mirror of
https://github.com/esphome/esphome.git
synced 2024-11-21 22:48:10 +01:00
Rewrite sun component calculations (#1661)
This commit is contained in:
parent
e0c5b45694
commit
7964b724ed
4 changed files with 391 additions and 216 deletions
|
@ -1,3 +1,5 @@
|
|||
import re
|
||||
|
||||
import esphome.codegen as cg
|
||||
import esphome.config_validation as cv
|
||||
from esphome import automation
|
||||
|
@ -22,7 +24,7 @@ CONF_ON_SUNSET = "on_sunset"
|
|||
|
||||
# Default sun elevation is a bit below horizon because sunset
|
||||
# means time when the entire sun disk is below the horizon
|
||||
DEFAULT_ELEVATION = -0.883
|
||||
DEFAULT_ELEVATION = -0.83333
|
||||
|
||||
ELEVATION_MAP = {
|
||||
"sunrise": 0.0,
|
||||
|
@ -45,12 +47,54 @@ def elevation(value):
|
|||
return cv.float_range(min=-180, max=180)(value)
|
||||
|
||||
|
||||
# Parses sexagesimal values like 22°57′7″S
|
||||
LAT_LON_REGEX = re.compile(
|
||||
r"([+\-])?\s*"
|
||||
r"(?:([0-9]+)\s*°)?\s*"
|
||||
r"(?:([0-9]+)\s*[′\'])?\s*"
|
||||
r'(?:([0-9]+)\s*[″"])?\s*'
|
||||
r"([NESW])?"
|
||||
)
|
||||
|
||||
|
||||
def parse_latlon(value):
|
||||
if isinstance(value, str) and value.endswith("°"):
|
||||
# strip trailing degree character
|
||||
value = value[:-1]
|
||||
try:
|
||||
return cv.float_(value)
|
||||
except cv.Invalid:
|
||||
pass
|
||||
|
||||
value = cv.string_strict(value)
|
||||
m = LAT_LON_REGEX.match(value)
|
||||
|
||||
if m is None:
|
||||
raise cv.Invalid("Invalid format for latitude/longitude")
|
||||
sign = m.group(1)
|
||||
deg = m.group(2)
|
||||
minute = m.group(3)
|
||||
second = m.group(4)
|
||||
d = m.group(5)
|
||||
|
||||
val = float(deg or 0) + float(minute or 0) / 60 + float(second or 0) / 3600
|
||||
if sign == "-":
|
||||
val *= -1
|
||||
if d and d in "SW":
|
||||
val *= -1
|
||||
return val
|
||||
|
||||
|
||||
CONFIG_SCHEMA = cv.Schema(
|
||||
{
|
||||
cv.GenerateID(): cv.declare_id(Sun),
|
||||
cv.GenerateID(CONF_TIME_ID): cv.use_id(time.RealTimeClock),
|
||||
cv.Required(CONF_LATITUDE): cv.float_range(min=-90, max=90),
|
||||
cv.Required(CONF_LONGITUDE): cv.float_range(min=-180, max=180),
|
||||
cv.Required(CONF_LATITUDE): cv.All(
|
||||
parse_latlon, cv.float_range(min=-90, max=90)
|
||||
),
|
||||
cv.Required(CONF_LONGITUDE): cv.All(
|
||||
parse_latlon, cv.float_range(min=-180, max=180)
|
||||
),
|
||||
cv.Optional(CONF_ON_SUNRISE): automation.validate_automation(
|
||||
{
|
||||
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(SunTrigger),
|
||||
|
|
|
@ -1,176 +1,319 @@
|
|||
#include "sun.h"
|
||||
#include "esphome/core/log.h"
|
||||
|
||||
/*
|
||||
The formulas/algorithms in this module are based on the book
|
||||
"Astronomical algorithms" by Jean Meeus (2nd edition)
|
||||
|
||||
The target accuracy of this implementation is ~1min for sunrise/sunset calculations,
|
||||
and 6 arcminutes for elevation/azimuth. As such, some of the advanced correction factors
|
||||
like exact nutation are not included. But in some testing the accuracy appears to be within range
|
||||
for random spots around the globe.
