGlobalCallback *global_ota_callback{nullptr}; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
OTAGlobalCallback *get_global_ota_callback() {
if (global_ota_callback == nullptr) {
global_ota_callback = new OTAGlobalCallback(); // NOLINT(cppcoreguidelines-owning-memory)
}
return global_ota_callback;
}
void register_ota_platform(OTAComponent *ota_caller) { get_global_ota_callback()->register_ota(ota_caller); }
#endif
} // namespace ota
} // namespace esphome

View file

@ -1,9 +1,53 @@
#pragma once #pragma once
#include "ota_component.h"
#include "esphome/core/component.h"
#include "esphome/core/defines.h"
#include "esphome/core/helpers.h"
#ifdef USE_OTA_STATE_CALLBACK
#include "esphome/core/automation.h"
#endif
namespace esphome { namespace esphome {
namespace ota { namespace ota {
enum OTAResponseTypes {
OTA_RESPONSE_OK = 0x00,
OTA_RESPONSE_REQUEST_AUTH = 0x01,
OTA_RESPONSE_HEADER_OK = 0x40,
OTA_RESPONSE_AUTH_OK = 0x41,
OTA_RESPONSE_UPDATE_PREPARE_OK = 0x42,
OTA_RESPONSE_BIN_MD5_OK = 0x43,
OTA_RESPONSE_RECEIVE_OK = 0x44,
OTA_RESPONSE_UPDATE_END_OK = 0x45,
OTA_RESPONSE_SUPPORTS_COMPRESSION = 0x46,
OTA_RESPONSE_CHUNK_OK = 0x47,
OTA_RESPONSE_ERROR_MAGIC = 0x80,
OTA_RESPONSE_ERROR_UPDATE_PREPARE = 0x81,
OTA_RESPONSE_ERROR_AUTH_INVALID = 0x82,
OTA_RESPONSE_ERROR_WRITING_FLASH = 0x83,
OTA_RESPONSE_ERROR_UPDATE_END = 0x84,
OTA_RESPONSE_ERROR_INVALID_BOOTSTRAPPING = 0x85,
OTA_RESPONSE_ERROR_WRONG_CURRENT_FLASH_CONFIG = 0x86,
OTA_RESPONSE_ERROR_WRONG_NEW_FLASH_CONFIG = 0x87,
OTA_RESPONSE_ERROR_ESP8266_NOT_ENOUGH_SPACE = 0x88,
OTA_RESPONSE_ERROR_ESP32_NOT_ENOUGH_SPACE = 0x89,
OTA_RESPONSE_ERROR_NO_UPDATE_PARTITION = 0x8A,
OTA_RESPONSE_ERROR_MD5_MISMATCH = 0x8B,
OTA_RESPONSE_ERROR_RP2040_NOT_ENOUGH_SPACE = 0x8C,
OTA_RESPONSE_ERROR_UNKNOWN = 0xFF,
};
enum OTAState {
OTA_COMPLETED = 0,
OTA_STARTED,
OTA_IN_PROGRESS,
OTA_ABORT,
OTA_ERROR,
};
class OTABackend { class OTABackend {
public: public:
virtual ~OTABackend() = default; virtual ~OTABackend() = default;
@ -15,5 +59,38 @@ class OTABackend {
virtual bool supports_compression() = 0; virtual bool supports_compression() = 0;
}; };
class OTAComponent : public Component {
#ifdef USE_OTA_STATE_CALLBACK
public:
void add_on_state_callback(std::function<void(ota::OTAState, float, uint8_t)> &&callback) {
this->state_callback_.add(std::move(callback));
}
protected:
CallbackManager<void(ota::OTAState, float, uint8_t)> state_callback_{};
#endif
};
#ifdef USE_OTA_STATE_CALLBACK
class OTAGlobalCallback {
public:
void register_ota(OTAComponent *ota_caller) {
ota_caller->add_on_state_callback([this, ota_caller](OTAState state, float progress, uint8_t error) {
this->state_callback_.call(state, progress, error, ota_caller);
});
}
void add_on_state_callback(std::function<void(OTAState, float, uint8_t, OTAComponent *)> &&callback) {
this->state_callback_.add(std::move(callback));
}
protected:
CallbackManager<void(OTAState, float, uint8_t, OTAComponent *)> state_callback_{};
};
OTAGlobalCallback *get_global_ota_callback();
void register_ota_platform(OTAComponent *ota_caller);
#endif
std::unique_ptr<ota::OTABackend> make_ota_backend();
} // namespace ota } // namespace ota
} // namespace esphome } // namespace esphome

View file

@ -1,8 +1,7 @@
#include "esphome/core/defines.h"
#ifdef USE_ESP32_FRAMEWORK_ARDUINO #ifdef USE_ESP32_FRAMEWORK_ARDUINO
#include "esphome/core/defines.h"
#include "ota_backend_arduino_esp32.h" #include "ota_backend_arduino_esp32.h"
#include "ota_component.h"
#include "ota_backend.h" #include "ota_backend.h"
#include <Update.h> #include <Update.h>
@ -10,6 +9,8 @@
namespace esphome { namespace esphome {
namespace ota { namespace ota {
std::unique_ptr<ota::OTABackend> make_ota_backend() { return make_unique<ota::ArduinoESP32OTABackend>(); }
OTAResponseTypes ArduinoESP32OTABackend::begin(size_t image_size) { OTAResponseTypes ArduinoESP32OTABackend::begin(size_t image_size) {
bool ret = Update.begin(image_size, U_FLASH); bool ret = Update.begin(image_size, U_FLASH);
if (ret) { if (ret) {

View file

@ -1,10 +1,10 @@
#pragma once #pragma once
#include "esphome/core/defines.h"
#ifdef USE_ESP32_FRAMEWORK_ARDUINO #ifdef USE_ESP32_FRAMEWORK_ARDUINO
#include "ota_component.h"
#include "ota_backend.h" #include "ota_backend.h"
#include "esphome/core/defines.h"
#include "esphome/core/helpers.h"
namespace esphome { namespace esphome {
namespace ota { namespace ota {

View file

@ -1,10 +1,9 @@
#include "esphome/core/defines.h"
#ifdef USE_ARDUINO #ifdef USE_ARDUINO
#ifdef USE_ESP8266 #ifdef USE_ESP8266
#include "ota_backend_arduino_esp8266.h"
#include "ota_component.h"
#include "ota_backend.h" #include "ota_backend.h"
#include "ota_backend_arduino_esp8266.h"
#include "esphome/core/defines.h"
#include "esphome/components/esp8266/preferences.h" #include "esphome/components/esp8266/preferences.h"
#include <Updater.h> #include <Updater.h>
@ -12,6 +11,8 @@
namespace esphome { namespace esphome {
namespace ota { namespace ota {
std::unique_ptr<ota::OTABackend> make_ota_backend() { return make_unique<ota::ArduinoESP8266OTABackend>(); }
OTAResponseTypes ArduinoESP8266OTABackend::begin(size_t image_size) { OTAResponseTypes ArduinoESP8266OTABackend::begin(size_t image_size) {
bool ret = Update.begin(image_size, U_FLASH); bool ret = Update.begin(image_size, U_FLASH);
if (ret) { if (ret) {

View file

@ -1,10 +1,9 @@
#pragma once #pragma once
#include "esphome/core/defines.h"
#ifdef USE_ARDUINO #ifdef USE_ARDUINO
#ifdef USE_ESP8266 #ifdef USE_ESP8266
#include "ota_component.h"
#include "ota_backend.h" #include "ota_backend.h"
#include "esphome/core/defines.h"
#include "esphome/core/macros.h" #include "esphome/core/macros.h"
namespace esphome { namespace esphome {

View file

@ -1,15 +1,16 @@
#include "esphome/core/defines.h"
#ifdef USE_LIBRETINY #ifdef USE_LIBRETINY
#include "ota_backend_arduino_libretiny.h"
#include "ota_component.h"
#include "ota_backend.h" #include "ota_backend.h"
#include "ota_backend_arduino_libretiny.h"
#include "esphome/core/defines.h"
#include <Update.h> #include <Update.h>
namespace esphome { namespace esphome {
namespace ota { namespace ota {
std::unique_ptr<ota::OTABackend> make_ota_backend() { return make_unique<ota::ArduinoLibreTinyOTABackend>(); }
OTAResponseTypes ArduinoLibreTinyOTABackend::begin(size_t image_size) { OTAResponseTypes ArduinoLibreTinyOTABackend::begin(size_t image_size) {
bool ret = Update.begin(image_size, U_FLASH); bool ret = Update.begin(image_size, U_FLASH);
if (ret) { if (ret) {

View file

@ -1,10 +1,9 @@
#pragma once #pragma once
#include "esphome/core/defines.h"
#ifdef USE_LIBRETINY #ifdef USE_LIBRETINY
#include "ota_component.h"
#include "ota_backend.h" #include "ota_backend.h"
#include "esphome/core/defines.h"
namespace esphome { namespace esphome {
namespace ota { namespace ota {

View file

@ -1,17 +1,18 @@
#include "esphome/core/defines.h"
#ifdef USE_ARDUINO #ifdef USE_ARDUINO
#ifdef USE_RP2040 #ifdef USE_RP2040
#include "esphome/components/rp2040/preferences.h"
#include "ota_backend.h" #include "ota_backend.h"
#include "ota_backend_arduino_rp2040.h" #include "ota_backend_arduino_rp2040.h"
#include "ota_component.h"
#include "esphome/components/rp2040/preferences.h"
#include "esphome/core/defines.h"
#include <Updater.h> #include <Updater.h>
namespace esphome { namespace esphome {
namespace ota { namespace ota {
std::unique_ptr<ota::OTABackend> make_ota_backend() { return make_unique<ota::ArduinoRP2040OTABackend>(); }
OTAResponseTypes ArduinoRP2040OTABackend::begin(size_t image_size) { OTAResponseTypes ArduinoRP2040OTABackend::begin(size_t image_size) {
bool ret = Update.begin(image_size, U_FLASH); bool ret = Update.begin(image_size, U_FLASH);
if (ret) { if (ret) {

View file

@ -1,11 +1,10 @@
#pragma once #pragma once
#include "esphome/core/defines.h"
#ifdef USE_ARDUINO #ifdef USE_ARDUINO
#ifdef USE_RP2040 #ifdef USE_RP2040
#include "esphome/core/macros.h"
#include "ota_backend.h" #include "ota_backend.h"
#include "ota_component.h"
#include "esphome/core/defines.h"
#include "esphome/core/macros.h"
namespace esphome { namespace esphome {
namespace ota { namespace ota {

View file

@ -1,12 +1,11 @@
#include "esphome/core/defines.h"
#ifdef USE_ESP_IDF #ifdef USE_ESP_IDF
#include <esp_task_wdt.h>
#include "ota_backend_esp_idf.h" #include "ota_backend_esp_idf.h"
#include "ota_component.h"
#include <esp_ota_ops.h>
#include "esphome/components/md5/md5.h" #include "esphome/components/md5/md5.h"
#include "esphome/core/defines.h"
#include <esp_ota_ops.h>
#include <esp_task_wdt.h>
#if ESP_IDF_VERSION_MAJOR >= 5 #if ESP_IDF_VERSION_MAJOR >= 5
#include <spi_flash_mmap.h> #include <spi_flash_mmap.h>
@ -15,6 +14,8 @@
namespace esphome { namespace esphome {
namespace ota { namespace ota {
std::unique_ptr<ota::OTABackend> make_ota_backend() { return make_unique<ota::IDFOTABackend>(); }
OTAResponseTypes IDFOTABackend::begin(size_t image_size) { OTAResponseTypes IDFOTABackend::begin(size_t image_size) {
this->partition_ = esp_ota_get_next_update_partition(nullptr); this->partition_ = esp_ota_get_next_update_partition(nullptr);
if (this->partition_ == nullptr) { if (this->partition_ == nullptr) {

