Rewrite sun component calculations (#1661)

This commit is contained in:
Otto Winter 2021-04-07 12:16:36 +02:00 committed by GitHub
parent e0c5b45694
commit 7964b724ed
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 391 additions and 216 deletions

View file

@ -1,3 +1,5 @@
import re
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome import automation
@ -22,7 +24,7 @@ CONF_ON_SUNSET = "on_sunset"
# Default sun elevation is a bit below horizon because sunset
# means time when the entire sun disk is below the horizon
DEFAULT_ELEVATION = -0.883
DEFAULT_ELEVATION = -0.83333
ELEVATION_MAP = {
"sunrise": 0.0,
@ -45,12 +47,54 @@ def elevation(value):
return cv.float_range(min=-180, max=180)(value)
# Parses sexagesimal values like 22°577″S
LAT_LON_REGEX = re.compile(
r"([+\-])?\s*"
r"(?:([0-9]+)\s*°)?\s*"
r"(?:([0-9]+)\s*[\'])?\s*"
r'(?:([0-9]+)\s*[″"])?\s*'
r"([NESW])?"
)
def parse_latlon(value):
if isinstance(value, str) and value.endswith("°"):
# strip trailing degree character
value = value[:-1]
try:
return cv.float_(value)
except cv.Invalid:
pass
value = cv.string_strict(value)
m = LAT_LON_REGEX.match(value)
if m is None:
raise cv.Invalid("Invalid format for latitude/longitude")
sign = m.group(1)
deg = m.group(2)
minute = m.group(3)
second = m.group(4)
d = m.group(5)
val = float(deg or 0) + float(minute or 0) / 60 + float(second or 0) / 3600
if sign == "-":
val *= -1
if d and d in "SW":
val *= -1
return val
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.declare_id(Sun),
cv.GenerateID(CONF_TIME_ID): cv.use_id(time.RealTimeClock),
cv.Required(CONF_LATITUDE): cv.float_range(min=-90, max=90),
cv.Required(CONF_LONGITUDE): cv.float_range(min=-180, max=180),
cv.Required(CONF_LATITUDE): cv.All(
parse_latlon, cv.float_range(min=-90, max=90)
),
cv.Required(CONF_LONGITUDE): cv.All(
parse_latlon, cv.float_range(min=-180, max=180)
),
cv.Optional(CONF_ON_SUNRISE): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(SunTrigger),

View file

@ -1,176 +1,319 @@
#include "sun.h"
#include "esphome/core/log.h"
/*
The formulas/algorithms in this module are based on the book
"Astronomical algorithms" by Jean Meeus (2nd edition)
The target accuracy of this implementation is ~1min for sunrise/sunset calculations,
and 6 arcminutes for elevation/azimuth. As such, some of the advanced correction factors
like exact nutation are not included. But in some testing the accuracy appears to be within range
for random spots around the globe.
*/
namespace esphome {
namespace sun {
using namespace esphome::sun::internal;
static const char *TAG = "sun";
#undef PI
#undef degrees
#undef radians
#undef sq
/* Usually, ESPHome uses single-precision floating point values
* because those tend to be accurate enough and are more efficient.
*
* However, some of the data in this class has to be quite accurate, so double is
* used everywhere.