|
||||
*/
|
||||
|
||||
namespace esphome {
|
||||
namespace sun {
|
||||
|
||||
using namespace esphome::sun::internal;
|
||||
|
||||
static const char *TAG = "sun";
|
||||
|
||||
#undef PI
|
||||
#undef degrees
|
||||
#undef radians
|
||||
#undef sq
|
||||
|
||||
/* Usually, ESPHome uses single-precision floating point values
|
||||
* because those tend to be accurate enough and are more efficient.
|
||||
*
|
||||
* However, some of the data in this class has to be quite accurate, so double is
|
||||
* used everywhere.
|
||||
*/
|
||||
static const double PI = 3.141592653589793;
|
||||
static const double TAU = 6.283185307179586;
|
||||
static const double TO_RADIANS = PI / 180.0;
|
||||
static const double TO_DEGREES = 180.0 / PI;
|
||||
static const double EARTH_TILT = 23.44 * TO_RADIANS;
|
||||
static const num_t PI = 3.141592653589793;
|
||||
inline num_t degrees(num_t rad) { return rad * 180 / PI; }
|
||||
inline num_t radians(num_t deg) { return deg * PI / 180; }
|
||||
inline num_t arcdeg(num_t deg, num_t minutes, num_t seconds) { return deg + minutes / 60 + seconds / 3600; }
|
||||
inline num_t sq(num_t x) { return x * x; }
|
||||
inline num_t cb(num_t x) { return x * x * x; }
|
||||
|
||||
optional<time::ESPTime> Sun::sunrise(double elevation) {
|
||||
auto time = this->time_->now();
|
||||
if (!time.is_valid())
|
||||
return {};
|
||||
double sun_time = this->sun_time_for_elevation_(time.day_of_year, elevation, true);
|
||||
if (isnan(sun_time))
|
||||
return {};
|
||||
uint32_t epoch = this->calc_epoch_(time, sun_time);
|
||||
return time::ESPTime::from_epoch_local(epoch);
|
||||
}
|
||||
optional<time::ESPTime> Sun::sunset(double elevation) {
|
||||
auto time = this->time_->now();
|
||||
if (!time.is_valid())
|
||||
return {};
|
||||
double sun_time = this->sun_time_for_elevation_(time.day_of_year, elevation, false);
|
||||
if (isnan(sun_time))
|
||||
return {};
|
||||
uint32_t epoch = this->calc_epoch_(time, sun_time);
|
||||
return time::ESPTime::from_epoch_local(epoch);
|
||||
}
|
||||
double Sun::elevation() {
|
||||
auto time = this->current_sun_time_();
|
||||
if (isnan(time))
|
||||
return NAN;
|
||||
return this->elevation_(time);
|
||||
}
|
||||
double Sun::azimuth() {
|
||||
auto time = this->current_sun_time_();
|
||||
if (isnan(time))
|
||||
return NAN;
|
||||
return this->azimuth_(time);
|
||||
}
|
||||
// like clamp, but with doubles
|
||||
double clampd(double val, double min, double max) {
|
||||
if (val < min)
|
||||
return min;
|
||||
if (val > max)
|
||||
return max;
|
||||
return val;
|
||||
}
|
||||
double Sun::sun_declination_(double sun_time) {
|
||||
double n = sun_time - 1.0;
|
||||
// maximum declination
|
||||
const double tot = -sin(EARTH_TILT);
|
||||
num_t GeoLocation::latitude_rad() const { return radians(latitude); }
|
||||
num_t GeoLocation::longitude_rad() const { return radians(longitude); }
|
||||
num_t EquatorialCoordinate::right_ascension_rad() const { return radians(right_ascension); }
|
||||
num_t EquatorialCoordinate::declination_rad() const { return radians(declination); }
|
||||
num_t HorizontalCoordinate::elevation_rad() const { return radians(elevation); }
|
||||
num_t HorizontalCoordinate::azimuth_rad() const { return radians(azimuth); }
|
||||
|
||||
// eccentricity of the earth's orbit (ellipse)
|
||||
double eccentricity = 0.0167;
|
||||
|
||||
// days since perihelion (January 3rd)
|
||||
double days_since_perihelion = n - 2;
|
||||
// days since december solstice (december 22)
|
||||
double days_since_december_solstice = n + 10;
|
||||
const double c = TAU / 365.24;
|
||||
double v = cos(c * days_since_december_solstice + 2 * eccentricity * sin(c * days_since_perihelion));
|
||||
// Make sure value is in range (double error may lead to results slightly larger than 1)
|
||||
double x = clampd(tot * v, -1.0, 1.0);
|
||||
return asin(x);
|
||||
num_t julian_day(time::ESPTime moment) {
|
||||
// p. 59
|
||||
// UT -> JD, TT -> JDE
|
||||
int y = moment.year;
|
||||
int m = moment.month;
|
||||
num_t d = moment.day_of_month;
|
||||
d += moment.hour / 24.0;
|
||||
d += moment.minute / (24.0 * 60);
|
||||
d += moment.second / (24.0 * 60 * 60);
|
||||
if (m <= 2) {
|
||||
y -= 1;
|
||||
m += 12;
|
||||
}
|
||||
int a = y / 100;
|
||||
int b = 2 - a + a / 4;
|
||||
return ((int) (365.25 * (y + 4716))) + ((int) (30.6001 * (m + 1))) + d + b - 1524.5;
|
||||
}
|
||||
double Sun::elevation_ratio_(double sun_time) {
|
||||
double decl = this->sun_declination_(sun_time);
|
||||
double hangle = this->hour_angle_(sun_time);
|
||||
double a = sin(this->latitude_rad_()) * sin(decl);
|
||||
double b = cos(this->latitude_rad_()) * cos(decl) * cos(hangle);
|
||||
double val = clampd(a + b, -1.0, 1.0);
|
||||
return val;
|
||||
num_t delta_t(time::ESPTime moment) {
|
||||
// approximation for 2005-2050 from NASA (https://eclipse.gsfc.nasa.gov/SEhelp/deltatpoly2004.html)
|
||||
int t = moment.year - 2000;
|
||||
return 62.92 + t * (0.32217 + t * 0.005589);
|
||||
}
|
||||
double Sun::latitude_rad_() { return this->latitude_ * TO_RADIANS; }
|
||||
double Sun::hour_angle_(double sun_time) {
|
||||
double time_of_day = fmod(sun_time, 1.0) * 24.0;
|
||||
return -PI * (time_of_day - 12) / 12;
|
||||
// Perform a fractional module operation where the result will always be positive (wrapping around)
|
||||
num_t wmod(num_t x, num_t y) {
|
||||
num_t res = fmod(x, y);
|
||||
if (res < 0)
|
||||
res += y;
|
||||
return res;
|
||||
}
|
||||
double Sun::elevation_(double sun_time) { return this->elevation_rad_(sun_time) * TO_DEGREES; }
|
||||
double Sun::elevation_rad_(double sun_time) { return asin(this->elevation_ratio_(sun_time)); }
|
||||
double Sun::zenith_rad_(double sun_time) { return acos(this->elevation_ratio_(sun_time)); }
|
||||
double Sun::azimuth_rad_(double sun_time) {
|
||||
double hangle = -this->hour_angle_(sun_time);
|
||||
double decl = this->sun_declination_(sun_time);
|
||||
double zen = this->zenith_rad_(sun_time);
|
||||
double nom = cos(zen) * sin(this->latitude_rad_()) - sin(decl);
|
||||
double denom = sin(zen) * cos(this->latitude_rad_());
|
||||
double v = clampd(nom / denom, -1.0, 1.0);
|
||||
double az = PI - acos(v);
|
||||
if (hangle > 0)
|
||||
az = -az;
|
||||
if (az < 0)
|
||||
az += TAU;
|
||||
return az;
|
||||
|
||||
num_t internal::Moment::jd() const { return julian_day(dt); }
|
||||
|
||||
num_t internal::Moment::jde() const {
|
||||
// dt is in UT1, but JDE is based on TT
|
||||
// so add deltaT factor
|
||||
return jd() + delta_t(dt) / (60 * 60 * 24);
|
||||
}
|
||||
double Sun::azimuth_(double sun_time) { return this->azimuth_rad_(sun_time) * TO_DEGREES; }
|
||||
double Sun::calc_sun_time_(const time::ESPTime &time) {
|
||||
// Time as seen at 0° longitude
|
||||
if (!time.is_valid())
|
||||
return NAN;
|
||||
|
||||
double base = (time.day_of_year + time.hour / 24.0 + time.minute / 24.0 / 60.0 + time.second / 24.0 / 60.0 / 60.0);
|
||||
// Add longitude correction
|
||||
double add = this->longitude_ / 360.0;
|
||||
return base + add;
|
||||
}
|
||||
uint32_t Sun::calc_epoch_(time::ESPTime base, double sun_time) {
|
||||
sun_time -= this->longitude_ / 360.0;
|
||||
base.day_of_year = uint32_t(floor(sun_time));
|
||||
struct SunAtTime {
|
||||
num_t jde;
|
||||
num_t t;
|
||||
|
||||
sun_time = (sun_time - base.day_of_year) * 24.0;
|
||||
base.hour = uint32_t(floor(sun_time));
|
||||
|
||||
sun_time = (sun_time - base.hour) * 60.0;
|
||||
base.minute = uint32_t(floor(sun_time));
|
||||
|
||||
sun_time = (sun_time - base.minute) * 60.0;
|
||||
base.second = uint32_t(floor(sun_time));
|
||||
|
||||
base.recalc_timestamp_utc(true);
|
||||
return base.timestamp;
|
||||
}
|
||||
double Sun::sun_time_for_elevation_(int32_t day_of_year, double elevation, bool rising) {
|
||||
// Use binary search, newton's method would be better but binary search already
|
||||
// converges quite well (19 cycles) and much simpler. Function is guaranteed to be
|
||||
// monotonous.