View file

@ -1,11 +1,11 @@
#pragma once #pragma once
#include "esphome/core/defines.h"
#ifdef USE_ESP_IDF #ifdef USE_ESP_IDF
#include "ota_component.h"
#include "ota_backend.h" #include "ota_backend.h"
#include <esp_ota_ops.h>
#include "esphome/components/md5/md5.h" #include "esphome/components/md5/md5.h"
#include "esphome/core/defines.h"
#include <esp_ota_ops.h>
namespace esphome { namespace esphome {
namespace ota { namespace ota {

View file

@ -65,8 +65,8 @@ std::string PrometheusHandler::relabel_name_(EntityBase *obj) {
// Type-specific implementation // Type-specific implementation
#ifdef USE_SENSOR #ifdef USE_SENSOR
void PrometheusHandler::sensor_type_(AsyncResponseStream *stream) { void PrometheusHandler::sensor_type_(AsyncResponseStream *stream) {
stream->print(F("#TYPE esphome_sensor_value GAUGE\n")); stream->print(F("#TYPE esphome_sensor_value gauge\n"));
stream->print(F("#TYPE esphome_sensor_failed GAUGE\n")); stream->print(F("#TYPE esphome_sensor_failed gauge\n"));
} }
void PrometheusHandler::sensor_row_(AsyncResponseStream *stream, sensor::Sensor *obj) { void PrometheusHandler::sensor_row_(AsyncResponseStream *stream, sensor::Sensor *obj) {
if (obj->is_internal() && !this->include_internal_) if (obj->is_internal() && !this->include_internal_)
@ -102,8 +102,8 @@ void PrometheusHandler::sensor_row_(AsyncResponseStream *stream, sensor::Sensor
// Type-specific implementation // Type-specific implementation
#ifdef USE_BINARY_SENSOR #ifdef USE_BINARY_SENSOR
void PrometheusHandler::binary_sensor_type_(AsyncResponseStream *stream) { void PrometheusHandler::binary_sensor_type_(AsyncResponseStream *stream) {
stream->print(F("#TYPE esphome_binary_sensor_value GAUGE\n")); stream->print(F("#TYPE esphome_binary_sensor_value gauge\n"));
stream->print(F("#TYPE esphome_binary_sensor_failed GAUGE\n")); stream->print(F("#TYPE esphome_binary_sensor_failed gauge\n"));
} }
void PrometheusHandler::binary_sensor_row_(AsyncResponseStream *stream, binary_sensor::BinarySensor *obj) { void PrometheusHandler::binary_sensor_row_(AsyncResponseStream *stream, binary_sensor::BinarySensor *obj) {
if (obj->is_internal() && !this->include_internal_) if (obj->is_internal() && !this->include_internal_)
@ -136,10 +136,10 @@ void PrometheusHandler::binary_sensor_row_(AsyncResponseStream *stream, binary_s
#ifdef USE_FAN #ifdef USE_FAN
void PrometheusHandler::fan_type_(AsyncResponseStream *stream) { void PrometheusHandler::fan_type_(AsyncResponseStream *stream) {
stream->print(F("#TYPE esphome_fan_value GAUGE\n")); stream->print(F("#TYPE esphome_fan_value gauge\n"));
stream->print(F("#TYPE esphome_fan_failed GAUGE\n")); stream->print(F("#TYPE esphome_fan_failed gauge\n"));
stream->print(F("#TYPE esphome_fan_speed GAUGE\n")); stream->print(F("#TYPE esphome_fan_speed gauge\n"));
stream->print(F("#TYPE esphome_fan_oscillation GAUGE\n")); stream->print(F("#TYPE esphome_fan_oscillation gauge\n"));
} }
void PrometheusHandler::fan_row_(AsyncResponseStream *stream, fan::Fan *obj) { void PrometheusHandler::fan_row_(AsyncResponseStream *stream, fan::Fan *obj) {
if (obj->is_internal() && !this->include_internal_) if (obj->is_internal() && !this->include_internal_)
@ -182,9 +182,9 @@ void PrometheusHandler::fan_row_(AsyncResponseStream *stream, fan::Fan *obj) {
#ifdef USE_LIGHT #ifdef USE_LIGHT
void PrometheusHandler::light_type_(AsyncResponseStream *stream) { void PrometheusHandler::light_type_(AsyncResponseStream *stream) {
stream->print(F("#TYPE esphome_light_state GAUGE\n")); stream->print(F("#TYPE esphome_light_state gauge\n"));
stream->print(F("#TYPE esphome_light_color GAUGE\n")); stream->print(F("#TYPE esphome_light_color gauge\n"));
stream->print(F("#TYPE esphome_light_effect_active GAUGE\n")); stream->print(F("#TYPE esphome_light_effect_active gauge\n"));
} }
void PrometheusHandler::light_row_(AsyncResponseStream *stream, light::LightState *obj) { void PrometheusHandler::light_row_(AsyncResponseStream *stream, light::LightState *obj) {
if (obj->is_internal() && !this->include_internal_) if (obj->is_internal() && !this->include_internal_)
@ -259,8 +259,8 @@ void PrometheusHandler::light_row_(AsyncResponseStream *stream, light::LightStat
#ifdef USE_COVER #ifdef USE_COVER
void PrometheusHandler::cover_type_(AsyncResponseStream *stream) { void PrometheusHandler::cover_type_(AsyncResponseStream *stream) {
stream->print(F("#TYPE esphome_cover_value GAUGE\n")); stream->print(F("#TYPE esphome_cover_value gauge\n"));
stream->print(F("#TYPE esphome_cover_failed GAUGE\n")); stream->print(F("#TYPE esphome_cover_failed gauge\n"));
} }
void PrometheusHandler::cover_row_(AsyncResponseStream *stream, cover::Cover *obj) { void PrometheusHandler::cover_row_(AsyncResponseStream *stream, cover::Cover *obj) {
if (obj->is_internal() && !this->include_internal_) if (obj->is_internal() && !this->include_internal_)
@ -302,8 +302,8 @@ void PrometheusHandler::cover_row_(AsyncResponseStream *stream, cover::Cover *ob
#ifdef USE_SWITCH #ifdef USE_SWITCH
void PrometheusHandler::switch_type_(AsyncResponseStream *stream) { void PrometheusHandler::switch_type_(AsyncResponseStream *stream) {
stream->print(F("#TYPE esphome_switch_value GAUGE\n")); stream->print(F("#TYPE esphome_switch_value gauge\n"));
stream->print(F("#TYPE esphome_switch_failed GAUGE\n")); stream->print(F("#TYPE esphome_switch_failed gauge\n"));
} }
void PrometheusHandler::switch_row_(AsyncResponseStream *stream, switch_::Switch *obj) { void PrometheusHandler::switch_row_(AsyncResponseStream *stream, switch_::Switch *obj) {
if (obj->is_internal() && !this->include_internal_) if (obj->is_internal() && !this->include_internal_)
@ -326,8 +326,8 @@ void PrometheusHandler::switch_row_(AsyncResponseStream *stream, switch_::Switch
#ifdef USE_LOCK #ifdef USE_LOCK
void PrometheusHandler::lock_type_(AsyncResponseStream *stream) { void PrometheusHandler::lock_type_(AsyncResponseStream *stream) {
stream->print(F("#TYPE esphome_lock_value GAUGE\n")); stream->print(F("#TYPE esphome_lock_value gauge\n"));
stream->print(F("#TYPE esphome_lock_failed GAUGE\n")); stream->print(F("#TYPE esphome_lock_failed gauge\n"));
} }
void PrometheusHandler::lock_row_(AsyncResponseStream *stream, lock::Lock *obj) { void PrometheusHandler::lock_row_(AsyncResponseStream *stream, lock::Lock *obj) {
if (obj->is_internal() && !this->include_internal_) if (obj->is_internal() && !this->include_internal_)

View file

@ -1913,3 +1913,41 @@ async def abbwelcome_action(var, config, args):
cg.add(var.set_data_template(template_)) cg.add(var.set_data_template(template_))
else: else:
cg.add(var.set_data_static(data_)) cg.add(var.set_data_static(data_))
# Mirage
(
MirageData,
MirageBinarySensor,
MirageTrigger,
MirageAction,
MirageDumper,
) = declare_protocol("Mirage")
MIRAGE_SCHEMA = cv.Schema(
{
cv.Required(CONF_CODE): cv.All([cv.hex_uint8_t], cv.Length(min=14, max=14)),
}
)
@register_binary_sensor("mirage", MirageBinarySensor, MIRAGE_SCHEMA)
def mirage_binary_sensor(var, config):
cg.add(var.set_code(config[CONF_CODE]))
@register_trigger("mirage", MirageTrigger, MirageData)
def mirage_trigger(var, config):
pass
@register_dumper("mirage", MirageDumper)
def mirage_dumper(var, config):
pass
@register_action("mirage", MirageAction, MIRAGE_SCHEMA)
async def mirage_action(var, config, args):
vec_ = cg.std_vector.template(cg.uint8)
template_ = await cg.templatable(config[CONF_CODE], args, vec_, vec_)
cg.add(var.set_code(template_))

View file

@ -0,0 +1,84 @@
#include "mirage_protocol.h"
#include "esphome/core/log.h"
namespace esphome {
namespace remote_base {
static const char *const TAG = "remote.mirage";
constexpr uint32_t HEADER_MARK_US = 8360;
constexpr uint32_t HEADER_SPACE_US = 4248;
constexpr uint32_t BIT_MARK_US = 554;
constexpr uint32_t BIT_ONE_SPACE_US = 1592;
constexpr uint32_t BIT_ZERO_SPACE_US = 545;
constexpr unsigned int MIRAGE_IR_PACKET_BIT_SIZE = 120;
void MirageProtocol::encode(RemoteTransmitData *dst, const MirageData &data) {
ESP_LOGI(TAG, "Transive Mirage: %s", format_hex_pretty(data.data).c_str());
dst->set_carrier_frequency(38000);
dst->reserve(5 + ((data.data.size() + 1) * 2));
dst->mark(HEADER_MARK_US);
dst->space(HEADER_SPACE_US);
dst->mark(BIT_MARK_US);
uint8_t checksum = 0;
for (uint8_t item : data.data) {
this->encode_byte_(dst, item);
checksum += (item >> 4) + (item & 0xF);
}
this->encode_byte_(dst, checksum);
}
void MirageProtocol::encode_byte_(RemoteTransmitData *dst, uint8_t item) {
for (uint8_t b = 0; b < 8; b++) {
if (item & (1UL << b)) {
dst->space(BIT_ONE_SPACE_US);
} else {
dst->space(BIT_ZERO_SPACE_US);
}
dst->mark(BIT_MARK_US);
}
}
optional<MirageData> MirageProtocol::decode(RemoteReceiveData src) {
if (!src.expect_item(HEADER_MARK_US, HEADER_SPACE_US)) {
return {};
}
if (!src.expect_mark(BIT_MARK_US)) {
return {};
}
size_t size = src.size() - src.get_index() - 1;
if (size < MIRAGE_IR_PACKET_BIT_SIZE * 2)
return {};
size = MIRAGE_IR_PACKET_BIT_SIZE * 2;
uint8_t checksum = 0;
MirageData out;
while (size > 0) {
uint8_t data = 0;
for (uint8_t b = 0; b < 8; b++) {
if (src.expect_space(BIT_ONE_SPACE_US)) {
data |= (1UL << b);
} else if (!src.expect_space(BIT_ZERO_SPACE_US)) {
return {};
}
if (!src.expect_mark(BIT_MARK_US)) {
return {};
}
size -= 2;
}
if (size > 0) {
checksum += (data >> 4) + (data & 0xF);
out.data.push_back(data);
} else if (checksum != data) {
return {};
}
}
return out;
}
void MirageProtocol::dump(const MirageData &data) {
ESP_LOGI(TAG, "Received Mirage: %s", format_hex_pretty(data.data).c_str());
}
} // namespace remote_base
} // namespace esphome