*/
static const double PI = 3.141592653589793;
static const double TAU = 6.283185307179586;
static const double TO_RADIANS = PI / 180.0;
static const double TO_DEGREES = 180.0 / PI;
static const double EARTH_TILT = 23.44 * TO_RADIANS;
static const num_t PI = 3.141592653589793;
inline num_t degrees(num_t rad) { return rad * 180 / PI; }
inline num_t radians(num_t deg) { return deg * PI / 180; }
inline num_t arcdeg(num_t deg, num_t minutes, num_t seconds) { return deg + minutes / 60 + seconds / 3600; }
inline num_t sq(num_t x) { return x * x; }
inline num_t cb(num_t x) { return x * x * x; }
optional<time::ESPTime> Sun::sunrise(double elevation) {
auto time = this->time_->now();
if (!time.is_valid())
return {};
double sun_time = this->sun_time_for_elevation_(time.day_of_year, elevation, true);
if (isnan(sun_time))
return {};
uint32_t epoch = this->calc_epoch_(time, sun_time);
return time::ESPTime::from_epoch_local(epoch);
}
optional<time::ESPTime> Sun::sunset(double elevation) {
auto time = this->time_->now();
if (!time.is_valid())
return {};
double sun_time = this->sun_time_for_elevation_(time.day_of_year, elevation, false);
if (isnan(sun_time))
return {};
uint32_t epoch = this->calc_epoch_(time, sun_time);
return time::ESPTime::from_epoch_local(epoch);
}
double Sun::elevation() {
auto time = this->current_sun_time_();
if (isnan(time))
return NAN;
return this->elevation_(time);
}
double Sun::azimuth() {
auto time = this->current_sun_time_();
if (isnan(time))
return NAN;
return this->azimuth_(time);
}
// like clamp, but with doubles
double clampd(double val, double min, double max) {
if (val < min)
return min;
if (val > max)
return max;
return val;
}
double Sun::sun_declination_(double sun_time) {
double n = sun_time - 1.0;
// maximum declination
const double tot = -sin(EARTH_TILT);
num_t GeoLocation::latitude_rad() const { return radians(latitude); }
num_t GeoLocation::longitude_rad() const { return radians(longitude); }
num_t EquatorialCoordinate::right_ascension_rad() const { return radians(right_ascension); }
num_t EquatorialCoordinate::declination_rad() const { return radians(declination); }
num_t HorizontalCoordinate::elevation_rad() const { return radians(elevation); }
num_t HorizontalCoordinate::azimuth_rad() const { return radians(azimuth); }
// eccentricity of the earth's orbit (ellipse)
double eccentricity = 0.0167;
// days since perihelion (January 3rd)
double days_since_perihelion = n - 2;
// days since december solstice (december 22)
double days_since_december_solstice = n + 10;
const double c = TAU / 365.24;
double v = cos(c * days_since_december_solstice + 2 * eccentricity * sin(c * days_since_perihelion));
// Make sure value is in range (double error may lead to results slightly larger than 1)
double x = clampd(tot * v, -1.0, 1.0);
return asin(x);
num_t julian_day(time::ESPTime moment) {
// p. 59
// UT -> JD, TT -> JDE
int y = moment.year;
int m = moment.month;
num_t d = moment.day_of_month;
d += moment.hour / 24.0;
d += moment.minute / (24.0 * 60);
d += moment.second / (24.0 * 60 * 60);
if (m <= 2) {
y -= 1;
m += 12;
}
int a = y / 100;
int b = 2 - a + a / 4;
return ((int) (365.25 * (y + 4716))) + ((int) (30.6001 * (m + 1))) + d + b - 1524.5;
}
double Sun::elevation_ratio_(double sun_time) {
double decl = this->sun_declination_(sun_time);
double hangle = this->hour_angle_(sun_time);
double a = sin(this->latitude_rad_()) * sin(decl);
double b = cos(this->latitude_rad_()) * cos(decl) * cos(hangle);
double val = clampd(a + b, -1.0, 1.0);
return val;
num_t delta_t(time::ESPTime moment) {
// approximation for 2005-2050 from NASA (https://eclipse.gsfc.nasa.gov/SEhelp/deltatpoly2004.html)
int t = moment.year - 2000;
return 62.92 + t * (0.32217 + t * 0.005589);
}
double Sun::latitude_rad_() { return this->latitude_ * TO_RADIANS; }