|
||||
double lo, hi;
|
||||
if (rising) {
|
||||
lo = day_of_year + 0.0;
|
||||
hi = day_of_year + 0.5;
|
||||
} else {
|
||||
lo = day_of_year + 1.0;
|
||||
hi = day_of_year + 0.5;
|
||||
SunAtTime(num_t jde) : jde(jde) {
|
||||
// eq 25.1, p. 163; julian centuries from the epoch J2000.0
|
||||
t = (jde - 2451545) / 36525.0;
|
||||
}
|
||||
|
||||
double min_elevation = this->elevation_(lo);
|
||||
double max_elevation = this->elevation_(hi);
|
||||
if (elevation < min_elevation || elevation > max_elevation)
|
||||
return NAN;
|
||||
|
||||
// Accuracy: 0.1s
|
||||
const double accuracy = 1.0 / (24.0 * 60.0 * 60.0 * 10.0);
|
||||
|
||||
while (fabs(hi - lo) > accuracy) {
|
||||
double mid = (lo + hi) / 2.0;
|
||||
double value = this->elevation_(mid) - elevation;
|
||||
if (value < 0) {
|
||||
lo = mid;
|
||||
} else if (value > 0) {
|
||||
hi = mid;
|
||||
} else {
|
||||
lo = hi = mid;
|
||||
break;
|
||||
}
|
||||
num_t mean_obliquity() const {
|
||||
// eq. 22.2, p. 147; mean obliquity of the ecliptic
|
||||
num_t epsilon_0 = (+arcdeg(23, 26, 21.448) - arcdeg(0, 0, 46.8150) * t - arcdeg(0, 0, 0.00059) * sq(t) +
|
||||
arcdeg(0, 0, 0.001813) * cb(t));
|
||||
return epsilon_0;
|
||||
}
|
||||
|
||||
return (lo + hi) / 2.0;
|
||||
num_t omega() const {
|
||||
// eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
|
||||
// in degrees
|
||||
num_t omega = 125.05 - 1934.136 * t;
|
||||
return omega;
|
||||
}
|
||||
|
||||
num_t true_obliquity() const {
|
||||
// eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
|
||||
num_t delta_epsilon = 0.00256 * cos(radians(omega()));
|
||||
num_t epsilon = mean_obliquity() + delta_epsilon;
|
||||
return epsilon;
|
||||
}
|
||||
|
||||
num_t mean_longitude() const {
|
||||
// eq 25.2, p. 163; geometric mean longitude = mean equinox of the date in degrees
|
||||
num_t l0 = 280.46646 + 36000.76983 * t + 0.0003032 * sq(t);
|
||||
return wmod(l0, 360);
|
||||
}
|
||||
|
||||
num_t eccentricity() const {
|
||||
// eq 25.4, p. 163; eccentricity of earth's orbit
|
||||
num_t e = 0.016708634 - 0.000042037 * t - 0.0000001267 * sq(t);
|
||||
return e;
|
||||
}
|
||||
|
||||
num_t mean_anomaly() const {
|
||||
// eq 25.3, p. 163; mean anomaly of the sun in degrees
|
||||
num_t m = 357.52911 + 35999.05029 * t - 0.0001537 * sq(t);
|
||||
return wmod(m, 360);
|
||||
}
|
||||
|
||||
num_t equation_of_center() const {
|
||||
// p. 164; sun's equation of the center c in degrees
|
||||
num_t m_rad = radians(mean_anomaly());
|
||||
num_t c = ((1.914602 - 0.004817 * t - 0.000014 * sq(t)) * sin(m_rad) + (0.019993 - 0.000101 * t) * sin(2 * m_rad) +
|
||||
0.000289 * sin(3 * m_rad));
|
||||
return wmod(c, 360);
|
||||
}
|
||||
|
||||
num_t true_longitude() const {
|
||||
// p. 164; sun's true longitude in degrees
|
||||
num_t x = mean_longitude() + equation_of_center();
|
||||
return wmod(x, 360);
|
||||
}
|
||||
|
||||
num_t true_anomaly() const {
|
||||
// p. 164; sun's true anomaly in degrees
|
||||
num_t x = mean_anomaly() + equation_of_center();
|
||||
return wmod(x, 360);
|
||||
}
|
||||
|
||||
num_t apparent_longitude() const {
|
||||
// p. 164; sun's apparent longitude = true equinox in degrees
|
||||
num_t x = true_longitude() - 0.00569 - 0.00478 * sin(radians(omega()));
|
||||
return wmod(x, 360);
|
||||
}
|
||||
|
||||
EquatorialCoordinate equatorial_coordinate() const {
|
||||
num_t epsilon_rad = radians(true_obliquity());
|
||||
// eq. 25.6; p. 165; sun's right ascension alpha
|
||||
num_t app_lon_rad = radians(apparent_longitude());
|
||||
num_t right_ascension_rad = atan2(cos(epsilon_rad) * sin(app_lon_rad), cos(app_lon_rad));
|
||||
num_t declination_rad = asin(sin(epsilon_rad) * sin(app_lon_rad));
|
||||
return EquatorialCoordinate{degrees(right_ascension_rad), degrees(declination_rad)};
|
||||
}
|
||||
|
||||
num_t equation_of_time() const {
|
||||
// chapter 28, p. 185
|
||||
num_t epsilon_half = radians(true_obliquity() / 2);
|
||||
num_t y = sq(tan(epsilon_half));
|
||||
num_t l2 = 2 * mean_longitude();
|
||||
num_t l2_rad = radians(l2);
|
||||
num_t e = eccentricity();
|
||||
num_t m = mean_anomaly();
|
||||
num_t m_rad = radians(m);
|
||||
num_t sin_m = sin(m_rad);
|
||||
num_t eot = (y * sin(l2_rad) - 2 * e * sin_m + 4 * e * y * sin_m * cos(l2_rad) - 1 / 2.0 * sq(y) * sin(2 * l2_rad) -
|
||||
5 / 4.0 * sq(e) * sin(2 * m_rad));
|
||||
return degrees(eot);
|
||||
}
|
||||
|
||||
void debug() const {
|
||||
// debug output like in example 25.a, p. 165
|
||||
ESP_LOGV(TAG, "jde: %f", jde);
|
||||
ESP_LOGV(TAG, "T: %f", t);
|
||||
ESP_LOGV(TAG, "L_0: %f", mean_longitude());
|
||||
ESP_LOGV(TAG, "M: %f", mean_anomaly());
|
||||
ESP_LOGV(TAG, "e: %f", eccentricity());
|
||||
ESP_LOGV(TAG, "C: %f", equation_of_center());
|
||||
ESP_LOGV(TAG, "Odot: %f", true_longitude());
|
||||
ESP_LOGV(TAG, "Omega: %f", omega());
|
||||
ESP_LOGV(TAG, "lambda: %f", apparent_longitude());
|
||||
ESP_LOGV(TAG, "epsilon_0: %f", mean_obliquity());
|
||||
ESP_LOGV(TAG, "epsilon: %f", true_obliquity());
|
||||
ESP_LOGV(TAG, "v: %f", true_anomaly());
|
||||
auto eq = equatorial_coordinate();
|
||||
ESP_LOGV(TAG, "right_ascension: %f", eq.right_ascension);
|
||||
ESP_LOGV(TAG, "declination: %f", eq.declination);
|
||||
}
|
||||
};
|
||||
|
||||
struct SunAtLocation {
|
||||
GeoLocation location;
|
||||
|
||||
num_t greenwich_sidereal_time(Moment moment) const {
|
||||
// Return the greenwich mean sidereal time for this instant in degrees
|
||||
// see chapter 12, p. 87
|
||||
num_t jd = moment.jd();
|
||||
// eq 12.1, p.87; jd for 0h UT of this date
|
||||
time::ESPTime moment_0h = moment.dt;
|
||||
moment_0h.hour = moment_0h.minute = moment_0h.second = 0;
|
||||
num_t jd0 = Moment{moment_0h}.jd();
|
||||
num_t t = (jd0 - 2451545) / 36525;
|
||||
// eq. 12.4, p.88
|
||||
num_t gmst = (+280.46061837 + 360.98564736629 * (jd - 2451545) + 0.000387933 * sq(t) - (1 / 38710000.0) * cb(t));
|
||||
return wmod(gmst, 360);
|
||||
}
|
||||
|
||||
HorizontalCoordinate true_coordinate(Moment moment) const {
|
||||
auto eq = SunAtTime(moment.jde()).equatorial_coordinate();
|
||||
num_t gmst = greenwich_sidereal_time(moment);
|
||||
// do not apply any nutation correction (not important for our target accuracy)
|
||||
num_t nutation_corr = 0;
|
||||
|
||||
num_t ra = eq.right_ascension;
|
||||
num_t alpha = gmst + nutation_corr + location.longitude - ra;
|
||||