View file

@ -0,0 +1,39 @@
#pragma once
#include "esphome/core/component.h"
#include "remote_base.h"
namespace esphome {
namespace remote_base {
struct MirageData {
std::vector<uint8_t> data;
bool operator==(const MirageData &rhs) const { return data == rhs.data; }
};
class MirageProtocol : public RemoteProtocol<MirageData> {
public:
void encode(RemoteTransmitData *dst, const MirageData &data) override;
optional<MirageData> decode(RemoteReceiveData src) override;
void dump(const MirageData &data) override;
protected:
void encode_byte_(RemoteTransmitData *dst, uint8_t item);
};
DECLARE_REMOTE_PROTOCOL(Mirage)
template<typename... Ts> class MirageAction : public RemoteTransmitterActionBase<Ts...> {
public:
TEMPLATABLE_VALUE(std::vector<uint8_t>, code)
void encode(RemoteTransmitData *dst, Ts... x) override {
MirageData data{};
data.data = this->code_.value(x...);
MirageProtocol().encode(dst, data);
}
};
} // namespace remote_base
} // namespace esphome

View file

@ -6,6 +6,7 @@
#include "esphome/core/log.h" #include "esphome/core/log.h"
#include <hardware/clocks.h> #include <hardware/clocks.h>
#include <hardware/dma.h>
#include <hardware/pio.h> #include <hardware/pio.h>
#include <pico/stdlib.h> #include <pico/stdlib.h>
@ -14,6 +15,15 @@ namespace rp2040_pio_led_strip {
static const char *TAG = "rp2040_pio_led_strip"; static const char *TAG = "rp2040_pio_led_strip";
static uint8_t num_instance_[2] = {0, 0};
static std::map<Chipset, uint> chipset_offsets_ = {
{CHIPSET_WS2812, 0}, {CHIPSET_WS2812B, 0}, {CHIPSET_SK6812, 0}, {CHIPSET_SM16703, 0}, {CHIPSET_CUSTOM, 0},
};
static std::map<Chipset, bool> conf_count_ = {
{CHIPSET_WS2812, false}, {CHIPSET_WS2812B, false}, {CHIPSET_SK6812, false},
{CHIPSET_SM16703, false}, {CHIPSET_CUSTOM, false},
};
void RP2040PIOLEDStripLightOutput::setup() { void RP2040PIOLEDStripLightOutput::setup() {
ESP_LOGCONFIG(TAG, "Setting up RP2040 LED Strip..."); ESP_LOGCONFIG(TAG, "Setting up RP2040 LED Strip...");
@ -34,24 +44,71 @@ void RP2040PIOLEDStripLightOutput::setup() {
return; return;
} }
// Initialize the PIO program
// Select PIO instance to use (0 or 1) // Select PIO instance to use (0 or 1)
this->pio_ = pio0;
if (this->pio_ == nullptr) { if (this->pio_ == nullptr) {
ESP_LOGE(TAG, "Failed to claim PIO instance"); ESP_LOGE(TAG, "Failed to claim PIO instance");
this->mark_failed(); this->mark_failed();
return; return;
} }
// Load the assembled program into the PIO and get its location in the PIO's instruction memory // if there are multiple strips, we can reuse the same PIO program and save space
uint offset = pio_add_program(this->pio_, this->program_); // but there are only 4 state machines on each PIO so we can only have 4 strips per PIO
uint offset = 0;
if (num_instance_[this->pio_ == pio0 ? 0 : 1] > 4) {
ESP_LOGE(TAG, "Too many instances of PIO program");
this->mark_failed();
return;
}
// keep track of how many instances of the PIO program are running on each PIO
num_instance_[this->pio_ == pio0 ? 0 : 1]++;
// if there are multiple strips of the same chipset, we can reuse the same PIO program and save space
if (this->conf_count_[this->chipset_]) {
offset = chipset_offsets_[this->chipset_];
} else {
// Load the assembled program into the PIO and get its location in the PIO's instruction memory and save it
offset = pio_add_program(this->pio_, this->program_);
chipset_offsets_[this->chipset_] = offset;
conf_count_[this->chipset_] = true;
}
// Configure the state machine's PIO, and start it // Configure the state machine's PIO, and start it
this->sm_ = pio_claim_unused_sm(this->pio_, true); this->sm_ = pio_claim_unused_sm(this->pio_, true);
if (this->sm_ < 0) { if (this->sm_ < 0) {
// in theory this code should never be reached
ESP_LOGE(TAG, "Failed to claim PIO state machine"); ESP_LOGE(TAG, "Failed to claim PIO state machine");
this->mark_failed(); this->mark_failed();
return; return;
} }
// Initalize the DMA channel (Note: There are 12 DMA channels and 8 state machines so we won't run out)
this->dma_chan_ = dma_claim_unused_channel(true);
if (this->dma_chan_ < 0) {
ESP_LOGE(TAG, "Failed to claim DMA channel");
this->mark_failed();
return;
}
this->dma_config_ = dma_channel_get_default_config(this->dma_chan_);
channel_config_set_transfer_data_size(
&this->dma_config_,
DMA_SIZE_8); // 8 bit transfers (could be 32 but the pio program would need to be changed to handle junk data)
channel_config_set_read_increment(&this->dma_config_, true); // increment the read address
channel_config_set_write_increment(&this->dma_config_, false); // don't increment the write address
channel_config_set_dreq(&this->dma_config_,
pio_get_dreq(this->pio_, this->sm_, true)); // set the DREQ to the state machine's TX FIFO
dma_channel_configure(this->dma_chan_, &this->dma_config_,
&this->pio_->txf[this->sm_], // write to the state machine's TX FIFO
this->buf_, // read from memory
this->is_rgbw_ ? num_leds_ * 4 : num_leds_ * 3, // number of bytes to transfer
false // don't start yet
);
this->init_(this->pio_, this->sm_, offset, this->pin_, this->max_refresh_rate_); this->init_(this->pio_, this->sm_, offset, this->pin_, this->max_refresh_rate_);
} }
@ -68,16 +125,8 @@ void RP2040PIOLEDStripLightOutput::write_state(light::LightState *state) {
return; return;
} }
// assemble bits in buffer to 32 bit words with ex for GBR: 0bGGGGGGGGRRRRRRRRBBBBBBBB00000000 // the bits are already in the correct order for the pio program so we can just copy the buffer using DMA
for (int i = 0; i < this->num_leds_; i++) { dma_channel_transfer_from_buffer_now(this->dma_chan_, this->buf_, this->get_buffer_size_());
uint8_t multiplier = this->is_rgbw_ ? 4 : 3;
uint8_t c1 = this->buf_[(i * multiplier) + 0];
uint8_t c2 = this->buf_[(i * multiplier) + 1];
uint8_t c3 = this->buf_[(i * multiplier) + 2];
uint8_t w = this->is_rgbw_ ? this->buf_[(i * 4) + 3] : 0;
uint32_t color = encode_uint32(c1, c2, c3, w);
pio_sm_put_blocking(this->pio_, this->sm_, color);
}
} }
light::ESPColorView RP2040PIOLEDStripLightOutput::get_view_internal(int32_t index) const { light::ESPColorView RP2040PIOLEDStripLightOutput::get_view_internal(int32_t index) const {

View file

@ -9,9 +9,11 @@
#include "esphome/components/light/addressable_light.h" #include "esphome/components/light/addressable_light.h"
#include "esphome/components/light/light_output.h" #include "esphome/components/light/light_output.h"
#include <hardware/dma.h>
#include <hardware/pio.h> #include <hardware/pio.h>
#include <hardware/structs/pio.h> #include <hardware/structs/pio.h>
#include <pico/stdio.h> #include <pico/stdio.h>
#include <map>
namespace esphome { namespace esphome {
namespace rp2040_pio_led_strip { namespace rp2040_pio_led_strip {
@ -25,6 +27,15 @@ enum RGBOrder : uint8_t {
ORDER_BRG, ORDER_BRG,
}; };
enum Chipset : uint8_t {
CHIPSET_WS2812,
CHIPSET_WS2812B,
CHIPSET_SK6812,
CHIPSET_SM16703,
CHIPSET_APA102,
CHIPSET_CUSTOM = 0xFF,
};
inline const char *rgb_order_to_string(RGBOrder order) { inline const char *rgb_order_to_string(RGBOrder order) {
switch (order) { switch (order) {
case ORDER_RGB: case ORDER_RGB:
@ -69,6 +80,7 @@ class RP2040PIOLEDStripLightOutput : public light::AddressableLight {
void set_program(const pio_program_t *program) { this->program_ = program; } void set_program(const pio_program_t *program) { this->program_ = program; }
void set_init_function(init_fn init) { this->init_ = init; } void set_init_function(init_fn init) { this->init_ = init; }
void set_chipset(Chipset chipset) { this->chipset_ = chipset; };
void set_rgb_order(RGBOrder rgb_order) { this->rgb_order_ = rgb_order; } void set_rgb_order(RGBOrder rgb_order) { this->rgb_order_ = rgb_order; }
void clear_effect_data() override { void clear_effect_data() override {
for (int i = 0; i < this->size(); i++) { for (int i = 0; i < this->size(); i++) {
@ -92,14 +104,22 @@ class RP2040PIOLEDStripLightOutput : public light::AddressableLight {
pio_hw_t *pio_; pio_hw_t *pio_;
uint sm_; uint sm_;
uint dma_chan_;
dma_channel_config dma_config_;
RGBOrder rgb_order_{ORDER_RGB}; RGBOrder rgb_order_{ORDER_RGB};
Chipset chipset_{CHIPSET_CUSTOM};
uint32_t last_refresh_{0}; uint32_t last_refresh_{0};
float max_refresh_rate_; float max_refresh_rate_;
const pio_program_t *program_; const pio_program_t *program_;
init_fn init_; init_fn init_;
private:
inline static int num_instance_[2];
inline static std::map<Chipset, bool> conf_count_;
inline static std::map<Chipset, int> chipset_offsets_;
}; };
} // namespace rp2040_pio_led_strip } // namespace rp2040_pio_led_strip