double Sun::hour_angle_(double sun_time) {
double time_of_day = fmod(sun_time, 1.0) * 24.0;
return -PI * (time_of_day - 12) / 12;
// Perform a fractional module operation where the result will always be positive (wrapping around)
num_t wmod(num_t x, num_t y) {
num_t res = fmod(x, y);
if (res < 0)
res += y;
return res;
}
double Sun::elevation_(double sun_time) { return this->elevation_rad_(sun_time) * TO_DEGREES; }
double Sun::elevation_rad_(double sun_time) { return asin(this->elevation_ratio_(sun_time)); }
double Sun::zenith_rad_(double sun_time) { return acos(this->elevation_ratio_(sun_time)); }
double Sun::azimuth_rad_(double sun_time) {
double hangle = -this->hour_angle_(sun_time);
double decl = this->sun_declination_(sun_time);
double zen = this->zenith_rad_(sun_time);
double nom = cos(zen) * sin(this->latitude_rad_()) - sin(decl);
double denom = sin(zen) * cos(this->latitude_rad_());
double v = clampd(nom / denom, -1.0, 1.0);
double az = PI - acos(v);
if (hangle > 0)
az = -az;
if (az < 0)
az += TAU;
return az;
num_t internal::Moment::jd() const { return julian_day(dt); }
num_t internal::Moment::jde() const {
// dt is in UT1, but JDE is based on TT
// so add deltaT factor
return jd() + delta_t(dt) / (60 * 60 * 24);
}
double Sun::azimuth_(double sun_time) { return this->azimuth_rad_(sun_time) * TO_DEGREES; }
double Sun::calc_sun_time_(const time::ESPTime &time) {
// Time as seen at 0° longitude
if (!time.is_valid())
return NAN;
double base = (time.day_of_year + time.hour / 24.0 + time.minute / 24.0 / 60.0 + time.second / 24.0 / 60.0 / 60.0);
// Add longitude correction
double add = this->longitude_ / 360.0;
return base + add;
}
uint32_t Sun::calc_epoch_(time::ESPTime base, double sun_time) {
sun_time -= this->longitude_ / 360.0;
base.day_of_year = uint32_t(floor(sun_time));
struct SunAtTime {
num_t jde;
num_t t;
sun_time = (sun_time - base.day_of_year) * 24.0;
base.hour = uint32_t(floor(sun_time));
sun_time = (sun_time - base.hour) * 60.0;
base.minute = uint32_t(floor(sun_time));
sun_time = (sun_time - base.minute) * 60.0;
base.second = uint32_t(floor(sun_time));
base.recalc_timestamp_utc(true);
return base.timestamp;
}
double Sun::sun_time_for_elevation_(int32_t day_of_year, double elevation, bool rising) {
// Use binary search, newton's method would be better but binary search already
// converges quite well (19 cycles) and much simpler. Function is guaranteed to be
// monotonous.
double lo, hi;
if (rising) {
lo = day_of_year + 0.0;
hi = day_of_year + 0.5;
} else {
lo = day_of_year + 1.0;
hi = day_of_year + 0.5;
SunAtTime(num_t jde) : jde(jde) {
// eq 25.1, p. 163; julian centuries from the epoch J2000.0
t = (jde - 2451545) / 36525.0;
}
double min_elevation = this->elevation_(lo);
double max_elevation = this->elevation_(hi);
if (elevation < min_elevation || elevation > max_elevation)
return NAN;
// Accuracy: 0.1s
const double accuracy = 1.0 / (24.0 * 60.0 * 60.0 * 10.0);
while (fabs(hi - lo) > accuracy) {
double mid = (lo + hi) / 2.0;
double value = this->elevation_(mid) - elevation;
if (value < 0) {
lo = mid;
} else if (value > 0) {
hi = mid;
} else {
lo = hi = mid;
break;
}
num_t mean_obliquity() const {
// eq. 22.2, p. 147; mean obliquity of the ecliptic
num_t epsilon_0 = (+arcdeg(23, 26, 21.448) - arcdeg(0, 0, 46.8150) * t - arcdeg(0, 0, 0.00059) * sq(t) +
arcdeg(0, 0, 0.001813) * cb(t));
return epsilon_0;
}
return (lo + hi) / 2.0;
num_t omega() const {
// eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
// in degrees
num_t omega = 125.05 - 1934.136 * t;
return omega;
}
num_t true_obliquity() const {
// eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
num_t delta_epsilon = 0.00256 * cos(radians(omega()));
num_t epsilon = mean_obliquity() + delta_epsilon;
return epsilon;
}
num_t mean_longitude() const {
// eq 25.2, p. 163; geometric mean longitude = mean equinox of the date in degrees