alpha = wmod(alpha, 360);
|
||||
num_t alpha_rad = radians(alpha);
|
||||
|
||||
num_t sin_lat = sin(location.latitude_rad());
|
||||
num_t cos_lat = cos(location.latitude_rad());
|
||||
num_t sin_elevation = (+sin_lat * sin(eq.declination_rad()) + cos_lat * cos(eq.declination_rad()) * cos(alpha_rad));
|
||||
num_t elevation_rad = asin(sin_elevation);
|
||||
num_t azimuth_rad = atan2(sin(alpha_rad), cos(alpha_rad) * sin_lat - tan(eq.declination_rad()) * cos_lat);
|
||||
return HorizontalCoordinate{degrees(elevation_rad), degrees(azimuth_rad) + 180};
|
||||
}
|
||||
|
||||
optional<time::ESPTime> sunrise(time::ESPTime date, num_t zenith) const { return event(true, date, zenith); }
|
||||
optional<time::ESPTime> sunset(time::ESPTime date, num_t zenith) const { return event(false, date, zenith); }
|
||||
optional<time::ESPTime> event(bool rise, time::ESPTime date, num_t zenith) const {
|
||||
// couldn't get the method described in chapter 15 to work,
|
||||
// so instead this is based on the algorithm in time4j
|
||||
// https://github.com/MenoData/Time4J/blob/master/base/src/main/java/net/time4j/calendar/astro/StdSolarCalculator.java
|
||||
auto m = local_event_(date, 12); // noon
|
||||
num_t jde = julian_day(m);
|
||||
num_t new_h = 0, old_h;
|
||||
do {
|
||||
old_h = new_h;
|
||||
auto x = local_hour_angle_(jde + old_h / 86400, rise, zenith);
|
||||
if (!x.has_value())
|
||||
return {};
|
||||
new_h = *x;
|
||||
} while (std::abs(new_h - old_h) >= 15);
|
||||
time_t new_timestamp = m.timestamp + (time_t) new_h;
|
||||
return time::ESPTime::from_epoch_local(new_timestamp);
|
||||
}
|
||||
|
||||
protected:
|
||||
optional<num_t> local_hour_angle_(num_t jde, bool rise, num_t zenith) const {
|
||||
auto pos = SunAtTime(jde).equatorial_coordinate();
|
||||
num_t dec_rad = pos.declination_rad();
|
||||
num_t lat_rad = location.latitude_rad();
|
||||
num_t num = cos(radians(zenith)) - (sin(dec_rad) * sin(lat_rad));
|
||||
num_t denom = cos(dec_rad) * cos(lat_rad);
|
||||
num_t cos_h = num / denom;
|
||||
if (cos_h > 1 || cos_h < -1)
|
||||
return {};
|
||||
num_t hour_angle = degrees(acos(cos_h)) * 240;
|
||||
if (rise)
|
||||
hour_angle *= -1;
|
||||
return hour_angle;
|
||||
}
|
||||
|
||||
time::ESPTime local_event_(time::ESPTime date, int hour) const {
|
||||
// input date should be in UTC, and hour/minute/second fields 0
|
||||
num_t added_d = hour / 24.0 - location.longitude / 360;
|
||||
num_t jd = julian_day(date) + added_d;
|
||||
|
||||
num_t eot = SunAtTime(jd).equation_of_time() * 240;
|
||||
time_t new_timestamp = (time_t)(date.timestamp + added_d * 86400 - eot);
|
||||
return time::ESPTime::from_epoch_utc(new_timestamp);
|
||||
}
|
||||
};
|
||||
|
||||
HorizontalCoordinate Sun::calc_coords_() {
|
||||
SunAtLocation sun{location_};
|
||||
Moment m{time_->utcnow()};
|
||||
if (!m.dt.is_valid())
|
||||
return HorizontalCoordinate{NAN, NAN};
|
||||
|
||||
// uncomment to print some debug output
|
||||
/*
|
||||
SunAtTime st{m.jde()};
|
||||
st.debug();
|
||||
*/
|
||||
return sun.true_coordinate(m);
|
||||
}
|
||||
optional<time::ESPTime> Sun::calc_event_(bool rising, double zenith) {
|
||||
SunAtLocation sun{location_};
|
||||
auto now = this->time_->utcnow();
|
||||
if (!now.is_valid())
|
||||
return {};
|
||||
// Calculate UT1 timestamp at 0h
|
||||
auto today = now;
|
||||
today.hour = today.minute = today.second = 0;
|
||||
today.recalc_timestamp_utc();
|
||||
|
||||
auto it = sun.event(rising, today, zenith);
|
||||
if (it.has_value() && it->timestamp < now.timestamp) {
|
||||
// We're calculating *next* sunrise/sunset, but calculated event
|
||||
// is today, so try again tomorrow
|
||||
time_t new_timestamp = today.timestamp + 24 * 60 * 60;
|
||||
today = time::ESPTime::from_epoch_utc(new_timestamp);
|
||||
it = sun.event(rising, today, zenith);
|
||||
}
|
||||
return it;
|
||||
}
|
||||
|
||||
optional<time::ESPTime> Sun::sunrise(double elevation) { return this->calc_event_(true, 90 - elevation); }
|
||||
optional<time::ESPTime> Sun::sunset(double elevation) { return this->calc_event_(false, 90 - elevation); }
|
||||
double Sun::elevation() { return this->calc_coords_().elevation; }
|
||||
double Sun::azimuth() { return this->calc_coords_().azimuth; }
|
||||
|
||||
} // namespace sun
|
||||
} // namespace esphome
|
||||
|
|
|
@ -8,85 +8,72 @@
|
|||
namespace esphome {
|
||||
namespace sun {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/* Usually, ESPHome uses single-precision floating point values
|
||||
* because those tend to be accurate enough and are more efficient.
|
||||
*
|
||||
* However, some of the data in this class has to be quite accurate, so double is
|
||||
* used everywhere.
|
||||
*/
|
||||
using num_t = double;
|
||||
struct GeoLocation {
|
||||
num_t latitude;
|
||||
num_t longitude;
|
||||
|
||||
num_t latitude_rad() const;
|
||||
num_t longitude_rad() const;
|
||||
};
|
||||
|
||||
struct Moment {
|
||||
time::ESPTime dt;
|
||||
|
||||
num_t jd() const;
|
||||
num_t jde() const;
|
||||
};
|
||||
|
||||
struct EquatorialCoordinate {
|
||||
num_t right_ascension;
|
||||
num_t declination;
|
||||
|
||||
num_t right_ascension_rad() const;
|
||||
num_t declination_rad() const;
|
||||
};
|
||||
|
||||
struct HorizontalCoordinate {
|
||||
num_t elevation;
|
||||
num_t azimuth;
|
||||
|
||||
num_t elevation_rad() const;
|
||||
num_t azimuth_rad() const;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
class Sun {
|
||||
public:
|
||||
void set_time(time::RealTimeClock *time) { time_ = time; }
|
||||
time::RealTimeClock *get_time() const { return time_; }
|
||||
void set_latitude(double latitude) { latitude_ = latitude; }
|
||||
void set_longitude(double longitude) { longitude_ = longitude; }
|
||||
void set_latitude(double latitude) { location_.latitude = latitude; }
|
||||
void set_longitude(double longitude) { location_.longitude = longitude; }
|
||||
|
||||
optional<time::ESPTime> sunrise(double elevation = 0.0);
|
||||
optional<time::ESPTime> sunset(double elevation = 0.0);
|
||||
optional<time::ESPTime> sunrise(double elevation);
|
||||
optional<time::ESPTime> sunset(double elevation);
|
||||
|
||||
double elevation();
|
||||
double azimuth();
|
||||
|
||||
protected:
|
||||
double current_sun_time_() { return this->calc_sun_time_(this->time_->utcnow()); }
|
||||
|
||||
/** Calculate the declination of the sun in rad.