View file

@ -5,6 +5,7 @@ from esphome.components import light, rp2040
from esphome.const import ( from esphome.const import (
CONF_CHIPSET, CONF_CHIPSET,
CONF_ID, CONF_ID,
CONF_IS_RGBW,
CONF_NUM_LEDS, CONF_NUM_LEDS,
CONF_OUTPUT_ID, CONF_OUTPUT_ID,
CONF_PIN, CONF_PIN,
@ -67,12 +68,15 @@ static inline void rp2040_pio_led_strip_driver_{id}_init(PIO pio, uint sm, uint
pio_sm_config c = rp2040_pio_led_strip_{id}_program_get_default_config(offset); pio_sm_config c = rp2040_pio_led_strip_{id}_program_get_default_config(offset);
sm_config_set_set_pins(&c, pin, 1); sm_config_set_set_pins(&c, pin, 1);
sm_config_set_out_shift(&c, false, true, {32 if rgbw else 24}); sm_config_set_out_shift(&c, false, true, 8);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX); sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
int cycles_per_bit = 69; // target frequency is 57.5MHz
float div = 2.409; long clk = clock_get_hz(clk_sys);
sm_config_set_clkdiv(&c, div); long target_freq = 57500000;
int n = 2;
int f = round(((clk / target_freq) - n ) * 256);
sm_config_set_clkdiv_int_frac(&c, n, f);
pio_sm_init(pio, sm, offset, &c); pio_sm_init(pio, sm, offset, &c);
@ -85,8 +89,9 @@ static inline void rp2040_pio_led_strip_driver_{id}_init(PIO pio, uint sm, uint
.wrap_target .wrap_target
awaiting_data: awaiting_data:
; Wait for data in FIFO queue ; Wait for data in FIFO queue
; out null, 24 ; discard the byte lane replication of the FIFO since we only need 8 bits (not needed????)
pull block ; this will block until there is data in the FIFO queue and then it will pull it into the shift register pull block ; this will block until there is data in the FIFO queue and then it will pull it into the shift register
set y, {31 if rgbw else 23} ; set y to the number of bits to write counting 0, (23 if RGB, 31 if RGBW) set y, 7 ; set y to the number of bits to write counting 0, (always 7 because we are doing one word at a time)
mainloop: mainloop:
; go through each bit in the shift register and jump to the appropriate label ; go through each bit in the shift register and jump to the appropriate label
@ -94,7 +99,15 @@ mainloop:
out x, 1 out x, 1
jmp !x, writezero jmp !x, writezero
jmp writeone
writeone:
; Write T1H and T1L bits to the output pin
set pins, 1 [{t1h}]
{nops_t1h}
set pins, 0 [{t1l}]
{nops_t1l}
jmp y--, mainloop
jmp awaiting_data
writezero: writezero:
; Write T0H and T0L bits to the output pin ; Write T0H and T0L bits to the output pin
@ -105,14 +118,7 @@ writezero:
jmp y--, mainloop jmp y--, mainloop
jmp awaiting_data jmp awaiting_data
writeone:
; Write T1H and T1L bits to the output pin
set pins, 1 [{t1h}]
{nops_t1h}
set pins, 0 [{t1l}]
{nops_t1l}
jmp y--, mainloop
jmp awaiting_data
.wrap""" .wrap"""
@ -138,7 +144,15 @@ RP2040PIOLEDStripLightOutput = rp2040_pio_led_strip_ns.class_(
RGBOrder = rp2040_pio_led_strip_ns.enum("RGBOrder") RGBOrder = rp2040_pio_led_strip_ns.enum("RGBOrder")
Chipsets = rp2040_pio_led_strip_ns.enum("Chipset") Chipset = rp2040_pio_led_strip_ns.enum("Chipset")
CHIPSETS = {
"WS2812": Chipset.CHIPSET_WS2812,
"WS2812B": Chipset.CHIPSET_WS2812B,
"SK6812": Chipset.CHIPSET_SK6812,
"SM16703": Chipset.CHIPSET_SM16703,
"CUSTOM": Chipset.CHIPSET_CUSTOM,
}
@dataclass @dataclass
@ -158,14 +172,13 @@ RGB_ORDERS = {
"BRG": RGBOrder.ORDER_BRG, "BRG": RGBOrder.ORDER_BRG,
} }
CHIPSETS = { CHIPSET_TIMINGS = {
"WS2812": LEDStripTimings(20, 43, 41, 31), "WS2812": LEDStripTimings(20, 40, 46, 34),
"WS2812B": LEDStripTimings(23, 46, 46, 23), "WS2812B": LEDStripTimings(23, 49, 46, 26),
"SK6812": LEDStripTimings(17, 52, 31, 31), "SK6812": LEDStripTimings(17, 52, 34, 34),
"SM16703": LEDStripTimings(17, 52, 52, 17), "SM16703": LEDStripTimings(17, 52, 52, 17),
} }
CONF_IS_RGBW = "is_rgbw"
CONF_BIT0_HIGH = "bit0_high" CONF_BIT0_HIGH = "bit0_high"
CONF_BIT0_LOW = "bit0_low" CONF_BIT0_LOW = "bit0_low"
CONF_BIT1_HIGH = "bit1_high" CONF_BIT1_HIGH = "bit1_high"
@ -192,7 +205,7 @@ CONFIG_SCHEMA = cv.All(
cv.Required(CONF_NUM_LEDS): cv.positive_not_null_int, cv.Required(CONF_NUM_LEDS): cv.positive_not_null_int,
cv.Required(CONF_RGB_ORDER): cv.enum(RGB_ORDERS, upper=True), cv.Required(CONF_RGB_ORDER): cv.enum(RGB_ORDERS, upper=True),
cv.Required(CONF_PIO): cv.one_of(0, 1, int=True), cv.Required(CONF_PIO): cv.one_of(0, 1, int=True),
cv.Optional(CONF_CHIPSET): cv.one_of(*CHIPSETS, upper=True), cv.Optional(CONF_CHIPSET): cv.enum(CHIPSETS, upper=True),
cv.Optional(CONF_IS_RGBW, default=False): cv.boolean, cv.Optional(CONF_IS_RGBW, default=False): cv.boolean,
cv.Inclusive( cv.Inclusive(
CONF_BIT0_HIGH, CONF_BIT0_HIGH,
@ -238,7 +251,8 @@ async def to_code(config):
key = f"led_strip_{id}" key = f"led_strip_{id}"
if CONF_CHIPSET in config: if chipset := config.get(CONF_CHIPSET):
cg.add(var.set_chipset(chipset))
_LOGGER.info("Generating PIO assembly code") _LOGGER.info("Generating PIO assembly code")
rp2040.add_pio_file( rp2040.add_pio_file(
__name__, __name__,
@ -246,13 +260,14 @@ async def to_code(config):
generate_assembly_code( generate_assembly_code(
id, id,
config[CONF_IS_RGBW], config[CONF_IS_RGBW],
CHIPSETS[config[CONF_CHIPSET]].T0H, CHIPSET_TIMINGS[chipset].T0H,
CHIPSETS[config[CONF_CHIPSET]].T0L, CHIPSET_TIMINGS[chipset].T0L,
CHIPSETS[config[CONF_CHIPSET]].T1H, CHIPSET_TIMINGS[chipset].T1H,
CHIPSETS[config[CONF_CHIPSET]].T1L, CHIPSET_TIMINGS[chipset].T1L,
), ),
) )
else: else:
cg.add(var.set_chipset(Chipset.CHIPSET_CUSTOM))
_LOGGER.info("Generating custom PIO assembly code") _LOGGER.info("Generating custom PIO assembly code")
rp2040.add_pio_file( rp2040.add_pio_file(
__name__, __name__,

View file

@ -1,18 +1,17 @@
import esphome.codegen as cg import esphome.codegen as cg
import esphome.config_validation as cv import esphome.config_validation as cv
from esphome.components import button from esphome.components import button
from esphome.components.ota import OTAComponent from esphome.components.esphome.ota import ESPHomeOTAComponent
from esphome.const import ( from esphome.const import (
CONF_ID, CONF_ESPHOME,
CONF_OTA,
DEVICE_CLASS_RESTART, DEVICE_CLASS_RESTART,
ENTITY_CATEGORY_CONFIG, ENTITY_CATEGORY_CONFIG,
ICON_RESTART_ALERT, ICON_RESTART_ALERT,
) )
from .. import safe_mode_ns
DEPENDENCIES = ["ota"] DEPENDENCIES = ["ota.esphome"]
safe_mode_ns = cg.esphome_ns.namespace("safe_mode")
SafeModeButton = safe_mode_ns.class_("SafeModeButton", button.Button, cg.Component) SafeModeButton = safe_mode_ns.class_("SafeModeButton", button.Button, cg.Component)
CONFIG_SCHEMA = ( CONFIG_SCHEMA = (
@ -22,15 +21,14 @@ CONFIG_SCHEMA = (
entity_category=ENTITY_CATEGORY_CONFIG, entity_category=ENTITY_CATEGORY_CONFIG,
icon=ICON_RESTART_ALERT, icon=ICON_RESTART_ALERT,
) )
.extend({cv.GenerateID(CONF_OTA): cv.use_id(OTAComponent)}) .extend({cv.GenerateID(CONF_ESPHOME): cv.use_id(ESPHomeOTAComponent)})
.extend(cv.COMPONENT_SCHEMA) .extend(cv.COMPONENT_SCHEMA)
) )
async def to_code(config): async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID]) var = await button.new_button(config)
await cg.register_component(var, config) await cg.register_component(var, config)
await button.register_button(var, config)
ota = await cg.get_variable(config[CONF_OTA]) ota = await cg.get_variable(config[CONF_ESPHOME])
cg.add(var.set_ota(ota)) cg.add(var.set_ota(ota))

View file

@ -8,7 +8,7 @@ namespace safe_mode {
static const char *const TAG = "safe_mode.button"; static const char *const TAG = "safe_mode.button";
void SafeModeButton::set_ota(ota::OTAComponent *ota) { this->ota_ = ota; } void SafeModeButton::set_ota(esphome::ESPHomeOTAComponent *ota) { this->ota_ = ota; }
void SafeModeButton::press_action() { void SafeModeButton::press_action() {
ESP_LOGI(TAG, "Restarting device in safe mode..."); ESP_LOGI(TAG, "Restarting device in safe mode...");

View file

@ -1,8 +1,8 @@
#pragma once #pragma once
#include "esphome/core/component.h"
#include "esphome/components/ota/ota_component.h"
#include "esphome/components/button/button.h" #include "esphome/components/button/button.h"
#include "esphome/components/esphome/ota/ota_esphome.h"
#include "esphome/core/component.h"
namespace esphome { namespace esphome {
namespace safe_mode { namespace safe_mode {
@ -10,10 +10,10 @@ namespace safe_mode {
class SafeModeButton : public button::Button, public Component { class SafeModeButton : public button::Button, public Component {
public: public:
void dump_config() override; void dump_config() override;
void set_ota(ota::OTAComponent *ota); void set_ota(esphome::ESPHomeOTAComponent *ota);
protected: protected:
ota::OTAComponent *ota_; esphome::ESPHomeOTAComponent *ota_;
void press_action() override; void press_action() override;
}; };

View file

@ -1,26 +1,26 @@
import esphome.codegen as cg import esphome.codegen as cg
import esphome.config_validation as cv import esphome.config_validation as cv
from esphome.components import switch from esphome.components import switch
from esphome.components.ota import OTAComponent from esphome.components.esphome.ota import ESPHomeOTAComponent
from esphome.const import ( from esphome.const import (
CONF_OTA, CONF_ESPHOME,
ENTITY_CATEGORY_CONFIG, ENTITY_CATEGORY_CONFIG,
ICON_RESTART_ALERT, ICON_RESTART_ALERT,
) )
from .. import safe_mode_ns from .. import safe_mode_ns
DEPENDENCIES = ["ota"] DEPENDENCIES = ["ota.esphome"]
SafeModeSwitch = safe_mode_ns.class_("SafeModeSwitch", switch.Switch, cg.Component) SafeModeSwitch = safe_mode_ns.class_("SafeModeSwitch", switch.Switch, cg.Component)
CONFIG_SCHEMA = ( CONFIG_SCHEMA = (
switch.switch_schema( switch.switch_schema(
SafeModeSwitch, SafeModeSwitch,
icon=ICON_RESTART_ALERT,
entity_category=ENTITY_CATEGORY_CONFIG,
block_inverted=True, block_inverted=True,
entity_category=ENTITY_CATEGORY_CONFIG,
icon=ICON_RESTART_ALERT,
) )
.extend({cv.GenerateID(CONF_OTA): cv.use_id(OTAComponent)}) .extend({cv.GenerateID(CONF_ESPHOME): cv.use_id(ESPHomeOTAComponent)})
.extend(cv.COMPONENT_SCHEMA) .extend(cv.COMPONENT_SCHEMA)
) )
@ -29,5 +29,5 @@ async def to_code(config):
var = await switch.new_switch(config) var = await switch.new_switch(config)
await cg.register_component(var, config) await cg.register_component(var, config)
ota = await cg.get_variable(config[CONF_OTA]) ota = await cg.get_variable(config[CONF_ESPHOME])
cg.add(var.set_ota(ota)) cg.add(var.set_ota(ota))

View file

@ -1,14 +1,14 @@
#include "safe_mode_switch.h" #include "safe_mode_switch.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h" #include "esphome/core/hal.h"
#include "esphome/core/log.h" #include "esphome/core/log.h"
#include "esphome/core/application.h"
namespace esphome { namespace esphome {
namespace safe_mode { namespace safe_mode {
static const char *const TAG = "safe_mode_switch"; static const char *const TAG = "safe_mode_switch";
void SafeModeSwitch::set_ota(ota::OTAComponent *ota) { this->ota_ = ota; } void SafeModeSwitch::set_ota(esphome::ESPHomeOTAComponent *ota) { this->ota_ = ota; }
void SafeModeSwitch::write_state(bool state) { void SafeModeSwitch::write_state(bool state) {
// Acknowledge // Acknowledge

View file

@ -1,8 +1,8 @@
#pragma once #pragma once
#include "esphome/core/component.h" #include "esphome/components/esphome/ota/ota_esphome.h"
#include "esphome/components/ota/ota_component.h"
#include "esphome/components/switch/switch.h" #include "esphome/components/switch/switch.h"
#include "esphome/core/component.h"
namespace esphome { namespace esphome {
namespace safe_mode { namespace safe_mode {
@ -10,10 +10,10 @@ namespace safe_mode {
class SafeModeSwitch : public switch_::Switch, public Component { class SafeModeSwitch : public switch_::Switch, public Component {
public: public:
void dump_config() override; void dump_config() override;
void set_ota(ota::OTAComponent *ota); void set_ota(esphome::ESPHomeOTAComponent *ota);
protected: protected:
ota::OTAComponent *ota_; esphome::ESPHomeOTAComponent *ota_;
void write_state(bool state) override; void write_state(bool state) override;
}; };

View file

@ -113,7 +113,7 @@ async def new_select(config, *, options: list[str]):
return var return var
@coroutine_with_priority(40.0) @coroutine_with_priority(100.0)
async def to_code(config): async def to_code(config):
cg.add_define("USE_SELECT") cg.add_define("USE_SELECT")
cg.add_global(select_ns.using) cg.add_global(select_ns.using)

View file

@ -912,7 +912,7 @@ def _lstsq(a, b):
return _mat_dot(_mat_dot(x, a_t), b) return _mat_dot(_mat_dot(x, a_t), b)
@coroutine_with_priority(40.0) @coroutine_with_priority(100.0)
async def to_code(config): async def to_code(config):
cg.add_define("USE_SENSOR") cg.add_define("USE_SENSOR")
cg.add_global(sensor_ns.using) cg.add_global(sensor_ns.using)

View file

@ -4,7 +4,7 @@ import esphome.config_validation as cv
from esphome import core from esphome import core
from esphome.const import CONF_SUBSTITUTIONS, VALID_SUBSTITUTIONS_CHARACTERS from esphome.const import CONF_SUBSTITUTIONS, VALID_SUBSTITUTIONS_CHARACTERS
from esphome.yaml_util import ESPHomeDataBase, make_data_base from esphome.yaml_util import ESPHomeDataBase, make_data_base
from esphome.config_helpers import merge_config from esphome.config_helpers import merge_config, Extend, Remove
CODEOWNERS = ["@esphome/core"] CODEOWNERS = ["@esphome/core"]
_LOGGER = logging.getLogger(__name__) _LOGGER = logging.getLogger(__name__)
@ -105,7 +105,7 @@ def _substitute_item(substitutions, item, path, ignore_missing):
sub = _expand_substitutions(substitutions, item, path, ignore_missing) sub = _expand_substitutions(substitutions, item, path, ignore_missing)
if sub != item: if sub != item:
return sub return sub
elif isinstance(item, core.Lambda): elif isinstance(item, (core.Lambda, Extend, Remove)):
sub = _expand_substitutions(substitutions, item.value, path, ignore_missing) sub = _expand_substitutions(substitutions, item.value, path, ignore_missing)
if sub != item: if sub != item:
item.value = sub item.value = sub

View file

@ -17,7 +17,6 @@ from esphome.const import (
CONF_YEAR, CONF_YEAR,
) )
from esphome.core import coroutine_with_priority
from .. import template_ns from .. import template_ns
CODEOWNERS = ["@rfdarter"] CODEOWNERS = ["@rfdarter"]
@ -100,7 +99,6 @@ CONFIG_SCHEMA = cv.All(
) )
@coroutine_with_priority(-100.0)
async def to_code(config): async def to_code(config):
var = await datetime.new_datetime(config) var = await datetime.new_datetime(config)

View file

@ -108,7 +108,7 @@ async def new_text(
return var return var
@coroutine_with_priority(40.0) @coroutine_with_priority(100.0)
async def to_code(config): async def to_code(config):
cg.add_define("USE_TEXT") cg.add_define("USE_TEXT")
cg.add_global(text_ns.using) cg.add_global(text_ns.using)

View file

@ -33,6 +33,7 @@ from esphome.const import (
CONF_KEY, CONF_KEY,
CONF_USERNAME, CONF_USERNAME,
CONF_EAP, CONF_EAP,
CONF_TTLS_PHASE_2,
CONF_ON_CONNECT, CONF_ON_CONNECT,
CONF_ON_DISCONNECT, CONF_ON_DISCONNECT,
) )
@ -98,6 +99,14 @@ STA_MANUAL_IP_SCHEMA = AP_MANUAL_IP_SCHEMA.extend(
} }
) )
TTLS_PHASE_2 = {
"pap": cg.global_ns.ESP_EAP_TTLS_PHASE2_PAP,
"chap": cg.global_ns.ESP_EAP_TTLS_PHASE2_CHAP,
"mschap": cg.global_ns.ESP_EAP_TTLS_PHASE2_MSCHAP,
"mschapv2": cg.global_ns.ESP_EAP_TTLS_PHASE2_MSCHAPV2,
"eap": cg.global_ns.ESP_EAP_TTLS_PHASE2_EAP,
}
EAP_AUTH_SCHEMA = cv.All( EAP_AUTH_SCHEMA = cv.All(
cv.Schema( cv.Schema(
{ {
@ -105,6 +114,9 @@ EAP_AUTH_SCHEMA = cv.All(
cv.Optional(CONF_USERNAME): cv.string_strict, cv.Optional(CONF_USERNAME): cv.string_strict,
cv.Optional(CONF_PASSWORD): cv.string_strict, cv.Optional(CONF_PASSWORD): cv.string_strict,
cv.Optional(CONF_CERTIFICATE_AUTHORITY): wpa2_eap.validate_certificate, cv.Optional(CONF_CERTIFICATE_AUTHORITY): wpa2_eap.validate_certificate,
cv.Optional(CONF_TTLS_PHASE_2): cv.All(
cv.enum(TTLS_PHASE_2), cv.only_with_esp_idf
),
cv.Inclusive( cv.Inclusive(
CONF_CERTIFICATE, "certificate_and_key" CONF_CERTIFICATE, "certificate_and_key"
): wpa2_eap.validate_certificate, ): wpa2_eap.validate_certificate,
@ -338,6 +350,7 @@ def eap_auth(config):
("ca_cert", ca_cert), ("ca_cert", ca_cert),
("client_cert", client_cert), ("client_cert", client_cert),
("client_key", key), ("client_key", key),
("ttls_phase_2", config.get(CONF_TTLS_PHASE_2, TTLS_PHASE_2["mschapv2"])),
) )

View file

@ -1,5 +1,14 @@
#include "wifi_component.h" #include "wifi_component.h"
#include <cinttypes> #include <cinttypes>
#include <map>
#ifdef USE_ESP_IDF
#if (ESP_IDF_VERSION_MAJOR >= 5 && ESP_IDF_VERSION_MINOR >= 1)
#include <esp_eap_client.h>
#else
#include <esp_wpa2.h>
#endif
#endif
#if defined(USE_ESP32) || defined(USE_ESP_IDF) #if defined(USE_ESP32) || defined(USE_ESP_IDF)
#include <esp_wifi.h> #include <esp_wifi.h>
@ -318,6 +327,16 @@ void WiFiComponent::start_connecting(const WiFiAP &ap, bool two) {
ESP_LOGV(TAG, " Identity: " LOG_SECRET("'%s'"), eap_config.identity.c_str()); ESP_LOGV(TAG, " Identity: " LOG_SECRET("'%s'"), eap_config.identity.c_str());
ESP_LOGV(TAG, " Username: " LOG_SECRET("'%s'"), eap_config.username.c_str()); ESP_LOGV(TAG, " Username: " LOG_SECRET("'%s'"), eap_config.username.c_str());
ESP_LOGV(TAG, " Password: " LOG_SECRET("'%s'"), eap_config.password.c_str()); ESP_LOGV(TAG, " Password: " LOG_SECRET("'%s'"), eap_config.password.c_str());
#ifdef USE_ESP_IDF
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERBOSE
std::map<esp_eap_ttls_phase2_types, std::string> phase2types = {{ESP_EAP_TTLS_PHASE2_PAP, "pap"},
{ESP_EAP_TTLS_PHASE2_CHAP, "chap"},
{ESP_EAP_TTLS_PHASE2_MSCHAP, "mschap"},
{ESP_EAP_TTLS_PHASE2_MSCHAPV2, "mschapv2"},
{ESP_EAP_TTLS_PHASE2_EAP, "eap"}};
ESP_LOGV(TAG, " TTLS Phase 2: " LOG_SECRET("'%s'"), phase2types[eap_config.ttls_phase_2].c_str());
#endif
#endif
bool ca_cert_present = eap_config.ca_cert != nullptr && strlen(eap_config.ca_cert); bool ca_cert_present = eap_config.ca_cert != nullptr && strlen(eap_config.ca_cert);
bool client_cert_present = eap_config.client_cert != nullptr && strlen(eap_config.client_cert); bool client_cert_present = eap_config.client_cert != nullptr && strlen(eap_config.client_cert);
bool client_key_present = eap_config.client_key != nullptr && strlen(eap_config.client_key); bool client_key_present = eap_config.client_key != nullptr && strlen(eap_config.client_key);

View file

@ -19,6 +19,10 @@
#include <WiFi.h> #include <WiFi.h>
#endif #endif
#if defined(USE_ESP_IDF) && defined(USE_WIFI_WPA2_EAP)
#include <esp_wpa2.h>
#endif
#ifdef USE_ESP8266 #ifdef USE_ESP8266
#include <ESP8266WiFi.h> #include <ESP8266WiFi.h>
#include <ESP8266WiFiType.h> #include <ESP8266WiFiType.h>
@ -102,6 +106,10 @@ struct EAPAuth {
// used for EAP-TLS // used for EAP-TLS
const char *client_cert; const char *client_cert;
const char *client_key; const char *client_key;
// used for EAP-TTLS
#ifdef USE_ESP_IDF
esp_eap_ttls_phase2_types ttls_phase_2;
#endif
}; };
#endif // USE_WIFI_WPA2_EAP #endif // USE_WIFI_WPA2_EAP