num_t l0 = 280.46646 + 36000.76983 * t + 0.0003032 * sq(t);
return wmod(l0, 360);
}
num_t eccentricity() const {
// eq 25.4, p. 163; eccentricity of earth's orbit
num_t e = 0.016708634 - 0.000042037 * t - 0.0000001267 * sq(t);
return e;
}
num_t mean_anomaly() const {
// eq 25.3, p. 163; mean anomaly of the sun in degrees
num_t m = 357.52911 + 35999.05029 * t - 0.0001537 * sq(t);
return wmod(m, 360);
}
num_t equation_of_center() const {
// p. 164; sun's equation of the center c in degrees
num_t m_rad = radians(mean_anomaly());
num_t c = ((1.914602 - 0.004817 * t - 0.000014 * sq(t)) * sin(m_rad) + (0.019993 - 0.000101 * t) * sin(2 * m_rad) +
0.000289 * sin(3 * m_rad));
return wmod(c, 360);
}
num_t true_longitude() const {
// p. 164; sun's true longitude in degrees
num_t x = mean_longitude() + equation_of_center();
return wmod(x, 360);
}
num_t true_anomaly() const {
// p. 164; sun's true anomaly in degrees
num_t x = mean_anomaly() + equation_of_center();
return wmod(x, 360);
}
num_t apparent_longitude() const {
// p. 164; sun's apparent longitude = true equinox in degrees
num_t x = true_longitude() - 0.00569 - 0.00478 * sin(radians(omega()));
return wmod(x, 360);
}
EquatorialCoordinate equatorial_coordinate() const {
num_t epsilon_rad = radians(true_obliquity());
// eq. 25.6; p. 165; sun's right ascension alpha
num_t app_lon_rad = radians(apparent_longitude());
num_t right_ascension_rad = atan2(cos(epsilon_rad) * sin(app_lon_rad), cos(app_lon_rad));
num_t declination_rad = asin(sin(epsilon_rad) * sin(app_lon_rad));
return EquatorialCoordinate{degrees(right_ascension_rad), degrees(declination_rad)};
}
num_t equation_of_time() const {
// chapter 28, p. 185
num_t epsilon_half = radians(true_obliquity() / 2);
num_t y = sq(tan(epsilon_half));
num_t l2 = 2 * mean_longitude();
num_t l2_rad = radians(l2);
num_t e = eccentricity();
num_t m = mean_anomaly();
num_t m_rad = radians(m);
num_t sin_m = sin(m_rad);
num_t eot = (y * sin(l2_rad) - 2 * e * sin_m + 4 * e * y * sin_m * cos(l2_rad) - 1 / 2.0 * sq(y) * sin(2 * l2_rad) -
5 / 4.0 * sq(e) * sin(2 * m_rad));
return degrees(eot);
}
void debug() const {
// debug output like in example 25.a, p. 165
ESP_LOGV(TAG, "jde: %f", jde);
ESP_LOGV(TAG, "T: %f", t);
ESP_LOGV(TAG, "L_0: %f", mean_longitude());
ESP_LOGV(TAG, "M: %f", mean_anomaly());
ESP_LOGV(TAG, "e: %f", eccentricity());
ESP_LOGV(TAG, "C: %f", equation_of_center());
ESP_LOGV(TAG, "Odot: %f", true_longitude());
ESP_LOGV(TAG, "Omega: %f", omega());
ESP_LOGV(TAG, "lambda: %f", apparent_longitude());
ESP_LOGV(TAG, "epsilon_0: %f", mean_obliquity());
ESP_LOGV(TAG, "epsilon: %f", true_obliquity());
ESP_LOGV(TAG, "v: %f", true_anomaly());
auto eq = equatorial_coordinate();
ESP_LOGV(TAG, "right_ascension: %f", eq.right_ascension);
ESP_LOGV(TAG, "declination: %f", eq.declination);
}
};
struct SunAtLocation {
GeoLocation location;
num_t greenwich_sidereal_time(Moment moment) const {
// Return the greenwich mean sidereal time for this instant in degrees
// see chapter 12, p. 87
num_t jd = moment.jd();
// eq 12.1, p.87; jd for 0h UT of this date
time::ESPTime moment_0h = moment.dt;
moment_0h.hour = moment_0h.minute = moment_0h.second = 0;
num_t jd0 = Moment{moment_0h}.jd();
num_t t = (jd0 - 2451545) / 36525;
// eq. 12.4, p.88
num_t gmst = (+280.46061837 + 360.98564736629 * (jd - 2451545) + 0.000387933 * sq(t) - (1 / 38710000.0) * cb(t));
return wmod(gmst, 360);
}
HorizontalCoordinate true_coordinate(Moment moment) const {
auto eq = SunAtTime(moment.jde()).equatorial_coordinate();
num_t gmst = greenwich_sidereal_time(moment);
// do not apply any nutation correction (not important for our target accuracy)
num_t nutation_corr = 0;
num_t ra = eq.right_ascension;
num_t alpha = gmst + nutation_corr + location.longitude - ra;
alpha = wmod(alpha, 360);
num_t alpha_rad = radians(alpha);
num_t sin_lat = sin(location.latitude_rad());
num_t cos_lat = cos(location.latitude_rad());
num_t sin_elevation = (+sin_lat * sin(eq.declination_rad()) + cos_lat * cos(eq.declination_rad()) * cos(alpha_rad));
num_t elevation_rad = asin(sin_elevation);
num_t azimuth_rad = atan2(sin(alpha_rad), cos(alpha_rad) * sin_lat - tan(eq.declination_rad()) * cos_lat);
return HorizontalCoordinate{degrees(elevation_rad), degrees(azimuth_rad) + 180};
}
optional<time::ESPTime> sunrise(time::ESPTime date, num_t zenith) const { return event(true, date, zenith); }
optional<time::ESPTime> sunset(time::ESPTime date, num_t zenith) const { return event(false, date, zenith); }
optional<time::ESPTime> event(bool rise, time::ESPTime date, num_t zenith) const {
// couldn't get the method described in chapter 15 to work,
// so instead this is based on the algorithm in time4j
// https://github.com/MenoData/Time4J/blob/master/base/src/main/java/net/time4j/calendar/astro/StdSolarCalculator.java
auto m = local_event_(date, 12); // noon
num_t jde = julian_day(m);
num_t new_h = 0, old_h;
do {
old_h = new_h;
auto x = local_hour_angle_(jde + old_h / 86400, rise, zenith);
if (!x.has_value())
return {};
new_h = *x;
} while (std::abs(new_h - old_h) >= 15);
time_t new_timestamp = m.timestamp + (time_t) new_h;
return time::ESPTime::from_epoch_local(new_timestamp);
}
protected:
optional<num_t> local_hour_angle_(num_t jde, bool rise, num_t zenith) const {
auto pos = SunAtTime(jde).equatorial_coordinate();
num_t dec_rad = pos.declination_rad();
num_t lat_rad = location.latitude_rad();
num_t num = cos(radians(zenith)) - (sin(dec_rad) * sin(lat_rad));
num_t denom = cos(dec_rad) * cos(lat_rad);
num_t cos_h = num / denom;
if (cos_h > 1 || cos_h < -1)
return {};
num_t hour_angle = degrees(acos(cos_h)) * 240;
if (rise)
hour_angle *= -1;
return hour_angle;
}
time::ESPTime local_event_(time::ESPTime date, int hour) const {
// input date should be in UTC, and hour/minute/second fields 0
num_t added_d = hour / 24.0 - location.longitude / 360;
num_t jd = julian_day(date) + added_d;
num_t eot = SunAtTime(jd).equation_of_time() * 240;
time_t new_timestamp = (time_t)(date.timestamp + added_d * 86400 - eot);
return time::ESPTime::from_epoch_utc(new_timestamp);
}
};
HorizontalCoordinate Sun::calc_coords_() {
SunAtLocation sun{location_};
Moment m{time_->utcnow()};
if (!m.dt.is_valid())
return HorizontalCoordinate{NAN, NAN};
// uncomment to print some debug output
/*
SunAtTime st{m.jde()};
st.debug();
*/
return sun.true_coordinate(m);
}
optional<time::ESPTime> Sun::calc_event_(bool rising, double zenith) {
SunAtLocation sun{location_};
auto now = this->time_->utcnow();
if (!now.is_valid())
return {};
// Calculate UT1 timestamp at 0h
auto today = now;
today.hour = today.minute = today.second = 0;
today.recalc_timestamp_utc();
auto it = sun.event(rising, today, zenith);
if (it.has_value() && it->timestamp < now.timestamp) {
// We're calculating *next* sunrise/sunset, but calculated event
// is today, so try again tomorrow
time_t new_timestamp = today.timestamp + 24 * 60 * 60;
today = time::ESPTime::from_epoch_utc(new_timestamp);
it = sun.event(rising, today, zenith);
}
return it;
}
optional<time::ESPTime> Sun::sunrise(double elevation) { return this->calc_event_(true, 90 - elevation); }
optional<time::ESPTime> Sun::sunset(double elevation) { return this->calc_event_(false, 90 - elevation); }
double Sun::elevation() { return this->calc_coords_().elevation; }
double Sun::azimuth() { return this->calc_coords_().azimuth; }
} // namespace sun
} // namespace esphome

View file

@ -8,85 +8,72 @@
namespace esphome {
namespace sun {
namespace internal {
/* Usually, ESPHome uses single-precision floating point values
* because those tend to be accurate enough and are more efficient.