|
||||
*
|
||||
* See https://en.wikipedia.org/wiki/Position_of_the_Sun#Declination_of_the_Sun_as_seen_from_Earth
|
||||
*
|
||||
* Accuracy: ±0.2°
|
||||
*
|
||||
* @param sun_time The day of the year, 1 means January 1st. See calc_sun_time_.
|
||||
* @return Sun declination in degrees
|
||||
*/
|
||||
double sun_declination_(double sun_time);
|
||||
|
||||
double elevation_ratio_(double sun_time);
|
||||
|
||||
/** Calculate the hour angle based on the sun time of day in hours.
|
||||
*
|
||||
* Positive in morning, 0 at noon, negative in afternoon.
|
||||
*
|
||||
* @param sun_time Sun time, see calc_sun_time_.
|
||||
* @return Hour angle in rad.
|
||||
*/
|
||||
double hour_angle_(double sun_time);
|
||||
|
||||
double elevation_(double sun_time);
|
||||
|
||||
double elevation_rad_(double sun_time);
|
||||
|
||||
double zenith_rad_(double sun_time);
|
||||
|
||||
double azimuth_rad_(double sun_time);
|
||||
|
||||
double azimuth_(double sun_time);
|
||||
|
||||
/** Return the sun time given by the time_ object.
|
||||
*
|
||||
* Sun time is defined as doubleing point day of year.
|
||||
* Integer part encodes the day of the year (1=January 1st)
|
||||
* Decimal part encodes time of day (1/24 = 1 hour)
|
||||
*/
|
||||
double calc_sun_time_(const time::ESPTime &time);
|
||||
|
||||
uint32_t calc_epoch_(time::ESPTime base, double sun_time);
|
||||
|
||||
/** Calculate the sun time of day
|
||||
*
|
||||
* @param day_of_year
|
||||
* @param elevation
|
||||
* @param rising
|
||||
* @return
|
||||
*/
|
||||
double sun_time_for_elevation_(int32_t day_of_year, double elevation, bool rising);
|
||||
|
||||
double latitude_rad_();
|
||||
internal::HorizontalCoordinate calc_coords_();
|
||||
optional<time::ESPTime> calc_event_(bool rising, double zenith);
|
||||
|
||||
time::RealTimeClock *time_;
|
||||
/// Latitude in degrees, range: -90 to 90.
|
||||
double latitude_;
|
||||
/// Longitude in degrees, range: -180 to 180.
|
||||
double longitude_;
|
||||
internal::GeoLocation location_;
|
||||
};
|
||||
|
||||
class SunTrigger : public Trigger<>, public PollingComponent, public Parented<Sun> {
|
||||
public:
|
||||
SunTrigger() : PollingComponent(1000) {}
|
||||
SunTrigger() : PollingComponent(60000) {}
|
||||
|
||||
void set_sunrise(bool sunrise) { sunrise_ = sunrise; }
|
||||
void set_elevation(double elevation) { elevation_ = elevation; }
|
||||
|
|
|
@ -405,6 +405,7 @@ ARDUINO_FORBIDDEN_RE = r"[^\w\d](" + r"|".join(ARDUINO_FORBIDDEN) + r")\(.*"
|
|||
include=cpp_include,
|
||||
exclude=[
|
||||
"esphome/components/mqtt/custom_mqtt_device.h",
|
||||
"esphome/components/sun/sun.cpp",
|
||||
"esphome/core/esphal.*",
|
||||
],
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue