Add support for CSE7761 sensor (#2546)

* Add CSE7761 sensor support

* CSE7761: Added test at test3.yaml

* CSE7761: changed string style

* CSE7761: fixed cpp lint

* CSE7761: Added codeowners

* Lots of code cleanup

* Revert incorrect setup_priority suggestion

* Added error log in read with retries.

Co-authored-by: Oxan van Leeuwen <oxan@oxanvanleeuwen.nl>

* Improved log messages

Co-authored-by: Oxan van Leeuwen <oxan@oxanvanleeuwen.nl>
This commit is contained in:
Arturo Casal 2021-10-28 20:58:48 +02:00 committed by GitHub
parent 2350c5054c
commit 77dbf84e55
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 403 additions and 0 deletions

View file

@ -39,6 +39,7 @@ esphome/components/color_temperature/* @jesserockz
esphome/components/coolix/* @glmnet
esphome/components/cover/* @esphome/core
esphome/components/cs5460a/* @balrog-kun
esphome/components/cse7761/* @berfenger
esphome/components/ct_clamp/* @jesserockz
esphome/components/current_based/* @djwmarcx
esphome/components/daly_bms/* @s1lvi0

View file

View file

@ -0,0 +1,244 @@
#include "cse7761.h"
#include "esphome/core/log.h"
namespace esphome {
namespace cse7761 {
static const char *const TAG = "cse7761";
/*********************************************************************************************\
* CSE7761 - Energy (Sonoff Dual R3 Pow v1.x)
*
* Based on Tasmota source code
* See https://github.com/arendst/Tasmota/discussions/10793
* https://github.com/arendst/Tasmota/blob/development/tasmota/xnrg_19_cse7761.ino
\*********************************************************************************************/
static const int CSE7761_UREF = 42563; // RmsUc
static const int CSE7761_IREF = 52241; // RmsIAC
static const int CSE7761_PREF = 44513; // PowerPAC
static const uint8_t CSE7761_REG_SYSCON = 0x00; // (2) System Control Register (0x0A04)
static const uint8_t CSE7761_REG_EMUCON = 0x01; // (2) Metering control register (0x0000)
static const uint8_t CSE7761_REG_EMUCON2 = 0x13; // (2) Metering control register 2 (0x0001)
static const uint8_t CSE7761_REG_PULSE1SEL = 0x1D; // (2) Pin function output select register (0x3210)
static const uint8_t CSE7761_REG_RMSIA = 0x24; // (3) The effective value of channel A current (0x000000)
static const uint8_t CSE7761_REG_RMSIB = 0x25; // (3) The effective value of channel B current (0x000000)
static const uint8_t CSE7761_REG_RMSU = 0x26; // (3) Voltage RMS (0x000000)
static const uint8_t CSE7761_REG_POWERPA = 0x2C; // (4) Channel A active power, update rate 27.2Hz (0x00000000)
static const uint8_t CSE7761_REG_POWERPB = 0x2D; // (4) Channel B active power, update rate 27.2Hz (0x00000000)
static const uint8_t CSE7761_REG_SYSSTATUS = 0x43; // (1) System status register
static const uint8_t CSE7761_REG_COEFFCHKSUM = 0x6F; // (2) Coefficient checksum
static const uint8_t CSE7761_REG_RMSIAC = 0x70; // (2) Channel A effective current conversion coefficient
static const uint8_t CSE7761_SPECIAL_COMMAND = 0xEA; // Start special command
static const uint8_t CSE7761_CMD_RESET = 0x96; // Reset command, after receiving the command, the chip resets
static const uint8_t CSE7761_CMD_CLOSE_WRITE = 0xDC; // Close write operation
static const uint8_t CSE7761_CMD_ENABLE_WRITE = 0xE5; // Enable write operation
enum CSE7761 { RMS_IAC, RMS_IBC, RMS_UC, POWER_PAC, POWER_PBC, POWER_SC, ENERGY_AC, ENERGY_BC };
void CSE7761Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up CSE7761...");
this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
uint16_t syscon = this->read_(0x00, 2); // Default 0x0A04
if ((0x0A04 == syscon) && this->chip_init_()) {
this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE);
ESP_LOGD(TAG, "CSE7761 found");
this->data_.ready = true;
} else {
this->mark_failed();
}
}
void CSE7761Component::dump_config() {
ESP_LOGCONFIG(TAG, "CSE7761:");
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication with CSE7761 failed!");
}
LOG_UPDATE_INTERVAL(this);
this->check_uart_settings(38400, 1, uart::UART_CONFIG_PARITY_EVEN, 8);
}
float CSE7761Component::get_setup_priority() const { return setup_priority::DATA; }
void CSE7761Component::update() {
if (this->data_.ready) {
this->get_data_();
}
}
void CSE7761Component::write_(uint8_t reg, uint16_t data) {
uint8_t buffer[5];
buffer[0] = 0xA5;
buffer[1] = reg;
uint32_t len = 2;
if (data) {
if (data < 0xFF) {
buffer[2] = data & 0xFF;
len = 3;
} else {
buffer[2] = (data >> 8) & 0xFF;
buffer[3] = data & 0xFF;
len = 4;
}
uint8_t crc = 0;
for (uint32_t i = 0; i < len; i++) {
crc += buffer[i];
}
buffer[len] = ~crc;
len++;
}
this->write_array(buffer, len);
}
bool CSE7761Component::read_once_(uint8_t reg, uint8_t size, uint32_t *value) {
while (this->available()) {
this->read();
}
this->write_(reg, 0);
uint8_t buffer[8] = {0};
uint32_t rcvd = 0;
for (uint32_t i = 0; i <= size; i++) {
int value = this->read();
if (value > -1 && rcvd < sizeof(buffer) - 1) {
buffer[rcvd++] = value;
}
}
if (!rcvd) {
ESP_LOGD(TAG, "Received 0 bytes for register %hhu", reg);
return false;
}
rcvd--;
uint32_t result = 0;
// CRC check
uint8_t crc = 0xA5 + reg;
for (uint32_t i = 0; i < rcvd; i++) {
result = (result << 8) | buffer[i];
crc += buffer[i];
}
crc = ~crc;
if (crc != buffer[rcvd]) {
return false;
}
*value = result;
return true;
}
uint32_t CSE7761Component::read_(uint8_t reg, uint8_t size) {
bool result = false; // Start loop
uint8_t retry = 3; // Retry up to three times
uint32_t value = 0; // Default no value
while (!result && retry > 0) {
retry--;
if (this->read_once_(reg, size, &value))
return value;
}
ESP_LOGE(TAG, "Reading register %hhu failed!", reg);
return value;
}
uint32_t CSE7761Component::coefficient_by_unit_(uint32_t unit) {
switch (unit) {
case RMS_UC:
return 0x400000 * 100 / this->data_.coefficient[RMS_UC];
case RMS_IAC:
return (0x800000 * 100 / this->data_.coefficient[RMS_IAC]) * 10; // Stay within 32 bits
case POWER_PAC:
return 0x80000000 / this->data_.coefficient[POWER_PAC];
}
return 0;
}
bool CSE7761Component::chip_init_() {
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
this->data_.coefficient[i] = this->read_(CSE7761_REG_RMSIAC + i, 2);
calc_chksum += this->data_.coefficient[i];
}
calc_chksum = ~calc_chksum;
uint16_t coeff_chksum = this->read_(CSE7761_REG_COEFFCHKSUM, 2);
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
ESP_LOGD(TAG, "Default calibration");
this->data_.coefficient[RMS_IAC] = CSE7761_IREF;
this->data_.coefficient[RMS_UC] = CSE7761_UREF;
this->data_.coefficient[POWER_PAC] = CSE7761_PREF;
}
this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
uint8_t sys_status = this->read_(CSE7761_REG_SYSSTATUS, 1);
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
this->write_(CSE7761_REG_SYSCON | 0x80, 0xFF04);
this->write_(CSE7761_REG_EMUCON | 0x80, 0x1183);
this->write_(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1);
this->write_(CSE7761_REG_PULSE1SEL | 0x80, 0x3290);
} else {
ESP_LOGD(TAG, "Write failed at chip_init");
return false;
}
return true;
}
void CSE7761Component::get_data_() {
// The effective value of current and voltage Rms is a 24-bit signed number,
// the highest bit is 0 for valid data,
// and when the highest bit is 1, the reading will be processed as zero
// The active power parameter PowerA/B is in twos complement format, 32-bit
// data, the highest bit is Sign bit.
uint32_t value = this->read_(CSE7761_REG_RMSU, 3);
this->data_.voltage_rms = (value >= 0x800000) ? 0 : value;
value = this->read_(CSE7761_REG_RMSIA, 3);
this->data_.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = this->read_(CSE7761_REG_POWERPA, 4);
this->data_.active_power[0] = (0 == this->data_.current_rms[0]) ? 0 : ((uint32_t) abs((int) value));
value = this->read_(CSE7761_REG_RMSIB, 3);
this->data_.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = this->read_(CSE7761_REG_POWERPB, 4);
this->data_.active_power[1] = (0 == this->data_.current_rms[1]) ? 0 : ((uint32_t) abs((int) value));
// convert values and publish to sensors
float voltage = (float) this->data_.voltage_rms / this->coefficient_by_unit_(RMS_UC);
if (this->voltage_sensor_ != nullptr) {
this->voltage_sensor_->publish_state(voltage);
}
for (uint32_t channel = 0; channel < 2; channel++) {
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
float active_power = (float) this->data_.active_power[channel] / this->coefficient_by_unit_(POWER_PAC); // W
float amps = (float) this->data_.current_rms[channel] / this->coefficient_by_unit_(RMS_IAC); // A
ESP_LOGD(TAG, "Channel %d power %f W, current %f A", channel + 1, active_power, amps);
if (channel == 0) {
if (this->power_sensor_1_ != nullptr) {
this->power_sensor_1_->publish_state(active_power);
}
if (this->current_sensor_1_ != nullptr) {
this->current_sensor_1_->publish_state(amps);
}
} else if (channel == 1) {
if (this->power_sensor_2_ != nullptr) {
this->power_sensor_2_->publish_state(active_power);
}
if (this->current_sensor_2_ != nullptr) {
this->current_sensor_2_->publish_state(amps);
}
}
}
}
} // namespace cse7761
} // namespace esphome