*
* However, some of the data in this class has to be quite accurate, so double is
* used everywhere.
*/
using num_t = double;
struct GeoLocation {
num_t latitude;
num_t longitude;
num_t latitude_rad() const;
num_t longitude_rad() const;
};
struct Moment {
time::ESPTime dt;
num_t jd() const;
num_t jde() const;
};
struct EquatorialCoordinate {
num_t right_ascension;
num_t declination;
num_t right_ascension_rad() const;
num_t declination_rad() const;
};
struct HorizontalCoordinate {
num_t elevation;
num_t azimuth;
num_t elevation_rad() const;
num_t azimuth_rad() const;
};
} // namespace internal
class Sun {
public:
void set_time(time::RealTimeClock *time) { time_ = time; }
time::RealTimeClock *get_time() const { return time_; }
void set_latitude(double latitude) { latitude_ = latitude; }
void set_longitude(double longitude) { longitude_ = longitude; }
void set_latitude(double latitude) { location_.latitude = latitude; }
void set_longitude(double longitude) { location_.longitude = longitude; }
optional<time::ESPTime> sunrise(double elevation = 0.0);
optional<time::ESPTime> sunset(double elevation = 0.0);
optional<time::ESPTime> sunrise(double elevation);
optional<time::ESPTime> sunset(double elevation);
double elevation();
double azimuth();
protected:
double current_sun_time_() { return this->calc_sun_time_(this->time_->utcnow()); }
/** Calculate the declination of the sun in rad.
*
* See https://en.wikipedia.org/wiki/Position_of_the_Sun#Declination_of_the_Sun_as_seen_from_Earth
*
* Accuracy: ±0.2°
*
* @param sun_time The day of the year, 1 means January 1st. See calc_sun_time_.
* @return Sun declination in degrees
*/
double sun_declination_(double sun_time);
double elevation_ratio_(double sun_time);
/** Calculate the hour angle based on the sun time of day in hours.
*
* Positive in morning, 0 at noon, negative in afternoon.
*
* @param sun_time Sun time, see calc_sun_time_.
* @return Hour angle in rad.
*/
double hour_angle_(double sun_time);
double elevation_(double sun_time);
double elevation_rad_(double sun_time);
double zenith_rad_(double sun_time);
double azimuth_rad_(double sun_time);
double azimuth_(double sun_time);
/** Return the sun time given by the time_ object.
*
* Sun time is defined as doubleing point day of year.
* Integer part encodes the day of the year (1=January 1st)
* Decimal part encodes time of day (1/24 = 1 hour)
*/
double calc_sun_time_(const time::ESPTime &time);
uint32_t calc_epoch_(time::ESPTime base, double sun_time);
/** Calculate the sun time of day
*
* @param day_of_year
* @param elevation
* @param rising
* @return
*/
double sun_time_for_elevation_(int32_t day_of_year, double elevation, bool rising);
double latitude_rad_();
internal::HorizontalCoordinate calc_coords_();
optional<time::ESPTime> calc_event_(bool rising, double zenith);
time::RealTimeClock *time_;
/// Latitude in degrees, range: -90 to 90.
double latitude_;
/// Longitude in degrees, range: -180 to 180.
double longitude_;
internal::GeoLocation location_;
};
class SunTrigger : public Trigger<>, public PollingComponent, public Parented<Sun> {
public:
SunTrigger() : PollingComponent(1000) {}
SunTrigger() : PollingComponent(60000) {}
void set_sunrise(bool sunrise) { sunrise_ = sunrise; }
void set_elevation(double elevation) { elevation_ = elevation; }

View file

@ -405,6 +405,7 @@ ARDUINO_FORBIDDEN_RE = r"[^\w\d](" + r"|".join(ARDUINO_FORBIDDEN) + r")\(.*"
include=cpp_include,
exclude=[
"esphome/components/mqtt/custom_mqtt_device.h",
"esphome/components/sun/sun.cpp",
"esphome/core/esphal.*",
],
)