View file

@ -2,6 +2,7 @@
#ifdef USE_ESP32_FRAMEWORK_ARDUINO #ifdef USE_ESP32_FRAMEWORK_ARDUINO
#include <esp_netif.h>
#include <esp_wifi.h> #include <esp_wifi.h>
#include <algorithm> #include <algorithm>
@ -24,45 +25,73 @@ namespace wifi {
static const char *const TAG = "wifi_esp32"; static const char *const TAG = "wifi_esp32";
static esp_netif_t *s_sta_netif = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
#ifdef USE_WIFI_AP
static esp_netif_t *s_ap_netif = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
#endif // USE_WIFI_AP
static bool s_sta_connecting = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) static bool s_sta_connecting = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void WiFiComponent::wifi_pre_setup_() {
auto f = std::bind(&WiFiComponent::wifi_event_callback_, this, std::placeholders::_1, std::placeholders::_2);
WiFi.onEvent(f);
WiFi.persistent(false);
// Make sure WiFi is in clean state before anything starts
this->wifi_mode_(false, false);
}
bool WiFiComponent::wifi_mode_(optional<bool> sta, optional<bool> ap) { bool WiFiComponent::wifi_mode_(optional<bool> sta, optional<bool> ap) {
uint8_t current_mode = WiFiClass::getMode(); wifi_mode_t current_mode = WiFiClass::getMode();
bool current_sta = current_mode & 0b01; bool current_sta = current_mode == WIFI_MODE_STA || current_mode == WIFI_MODE_APSTA;
bool current_ap = current_mode & 0b10; bool current_ap = current_mode == WIFI_MODE_AP || current_mode == WIFI_MODE_APSTA;
bool enable_sta = sta.value_or(current_sta);
bool enable_ap = ap.value_or(current_ap); bool set_sta = sta.value_or(current_sta);
if (current_sta == enable_sta && current_ap == enable_ap) bool set_ap = ap.value_or(current_ap);
wifi_mode_t set_mode;
if (set_sta && set_ap) {
set_mode = WIFI_MODE_APSTA;
} else if (set_sta && !set_ap) {
set_mode = WIFI_MODE_STA;
} else if (!set_sta && set_ap) {
set_mode = WIFI_MODE_AP;
} else {
set_mode = WIFI_MODE_NULL;
}
if (current_mode == set_mode)
return true; return true;
if (enable_sta && !current_sta) { if (set_sta && !current_sta) {
ESP_LOGV(TAG, "Enabling STA."); ESP_LOGV(TAG, "Enabling STA.");
} else if (!enable_sta && current_sta) { } else if (!set_sta && current_sta) {
ESP_LOGV(TAG, "Disabling STA."); ESP_LOGV(TAG, "Disabling STA.");
} }
if (enable_ap && !current_ap) { if (set_ap && !current_ap) {
ESP_LOGV(TAG, "Enabling AP."); ESP_LOGV(TAG, "Enabling AP.");
} else if (!enable_ap && current_ap) { } else if (!set_ap && current_ap) {
ESP_LOGV(TAG, "Disabling AP."); ESP_LOGV(TAG, "Disabling AP.");
} }
uint8_t mode = 0; bool ret = WiFiClass::mode(set_mode);
if (enable_sta)
mode |= 0b01;
if (enable_ap)
mode |= 0b10;
bool ret = WiFiClass::mode(static_cast<wifi_mode_t>(mode));
if (!ret) { if (!ret) {
ESP_LOGW(TAG, "Setting WiFi mode failed!"); ESP_LOGW(TAG, "Setting WiFi mode failed!");
return false;
} }
// WiFiClass::mode above calls esp_netif_create_default_wifi_sta() and
// esp_netif_create_default_wifi_ap(), which creates the interfaces.
if (set_sta)
s_sta_netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
#ifdef USE_WIFI_AP
if (set_ap)
s_ap_netif = esp_netif_get_handle_from_ifkey("WIFI_AP_DEF");
#endif
return ret; return ret;
} }
bool WiFiComponent::wifi_apply_output_power_(float output_power) {
int8_t val = static_cast<int8_t>(output_power * 4);
return esp_wifi_set_max_tx_power(val) == ESP_OK;
}
bool WiFiComponent::wifi_sta_pre_setup_() { bool WiFiComponent::wifi_sta_pre_setup_() {
if (!this->wifi_mode_(true, {})) if (!this->wifi_mode_(true, {}))
return false; return false;
@ -71,6 +100,12 @@ bool WiFiComponent::wifi_sta_pre_setup_() {
delay(10); delay(10);
return true; return true;
} }
bool WiFiComponent::wifi_apply_output_power_(float output_power) {
int8_t val = static_cast<int8_t>(output_power * 4);
return esp_wifi_set_max_tx_power(val) == ESP_OK;
}
bool WiFiComponent::wifi_apply_power_save_() { bool WiFiComponent::wifi_apply_power_save_() {
wifi_ps_type_t power_save; wifi_ps_type_t power_save;
switch (this->power_save_) { switch (this->power_save_) {
@ -87,99 +122,7 @@ bool WiFiComponent::wifi_apply_power_save_() {
} }
return esp_wifi_set_ps(power_save) == ESP_OK; return esp_wifi_set_ps(power_save) == ESP_OK;
} }
bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
tcpip_adapter_dhcp_status_t dhcp_status;
tcpip_adapter_dhcpc_get_status(TCPIP_ADAPTER_IF_STA, &dhcp_status);
if (!manual_ip.has_value()) {
// lwIP starts the SNTP client if it gets an SNTP server from DHCP. We don't need the time, and more importantly,
// the built-in SNTP client has a memory leak in certain situations. Disable this feature.
// https://github.com/esphome/issues/issues/2299
sntp_servermode_dhcp(false);
// Use DHCP client
if (dhcp_status != TCPIP_ADAPTER_DHCP_STARTED) {
esp_err_t err = tcpip_adapter_dhcpc_start(TCPIP_ADAPTER_IF_STA);
if (err != ESP_OK) {
ESP_LOGV(TAG, "Starting DHCP client failed! %d", err);
}
return err == ESP_OK;
}
return true;
}
tcpip_adapter_ip_info_t info;
memset(&info, 0, sizeof(info));
info.ip = manual_ip->static_ip;
info.gw = manual_ip->gateway;
info.netmask = manual_ip->subnet;
esp_err_t dhcp_stop_ret = tcpip_adapter_dhcpc_stop(TCPIP_ADAPTER_IF_STA);
if (dhcp_stop_ret != ESP_OK && dhcp_stop_ret != ESP_ERR_TCPIP_ADAPTER_DHCP_ALREADY_STOPPED) {
ESP_LOGV(TAG, "Stopping DHCP client failed! %s", esp_err_to_name(dhcp_stop_ret));
}
esp_err_t wifi_set_info_ret = tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_STA, &info);
if (wifi_set_info_ret != ESP_OK) {
ESP_LOGV(TAG, "Setting manual IP info failed! %s", esp_err_to_name(wifi_set_info_ret));
}
ip_addr_t dns;
// TODO: is this needed?
#if LWIP_IPV6
dns.type = IPADDR_TYPE_V4;
#endif /* LWIP_IPV6 */
if (manual_ip->dns1.is_set()) {
dns = manual_ip->dns1;
dns_setserver(0, &dns);
}
if (manual_ip->dns2.is_set()) {
dns = manual_ip->dns2;
dns_setserver(1, &dns);
}
return true;
}
network::IPAddresses WiFiComponent::wifi_sta_ip_addresses() {
if (!this->has_sta())
return {};
network::IPAddresses addresses;
tcpip_adapter_ip_info_t ip;
esp_err_t err = tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_get_ip_info failed: %s", esp_err_to_name(err));
// TODO: do something smarter
// return false;
} else {
addresses[0] = network::IPAddress(&ip.ip);
}
#if USE_NETWORK_IPV6
ip6_addr_t ipv6;
err = tcpip_adapter_get_ip6_global(TCPIP_ADAPTER_IF_STA, &ipv6);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_get_ip6_gobal failed: %s", esp_err_to_name(err));
} else {
addresses[1] = network::IPAddress(&ipv6);
}
err = tcpip_adapter_get_ip6_linklocal(TCPIP_ADAPTER_IF_STA, &ipv6);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_get_ip6_linklocal failed: %s", esp_err_to_name(err));
} else {
addresses[2] = network::IPAddress(&ipv6);
}
#endif /* USE_NETWORK_IPV6 */
return addresses;
}
bool WiFiComponent::wifi_apply_hostname_() {
// setting is done in SYSTEM_EVENT_STA_START callback
return true;
}
bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) { bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) {
// enable STA // enable STA
if (!this->wifi_mode_(true, {})) if (!this->wifi_mode_(true, {}))
@ -233,19 +176,24 @@ bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) {
wifi_config_t current_conf; wifi_config_t current_conf;
esp_err_t err; esp_err_t err;
esp_wifi_get_config(WIFI_IF_STA, &current_conf); err = esp_wifi_get_config(WIFI_IF_STA, &current_conf);
if (err != ERR_OK) {
ESP_LOGW(TAG, "esp_wifi_get_config failed: %s", esp_err_to_name(err));
// can continue
}
if (memcmp(&current_conf, &conf, sizeof(wifi_config_t)) != 0) { // NOLINT if (memcmp(&current_conf, &conf, sizeof(wifi_config_t)) != 0) { // NOLINT
err = esp_wifi_disconnect(); err = esp_wifi_disconnect();
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_disconnect failed! %d", err); ESP_LOGV(TAG, "esp_wifi_disconnect failed: %s", esp_err_to_name(err));
return false; return false;
} }
} }
err = esp_wifi_set_config(WIFI_IF_STA, &conf); err = esp_wifi_set_config(WIFI_IF_STA, &conf);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_set_config failed! %d", err); ESP_LOGV(TAG, "esp_wifi_set_config failed: %s", esp_err_to_name(err));
return false;
} }
if (!this->wifi_sta_ip_config_(ap.get_manual_ip())) { if (!this->wifi_sta_ip_config_(ap.get_manual_ip())) {
@ -304,12 +252,98 @@ bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) {
err = esp_wifi_connect(); err = esp_wifi_connect();
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_connect failed! %d", err); ESP_LOGW(TAG, "esp_wifi_connect failed: %s", esp_err_to_name(err));
return false; return false;
} }
return true; return true;
} }
bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
esp_netif_dhcp_status_t dhcp_status;
esp_err_t err = esp_netif_dhcpc_get_status(s_sta_netif, &dhcp_status);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_dhcpc_get_status failed: %s", esp_err_to_name(err));
return false;
}
if (!manual_ip.has_value()) {
// lwIP starts the SNTP client if it gets an SNTP server from DHCP. We don't need the time, and more importantly,
// the built-in SNTP client has a memory leak in certain situations. Disable this feature.
// https://github.com/esphome/issues/issues/2299
sntp_servermode_dhcp(false);
// No manual IP is set; use DHCP client
if (dhcp_status != ESP_NETIF_DHCP_STARTED) {
err = esp_netif_dhcpc_start(s_sta_netif);
if (err != ESP_OK) {
ESP_LOGV(TAG, "Starting DHCP client failed! %d", err);
}
return err == ESP_OK;
}
return true;
}
esp_netif_ip_info_t info; // struct of ip4_addr_t with ip, netmask, gw
info.ip = manual_ip->static_ip;
info.gw = manual_ip->gateway;
info.netmask = manual_ip->subnet;
err = esp_netif_dhcpc_stop(s_sta_netif);
if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) {
ESP_LOGV(TAG, "Stopping DHCP client failed! %s", esp_err_to_name(err));
}
err = esp_netif_set_ip_info(s_sta_netif, &info);
if (err != ESP_OK) {
ESP_LOGV(TAG, "Setting manual IP info failed! %s", esp_err_to_name(err));
}
esp_netif_dns_info_t dns;
if (manual_ip->dns1.is_set()) {
dns.ip = manual_ip->dns1;
esp_netif_set_dns_info(s_sta_netif, ESP_NETIF_DNS_MAIN, &dns);
}
if (manual_ip->dns2.is_set()) {
dns.ip = manual_ip->dns2;
esp_netif_set_dns_info(s_sta_netif, ESP_NETIF_DNS_BACKUP, &dns);
}
return true;
}
network::IPAddresses WiFiComponent::wifi_sta_ip_addresses() {
if (!this->has_sta())
return {};
network::IPAddresses addresses;
esp_netif_ip_info_t ip;
esp_err_t err = esp_netif_get_ip_info(s_sta_netif, &ip);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_get_ip_info failed: %s", esp_err_to_name(err));
// TODO: do something smarter
// return false;
} else {
addresses[0] = network::IPAddress(&ip.ip);
}
#if USE_NETWORK_IPV6
struct esp_ip6_addr if_ip6s[CONFIG_LWIP_IPV6_NUM_ADDRESSES];
uint8_t count = 0;
count = esp_netif_get_all_ip6(s_sta_netif, if_ip6s);
assert(count <= CONFIG_LWIP_IPV6_NUM_ADDRESSES);
for (int i = 0; i < count; i++) {
addresses[i + 1] = network::IPAddress(&if_ip6s[i]);
}
#endif /* USE_NETWORK_IPV6 */
return addresses;
}
bool WiFiComponent::wifi_apply_hostname_() {
// setting is done in SYSTEM_EVENT_STA_START callback
return true;
}
const char *get_auth_mode_str(uint8_t mode) { const char *get_auth_mode_str(uint8_t mode) {
switch (mode) { switch (mode) {
case WIFI_AUTH_OPEN: case WIFI_AUTH_OPEN:
@ -324,6 +358,12 @@ const char *get_auth_mode_str(uint8_t mode) {
return "WPA/WPA2 PSK"; return "WPA/WPA2 PSK";
case WIFI_AUTH_WPA2_ENTERPRISE: case WIFI_AUTH_WPA2_ENTERPRISE:
return "WPA2 Enterprise"; return "WPA2 Enterprise";
case WIFI_AUTH_WPA3_PSK:
return "WPA3 PSK";
case WIFI_AUTH_WPA2_WPA3_PSK:
return "WPA2/WPA3 PSK";
case WIFI_AUTH_WAPI_PSK:
return "WAPI PSK";
default: default:
return "UNKNOWN"; return "UNKNOWN";
} }
@ -409,12 +449,16 @@ const char *get_disconnect_reason_str(uint8_t reason) {
return "Handshake Failed"; return "Handshake Failed";
case WIFI_REASON_CONNECTION_FAIL: case WIFI_REASON_CONNECTION_FAIL:
return "Connection Failed"; return "Connection Failed";
case WIFI_REASON_ROAMING:
return "Station Roaming";
case WIFI_REASON_UNSPECIFIED: case WIFI_REASON_UNSPECIFIED:
default: default:
return "Unspecified"; return "Unspecified";
} }
} }
void WiFiComponent::wifi_loop_() {}
#define ESPHOME_EVENT_ID_WIFI_READY ARDUINO_EVENT_WIFI_READY #define ESPHOME_EVENT_ID_WIFI_READY ARDUINO_EVENT_WIFI_READY
#define ESPHOME_EVENT_ID_WIFI_SCAN_DONE ARDUINO_EVENT_WIFI_SCAN_DONE #define ESPHOME_EVENT_ID_WIFI_SCAN_DONE ARDUINO_EVENT_WIFI_SCAN_DONE
#define ESPHOME_EVENT_ID_WIFI_STA_START ARDUINO_EVENT_WIFI_STA_START #define ESPHOME_EVENT_ID_WIFI_STA_START ARDUINO_EVENT_WIFI_STA_START
@ -450,7 +494,11 @@ void WiFiComponent::wifi_event_callback_(esphome_wifi_event_id_t event, esphome_
} }
case ESPHOME_EVENT_ID_WIFI_STA_START: { case ESPHOME_EVENT_ID_WIFI_STA_START: {
ESP_LOGV(TAG, "Event: WiFi STA start"); ESP_LOGV(TAG, "Event: WiFi STA start");
tcpip_adapter_set_hostname(TCPIP_ADAPTER_IF_STA, App.get_name().c_str()); // apply hostname
esp_err_t err = esp_netif_set_hostname(s_sta_netif, App.get_name().c_str());
if (err != ERR_OK) {
ESP_LOGW(TAG, "esp_netif_set_hostname failed: %s", esp_err_to_name(err));
}
break; break;
} }
case ESPHOME_EVENT_ID_WIFI_STA_STOP: { case ESPHOME_EVENT_ID_WIFI_STA_STOP: {
@ -573,22 +621,19 @@ void WiFiComponent::wifi_event_callback_(esphome_wifi_event_id_t event, esphome_
break; break;
} }
} }
void WiFiComponent::wifi_pre_setup_() {
auto f = std::bind(&WiFiComponent::wifi_event_callback_, this, std::placeholders::_1, std::placeholders::_2);
WiFi.onEvent(f);
WiFi.persistent(false);
// Make sure WiFi is in clean state before anything starts
this->wifi_mode_(false, false);
}
WiFiSTAConnectStatus WiFiComponent::wifi_sta_connect_status_() { WiFiSTAConnectStatus WiFiComponent::wifi_sta_connect_status_() {
auto status = WiFiClass::status(); auto status = WiFiClass::status();
if (status == WL_CONNECT_FAILED || status == WL_CONNECTION_LOST) { if (status == WL_CONNECT_FAILED || status == WL_CONNECTION_LOST) {
return WiFiSTAConnectStatus::ERROR_CONNECT_FAILED; return WiFiSTAConnectStatus::ERROR_CONNECT_FAILED;
} else if (status == WL_NO_SSID_AVAIL) { }
if (status == WL_NO_SSID_AVAIL) {
return WiFiSTAConnectStatus::ERROR_NETWORK_NOT_FOUND; return WiFiSTAConnectStatus::ERROR_NETWORK_NOT_FOUND;
} else if (s_sta_connecting) { }
if (s_sta_connecting) {
return WiFiSTAConnectStatus::CONNECTING; return WiFiSTAConnectStatus::CONNECTING;
} else if (status == WL_CONNECTED) { }
if (status == WL_CONNECTED) {
return WiFiSTAConnectStatus::CONNECTED; return WiFiSTAConnectStatus::CONNECTED;
} }
return WiFiSTAConnectStatus::IDLE; return WiFiSTAConnectStatus::IDLE;
@ -638,8 +683,7 @@ bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
if (!this->wifi_mode_({}, true)) if (!this->wifi_mode_({}, true))
return false; return false;
tcpip_adapter_ip_info_t info; esp_netif_ip_info_t info;
memset(&info, 0, sizeof(info));
if (manual_ip.has_value()) { if (manual_ip.has_value()) {
info.ip = manual_ip->static_ip; info.ip = manual_ip->static_ip;
info.gw = manual_ip->gateway; info.gw = manual_ip->gateway;
@ -649,17 +693,16 @@ bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
info.gw = network::IPAddress(192, 168, 4, 1); info.gw = network::IPAddress(192, 168, 4, 1);
info.netmask = network::IPAddress(255, 255, 255, 0); info.netmask = network::IPAddress(255, 255, 255, 0);
} }
tcpip_adapter_dhcp_status_t dhcp_status;
tcpip_adapter_dhcps_get_status(TCPIP_ADAPTER_IF_AP, &dhcp_status); err = esp_netif_dhcpc_stop(s_ap_netif);
err = tcpip_adapter_dhcps_stop(TCPIP_ADAPTER_IF_AP); if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) {
if (err != ESP_OK) { ESP_LOGV(TAG, "esp_netif_dhcpc_stop failed: %s", esp_err_to_name(err));
ESP_LOGV(TAG, "tcpip_adapter_dhcps_stop failed! %d", err);
return false; return false;
} }
err = tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_AP, &info); err = esp_netif_set_ip_info(s_ap_netif, &info);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "tcpip_adapter_set_ip_info failed! %d", err); ESP_LOGV(TAG, "esp_netif_set_ip_info failed! %d", err);
return false; return false;
} }
@ -672,17 +715,17 @@ bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
start_address += 100; start_address += 100;
lease.end_ip = start_address; lease.end_ip = start_address;
ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.str().c_str()); ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.str().c_str());
err = tcpip_adapter_dhcps_option(TCPIP_ADAPTER_OP_SET, TCPIP_ADAPTER_REQUESTED_IP_ADDRESS, &lease, sizeof(lease)); err = esp_netif_dhcps_option(s_ap_netif, ESP_NETIF_OP_SET, ESP_NETIF_REQUESTED_IP_ADDRESS, &lease, sizeof(lease));
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "tcpip_adapter_dhcps_option failed! %d", err); ESP_LOGV(TAG, "esp_netif_dhcps_option failed! %d", err);
return false; return false;
} }
err = tcpip_adapter_dhcps_start(TCPIP_ADAPTER_IF_AP); err = esp_netif_dhcps_start(s_ap_netif);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "tcpip_adapter_dhcps_start failed! %d", err); ESP_LOGV(TAG, "esp_netif_dhcps_start failed! %d", err);
return false; return false;
} }
@ -710,6 +753,7 @@ bool WiFiComponent::wifi_start_ap_(const WiFiAP &ap) {
strncpy(reinterpret_cast<char *>(conf.ap.password), ap.get_password().c_str(), sizeof(conf.ap.password)); strncpy(reinterpret_cast<char *>(conf.ap.password), ap.get_password().c_str(), sizeof(conf.ap.password));
} }
// pairwise cipher of SoftAP, group cipher will be derived using this.
conf.ap.pairwise_cipher = WIFI_CIPHER_TYPE_CCMP; conf.ap.pairwise_cipher = WIFI_CIPHER_TYPE_CCMP;
esp_err_t err = esp_wifi_set_config(WIFI_IF_AP, &conf); esp_err_t err = esp_wifi_set_config(WIFI_IF_AP, &conf);
@ -729,8 +773,8 @@ bool WiFiComponent::wifi_start_ap_(const WiFiAP &ap) {
} }
network::IPAddress WiFiComponent::wifi_soft_ap_ip() { network::IPAddress WiFiComponent::wifi_soft_ap_ip() {
tcpip_adapter_ip_info_t ip; esp_netif_ip_info_t ip;
tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_AP, &ip); esp_netif_get_ip_info(s_ap_netif, &ip);
return network::IPAddress(&ip.ip); return network::IPAddress(&ip.ip);
} }
#endif // USE_WIFI_AP #endif // USE_WIFI_AP
@ -752,7 +796,6 @@ int32_t WiFiComponent::wifi_channel_() { return WiFi.channel(); }
network::IPAddress WiFiComponent::wifi_subnet_mask_() { return network::IPAddress(WiFi.subnetMask()); } network::IPAddress WiFiComponent::wifi_subnet_mask_() { return network::IPAddress(WiFi.subnetMask()); }
network::IPAddress WiFiComponent::wifi_gateway_ip_() { return network::IPAddress(WiFi.gatewayIP()); } network::IPAddress WiFiComponent::wifi_gateway_ip_() { return network::IPAddress(WiFi.gatewayIP()); }
network::IPAddress WiFiComponent::wifi_dns_ip_(int num) { return network::IPAddress(WiFi.dnsIP(num)); } network::IPAddress WiFiComponent::wifi_dns_ip_(int num) { return network::IPAddress(WiFi.dnsIP(num)); }
void WiFiComponent::wifi_loop_() {}
} // namespace wifi } // namespace wifi
} // namespace esphome } // namespace esphome

View file

@ -2,18 +2,18 @@
#ifdef USE_ESP_IDF #ifdef USE_ESP_IDF
#include <freertos/FreeRTOS.h> #include <esp_event.h>
#include <freertos/task.h> #include <esp_netif.h>
#include <freertos/event_groups.h>
#include <esp_system.h> #include <esp_system.h>
#include <esp_wifi.h> #include <esp_wifi.h>
#include <esp_wifi_types.h> #include <esp_wifi_types.h>
#include <esp_event.h> #include <freertos/FreeRTOS.h>
#include <esp_netif.h> #include <freertos/event_groups.h>
#include <freertos/task.h>
#include <algorithm>
#include <cinttypes> #include <cinttypes>
#include <utility> #include <utility>
#include <algorithm>
#ifdef USE_WIFI_WPA2_EAP #ifdef USE_WIFI_WPA2_EAP
#include <esp_wpa2.h> #include <esp_wpa2.h>
#endif #endif
@ -22,13 +22,14 @@
#include "dhcpserver/dhcpserver.h" #include "dhcpserver/dhcpserver.h"
#endif // USE_WIFI_AP #endif // USE_WIFI_AP
#include "lwip/err.h" #include "lwip/apps/sntp.h"
#include "lwip/dns.h" #include "lwip/dns.h"
#include "lwip/err.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/helpers.h" #include "esphome/core/helpers.h"
#include "esphome/core/log.h" #include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include "esphome/core/application.h"
#include "esphome/core/util.h" #include "esphome/core/util.h"
namespace esphome { namespace esphome {
@ -196,8 +197,8 @@ bool WiFiComponent::wifi_mode_(optional<bool> sta, optional<bool> ap) {
bool current_sta = current_mode == WIFI_MODE_STA || current_mode == WIFI_MODE_APSTA; bool current_sta = current_mode == WIFI_MODE_STA || current_mode == WIFI_MODE_APSTA;
bool current_ap = current_mode == WIFI_MODE_AP || current_mode == WIFI_MODE_APSTA; bool current_ap = current_mode == WIFI_MODE_AP || current_mode == WIFI_MODE_APSTA;
bool set_sta = sta.has_value() ? *sta : current_sta; bool set_sta = sta.value_or(current_sta);
bool set_ap = ap.has_value() ? *ap : current_ap; bool set_ap = ap.value_or(current_ap);
wifi_mode_t set_mode; wifi_mode_t set_mode;
if (set_sta && set_ap) { if (set_sta && set_ap) {
@ -396,6 +397,11 @@ bool WiFiComponent::wifi_sta_connect_(const WiFiAP &ap) {
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_password failed! %d", err); ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_password failed! %d", err);
} }
// set TTLS Phase 2, defaults to MSCHAPV2
err = esp_wifi_sta_wpa2_ent_set_ttls_phase2_method(eap.ttls_phase_2);
if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_wifi_sta_wpa2_ent_set_ttls_phase2_method failed! %d", err);
}
} }
err = esp_wifi_sta_wpa2_ent_enable(); err = esp_wifi_sta_wpa2_ent_enable();
if (err != ESP_OK) { if (err != ESP_OK) {
@ -433,6 +439,11 @@ bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
} }
if (!manual_ip.has_value()) { if (!manual_ip.has_value()) {
// lwIP starts the SNTP client if it gets an SNTP server from DHCP. We don't need the time, and more importantly,
// the built-in SNTP client has a memory leak in certain situations. Disable this feature.
// https://github.com/esphome/issues/issues/2299
sntp_servermode_dhcp(false);
// No manual IP is set; use DHCP client // No manual IP is set; use DHCP client
if (dhcp_status != ESP_NETIF_DHCP_STARTED) { if (dhcp_status != ESP_NETIF_DHCP_STARTED) {
err = esp_netif_dhcpc_start(s_sta_netif); err = esp_netif_dhcpc_start(s_sta_netif);
@ -450,13 +461,12 @@ bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
info.netmask = manual_ip->subnet; info.netmask = manual_ip->subnet;
err = esp_netif_dhcpc_stop(s_sta_netif); err = esp_netif_dhcpc_stop(s_sta_netif);
if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) { if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) {
ESP_LOGV(TAG, "esp_netif_dhcpc_stop failed: %s", esp_err_to_name(err)); ESP_LOGV(TAG, "Stopping DHCP client failed! %s", esp_err_to_name(err));
return false;
} }
err = esp_netif_set_ip_info(s_sta_netif, &info); err = esp_netif_set_ip_info(s_sta_netif, &info);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_set_ip_info failed: %s", esp_err_to_name(err)); ESP_LOGV(TAG, "Setting manual IP info failed! %s", esp_err_to_name(err));
return false;
} }
esp_netif_dns_info_t dns; esp_netif_dns_info_t dns;
@ -790,7 +800,7 @@ bool WiFiComponent::wifi_scan_start_(bool passive) {
return false; return false;
} }
scan_done_ = false; this->scan_done_ = false;
return true; return true;
} }
@ -813,13 +823,13 @@ bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
info.netmask = network::IPAddress(255, 255, 255, 0); info.netmask = network::IPAddress(255, 255, 255, 0);
} }
err = esp_netif_dhcpc_stop(s_sta_netif); err = esp_netif_dhcpc_stop(s_ap_netif);
if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) { if (err != ESP_OK && err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) {
ESP_LOGV(TAG, "esp_netif_dhcpc_stop failed: %s", esp_err_to_name(err)); ESP_LOGV(TAG, "esp_netif_dhcpc_stop failed: %s", esp_err_to_name(err));
return false; return false;
} }
err = esp_netif_set_ip_info(s_sta_netif, &info); err = esp_netif_set_ip_info(s_ap_netif, &info);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_set_ip_info failed! %d", err); ESP_LOGV(TAG, "esp_netif_set_ip_info failed! %d", err);
return false; return false;
@ -834,14 +844,14 @@ bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
start_address += 100; start_address += 100;
lease.end_ip = start_address; lease.end_ip = start_address;
ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.str().c_str()); ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.str().c_str());
err = esp_netif_dhcps_option(s_sta_netif, ESP_NETIF_OP_SET, ESP_NETIF_REQUESTED_IP_ADDRESS, &lease, sizeof(lease)); err = esp_netif_dhcps_option(s_ap_netif, ESP_NETIF_OP_SET, ESP_NETIF_REQUESTED_IP_ADDRESS, &lease, sizeof(lease));
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_dhcps_option failed! %d", err); ESP_LOGV(TAG, "esp_netif_dhcps_option failed! %d", err);
return false; return false;
} }
err = esp_netif_dhcps_start(s_sta_netif); err = esp_netif_dhcps_start(s_ap_netif);
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGV(TAG, "esp_netif_dhcps_start failed! %d", err); ESP_LOGV(TAG, "esp_netif_dhcps_start failed! %d", err);
@ -888,25 +898,26 @@ bool WiFiComponent::wifi_start_ap_(const WiFiAP &ap) {
return true; return true;
} }
#endif // USE_WIFI_AP
network::IPAddress WiFiComponent::wifi_soft_ap_ip() { network::IPAddress WiFiComponent::wifi_soft_ap_ip() {
esp_netif_ip_info_t ip; esp_netif_ip_info_t ip;
esp_netif_get_ip_info(s_sta_netif, &ip); esp_netif_get_ip_info(s_ap_netif, &ip);
return network::IPAddress(&ip.ip); return network::IPAddress(&ip.ip);
} }
#endif // USE_WIFI_AP
bool WiFiComponent::wifi_disconnect_() { return esp_wifi_disconnect(); } bool WiFiComponent::wifi_disconnect_() { return esp_wifi_disconnect(); }
bssid_t WiFiComponent::wifi_bssid() { bssid_t WiFiComponent::wifi_bssid() {
bssid_t bssid{};
wifi_ap_record_t info; wifi_ap_record_t info;
esp_err_t err = esp_wifi_sta_get_ap_info(&info); esp_err_t err = esp_wifi_sta_get_ap_info(&info);
bssid_t res{};
if (err != ESP_OK) { if (err != ESP_OK) {
ESP_LOGW(TAG, "esp_wifi_sta_get_ap_info failed: %s", esp_err_to_name(err)); ESP_LOGW(TAG, "esp_wifi_sta_get_ap_info failed: %s", esp_err_to_name(err));
return res; return bssid;
} }
std::copy(info.bssid, info.bssid + 6, res.begin()); std::copy(info.bssid, info.bssid + 6, bssid.begin());
return res; return bssid;
} }
std::string WiFiComponent::wifi_ssid() { std::string WiFiComponent::wifi_ssid() {
wifi_ap_record_t info{}; wifi_ap_record_t info{};
@ -964,4 +975,4 @@ network::IPAddress WiFiComponent::wifi_dns_ip_(int num) {
} // namespace wifi } // namespace wifi
} // namespace esphome } // namespace esphome
#endif #endif // USE_ESP_IDF

View file

@ -8,6 +8,9 @@ class Extend:
def __str__(self): def __str__(self):
return f"!extend {self.value}" return f"!extend {self.value}"
def __repr__(self):
return f"Extend({self.value})"
def __eq__(self, b): def __eq__(self, b):
""" """
Check if two Extend objects contain the same ID. Check if two Extend objects contain the same ID.
@ -24,6 +27,9 @@ class Remove:
def __str__(self): def __str__(self):
return f"!remove {self.value}" return f"!remove {self.value}"
def __repr__(self):
return f"Remove({self.value})"
def __eq__(self, b): def __eq__(self, b):
""" """
Check if two Remove objects contain the same ID. Check if two Remove objects contain the same ID.
@ -50,14 +56,19 @@ def merge_config(full_old, full_new):
return new return new
res = old.copy() res = old.copy()
ids = { ids = {
v[CONF_ID]: i v_id: i
for i, v in enumerate(res) for i, v in enumerate(res)
if CONF_ID in v and isinstance(v[CONF_ID], str) if (v_id := v.get(CONF_ID)) and isinstance(v_id, str)
} }
extend_ids = {
v_id.value: i
for i, v in enumerate(res)
if (v_id := v.get(CONF_ID)) and isinstance(v_id, Extend)
}
ids_to_delete = [] ids_to_delete = []
for v in new: for v in new:
if CONF_ID in v: if new_id := v.get(CONF_ID):
new_id = v[CONF_ID]
if isinstance(new_id, Extend): if isinstance(new_id, Extend):
new_id = new_id.value new_id = new_id.value
if new_id in ids: if new_id in ids:
@ -69,6 +80,14 @@ def merge_config(full_old, full_new):
if new_id in ids: if new_id in ids:
ids_to_delete.append(ids[new_id]) ids_to_delete.append(ids[new_id])
continue continue
elif (
new_id in extend_ids
): # When a package is extending a non-packaged item
extend_res = res[extend_ids[new_id]]
extend_res[CONF_ID] = new_id
new_v = merge(v, extend_res)
res[extend_ids[new_id]] = new_v
continue
else: else:
ids[new_id] = len(res) ids[new_id] = len(res)
res.append(v) res.append(v)

View file

@ -367,6 +367,7 @@ CONF_IDLE_TIME = "idle_time"
CONF_IF = "if" CONF_IF = "if"
CONF_IGNORE_EFUSE_MAC_CRC = "ignore_efuse_mac_crc" CONF_IGNORE_EFUSE_MAC_CRC = "ignore_efuse_mac_crc"
CONF_IGNORE_OUT_OF_RANGE = "ignore_out_of_range" CONF_IGNORE_OUT_OF_RANGE = "ignore_out_of_range"
CONF_IGNORE_PIN_VALIDATION_ERROR = "ignore_pin_validation_error"
CONF_IGNORE_STRAPPING_WARNING = "ignore_strapping_warning" CONF_IGNORE_STRAPPING_WARNING = "ignore_strapping_warning"
CONF_IIR_FILTER = "iir_filter" CONF_IIR_FILTER = "iir_filter"
CONF_ILLUMINANCE = "illuminance" CONF_ILLUMINANCE = "illuminance"
@ -399,6 +400,7 @@ CONF_INVERT_COLORS = "invert_colors"
CONF_INVERTED = "inverted" CONF_INVERTED = "inverted"
CONF_IP_ADDRESS = "ip_address" CONF_IP_ADDRESS = "ip_address"
CONF_IRQ_PIN = "irq_pin" CONF_IRQ_PIN = "irq_pin"
CONF_IS_RGBW = "is_rgbw"
CONF_JS_INCLUDE = "js_include" CONF_JS_INCLUDE = "js_include"
CONF_JS_URL = "js_url" CONF_JS_URL = "js_url"
CONF_JVC = "jvc" CONF_JVC = "jvc"
@ -855,6 +857,7 @@ CONF_TRANSFORM = "transform"
CONF_TRANSITION_LENGTH = "transition_length" CONF_TRANSITION_LENGTH = "transition_length"
CONF_TRIGGER_ID = "trigger_id" CONF_TRIGGER_ID = "trigger_id"
CONF_TRIGGER_PIN = "trigger_pin" CONF_TRIGGER_PIN = "trigger_pin"
CONF_TTLS_PHASE_2 = "ttls_phase_2"
CONF_TUNE_ANTENNA = "tune_antenna" CONF_TUNE_ANTENNA = "tune_antenna"
CONF_TURN_OFF_ACTION = "turn_off_action" CONF_TURN_OFF_ACTION = "turn_off_action"
CONF_TURN_ON_ACTION = "turn_on_action" CONF_TURN_ON_ACTION = "turn_on_action"

Some files were not shown because too many files have changed in this diff Show more