View file

@ -0,0 +1,52 @@
#pragma once
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/uart/uart.h"
#include "esphome/core/component.h"
namespace esphome {
namespace cse7761 {
struct CSE7761DataStruct {
uint32_t frequency = 0;
uint32_t voltage_rms = 0;
uint32_t current_rms[2] = {0};
uint32_t energy[2] = {0};
uint32_t active_power[2] = {0};
uint16_t coefficient[8] = {0};
uint8_t energy_update = 0;
bool ready = false;
};
/// This class implements support for the CSE7761 UART power sensor.
class CSE7761Component : public PollingComponent, public uart::UARTDevice {
public:
void set_voltage_sensor(sensor::Sensor *voltage_sensor) { voltage_sensor_ = voltage_sensor; }
void set_active_power_1_sensor(sensor::Sensor *power_sensor_1) { power_sensor_1_ = power_sensor_1; }
void set_current_1_sensor(sensor::Sensor *current_sensor_1) { current_sensor_1_ = current_sensor_1; }
void set_active_power_2_sensor(sensor::Sensor *power_sensor_2) { power_sensor_2_ = power_sensor_2; }
void set_current_2_sensor(sensor::Sensor *current_sensor_2) { current_sensor_2_ = current_sensor_2; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override;
void update() override;
protected:
// Sensors
sensor::Sensor *voltage_sensor_{nullptr};
sensor::Sensor *power_sensor_1_{nullptr};
sensor::Sensor *current_sensor_1_{nullptr};
sensor::Sensor *power_sensor_2_{nullptr};
sensor::Sensor *current_sensor_2_{nullptr};
CSE7761DataStruct data_;
void write_(uint8_t reg, uint16_t data);
bool read_once_(uint8_t reg, uint8_t size, uint32_t *value);
uint32_t read_(uint8_t reg, uint8_t size);
uint32_t coefficient_by_unit_(uint32_t unit);
bool chip_init_();
void get_data_();
};
} // namespace cse7761
} // namespace esphome

View file

@ -0,0 +1,90 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor, uart
from esphome.const import (
CONF_ID,
CONF_VOLTAGE,
DEVICE_CLASS_CURRENT,
DEVICE_CLASS_POWER,
DEVICE_CLASS_VOLTAGE,
STATE_CLASS_MEASUREMENT,
UNIT_VOLT,
UNIT_AMPERE,
UNIT_WATT,
)
CODEOWNERS = ["@berfenger"]
DEPENDENCIES = ["uart"]
cse7761_ns = cg.esphome_ns.namespace("cse7761")
CSE7761Component = cse7761_ns.class_(
"CSE7761Component", cg.PollingComponent, uart.UARTDevice
)
CONF_CURRENT_1 = "current_1"
CONF_CURRENT_2 = "current_2"
CONF_ACTIVE_POWER_1 = "active_power_1"
CONF_ACTIVE_POWER_2 = "active_power_2"
CONFIG_SCHEMA = (
cv.Schema(
{
cv.GenerateID(): cv.declare_id(CSE7761Component),
cv.Optional(CONF_VOLTAGE): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=1,
device_class=DEVICE_CLASS_VOLTAGE,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_CURRENT_1): sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_CURRENT_2): sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_ACTIVE_POWER_1): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=1,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_ACTIVE_POWER_2): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=1,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
}
)
.extend(cv.polling_component_schema("60s"))
.extend(uart.UART_DEVICE_SCHEMA)
)
FINAL_VALIDATE_SCHEMA = uart.final_validate_device_schema(
"cse7761", baud_rate=38400, require_rx=True, require_tx=True
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await uart.register_uart_device(var, config)
for key in [
CONF_VOLTAGE,
CONF_CURRENT_1,
CONF_CURRENT_2,
CONF_ACTIVE_POWER_1,
CONF_ACTIVE_POWER_2,
]:
if key not in config:
continue
conf = config[key]
sens = await sensor.new_sensor(conf)
cg.add(getattr(var, f"set_{key}_sensor")(sens))

View file

@ -250,6 +250,10 @@ uart:
tx_pin: GPIO4
rx_pin: GPIO5
baud_rate: 9600
- id: uart7
tx_pin: GPIO4
rx_pin: GPIO5
baud_rate: 38400
modbus:
uart_id: uart1
@ -549,6 +553,18 @@ sensor:
name: 'PMS Humidity'
formaldehyde:
name: 'PMS Formaldehyde Concentration'
- platform: cse7761
uart_id: uart7
voltage:
name: 'CSE7761 Voltage'
current_1:
name: 'CSE7761 Current 1'
current_2:
name: 'CSE7761 Current 2'
active_power_1:
name: 'CSE7761 Active Power 1'
active_power_2:
name: 'CSE7761 Active Power 2'
- platform: cse7766
uart_id: uart3
voltage: