Fix broken PULSE_METER (#4199)

fixes https://github.com/esphome/issues/issues/3730
This commit is contained in:
cstaahl 2022-12-22 23:07:45 +01:00 committed by GitHub
parent 53b60ac817
commit 8237e13c44
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 113 additions and 69 deletions

View file

@ -11,43 +11,48 @@ void PulseMeterSensor::setup() {
this->isr_pin_ = pin_->to_isr();
this->pin_->attach_interrupt(PulseMeterSensor::gpio_intr, this, gpio::INTERRUPT_ANY_EDGE);
this->pulse_width_us_ = 0;
this->last_detected_edge_us_ = 0;
this->last_valid_high_edge_us_ = 0;
this->last_valid_low_edge_us_ = 0;
this->last_valid_edge_us_ = 0;
this->pulse_width_us_ = 0;
this->sensor_is_high_ = this->isr_pin_.digital_read();
this->has_valid_high_edge_ = false;
this->has_valid_low_edge_ = false;
this->has_valid_edge_ = false;
this->pending_state_change_ = NONE;
}
// In PULSE mode we set a flag (pending_state_change_) for every interrupt
// that constitutes a state change. In the loop() method we check if a time
// interval greater than the internal_filter time has passed without any
// interrupts.
void PulseMeterSensor::loop() {
// Get a local copy of the volatile sensor values, to make sure they are not
// modified by the ISR. This could cause overflow in the following arithmetic
const uint32_t last_valid_high_edge_us = this->last_valid_high_edge_us_;
const bool has_valid_high_edge = this->has_valid_high_edge_;
// Get a snapshot of the needed volatile sensor values, to make sure they are not
// modified by the ISR while we are in the loop() method. If they are changed
// after we the variable "now" has been set, overflow will occur in the
// subsequent arithmetic
const bool has_valid_edge = this->has_valid_edge_;
const uint32_t last_detected_edge_us = this->last_detected_edge_us_;
const uint32_t last_valid_edge_us = this->last_valid_edge_us_;
// Get the current time after the snapshot of saved times
const uint32_t now = micros();
// If we've exceeded our timeout interval without receiving any pulses, assume
// 0 pulses/min until we get at least two valid pulses.
const uint32_t time_since_valid_edge_us = now - last_valid_high_edge_us;
if ((has_valid_high_edge) && (time_since_valid_edge_us > this->timeout_us_)) {
this->handle_state_change_(now, last_detected_edge_us, last_valid_edge_us, has_valid_edge);
// If we've exceeded our timeout interval without receiving any pulses, assume 0 pulses/min until
// we get at least two valid pulses.
const uint32_t time_since_valid_edge_us = now - last_detected_edge_us;
if ((has_valid_edge) && (time_since_valid_edge_us > this->timeout_us_)) {
ESP_LOGD(TAG, "No pulse detected for %us, assuming 0 pulses/min", time_since_valid_edge_us / 1000000);
this->last_valid_edge_us_ = 0;
this->pulse_width_us_ = 0;
this->has_valid_edge_ = false;
this->last_detected_edge_us_ = 0;
this->last_valid_high_edge_us_ = 0;
this->last_valid_low_edge_us_ = 0;
this->has_detected_edge_ = false;
this->has_valid_high_edge_ = false;
this->has_valid_low_edge_ = false;
}
// We quantize our pulse widths to 1 ms to avoid unnecessary jitter
const uint32_t pulse_width_ms = this->pulse_width_us_ / 1000;
if (this->pulse_width_dedupe_.next(pulse_width_ms)) {
if (pulse_width_ms == 0) {
// Treat 0 pulse width as 0 pulses/min (normally because we've not
// detected any pulses for a while)
// Treat 0 pulse width as 0 pulses/min (normally because we've not detected any pulses for a while)
this->publish_state(0);
} else {
// Calculate pulses/min from the pulse width in ms
@ -77,58 +82,95 @@ void PulseMeterSensor::dump_config() {
}
void IRAM_ATTR PulseMeterSensor::gpio_intr(PulseMeterSensor *sensor) {
// This is an interrupt handler - we can't call any virtual method from this
// method
// Get the current time before we do anything else so the measurements are
// consistent
// This is an interrupt handler - we can't call any virtual method from this method
// Get the current time before we do anything else so the measurements are consistent
const uint32_t now = micros();
const bool pin_val = sensor->isr_pin_.digital_read();
// We only look at rising edges in EDGE mode, and all edges in PULSE mode
if (sensor->filter_mode_ == FILTER_EDGE) {
if (sensor->isr_pin_.digital_read()) {
sensor->last_detected_edge_us_ = now;
}
}
// Check to see if we should filter this edge out
if (sensor->filter_mode_ == FILTER_EDGE) {
if ((sensor->last_detected_edge_us_ - sensor->last_valid_high_edge_us_) >= sensor->filter_us_) {
// Don't measure the first valid pulse (we need at least two pulses to
// measure the width)
if (sensor->has_valid_high_edge_) {
sensor->pulse_width_us_ = (sensor->last_detected_edge_us_ - sensor->last_valid_high_edge_us_);
}
sensor->total_pulses_++;
sensor->last_valid_high_edge_us_ = sensor->last_detected_edge_us_;
sensor->has_valid_high_edge_ = true;
}
} else {
// Filter Mode is PULSE
bool pin_val = sensor->isr_pin_.digital_read();
// Ignore false edges that may be caused by bouncing and exit the ISR ASAP
if (pin_val == sensor->sensor_is_high_) {
// We only look at rising edges
if (!pin_val) {
return;
}
// Make sure the signal has been stable long enough
if (sensor->has_detected_edge_ && (now - sensor->last_detected_edge_us_ >= sensor->filter_us_)) {
if (pin_val) {
sensor->has_valid_high_edge_ = true;
sensor->last_valid_high_edge_us_ = sensor->last_detected_edge_us_;
sensor->sensor_is_high_ = true;
} else {
// Count pulses when a sufficiently long high pulse is concluded.
// Check to see if we should filter this edge out
if ((now - sensor->last_detected_edge_us_) >= sensor->filter_us_) {
// Don't measure the first valid pulse (we need at least two pulses to measure the width)
if (sensor->has_valid_edge_) {
sensor->pulse_width_us_ = (now - sensor->last_valid_edge_us_);
}
sensor->total_pulses_++;
if (sensor->has_valid_low_edge_) {
sensor->pulse_width_us_ = sensor->last_detected_edge_us_ - sensor->last_valid_low_edge_us_;
sensor->last_valid_edge_us_ = now;
sensor->has_valid_edge_ = true;
}
sensor->has_valid_low_edge_ = true;
sensor->last_valid_low_edge_us_ = sensor->last_detected_edge_us_;
sensor->sensor_is_high_ = false;
}
}
sensor->has_detected_edge_ = true;
sensor->last_detected_edge_us_ = now;
} else {
// Filter Mode is PULSE
const uint32_t delta_t_us = now - sensor->last_detected_edge_us_;
// We need to check if we have missed to handle a state change in the
// loop() function. This can happen when the filter_us value is less than
// the loop() interval, which is ~50-60ms
// The section below is essentially a modified repeat of the
// handle_state_change method. Ideally i would refactor and call the
// method here as well. However functions called in ISRs need to meet
// strict criteria and I don't think the methos would meet them.
if (sensor->pending_state_change_ != NONE && (delta_t_us > sensor->filter_us_)) {
// We have missed to handle a state change in the loop function.
sensor->sensor_is_high_ = sensor->pending_state_change_ == TO_HIGH;
if (sensor->sensor_is_high_) {
// We need to handle a pulse that would have been missed by the loop function
sensor->total_pulses_++;
if (sensor->has_valid_edge_) {
sensor->pulse_width_us_ = sensor->last_detected_edge_us_ - sensor->last_valid_edge_us_;
sensor->has_valid_edge_ = true;
sensor->last_valid_edge_us_ = sensor->last_detected_edge_us_;
}
}
} // End of checking for and handling of change in state
// Ignore false edges that may be caused by bouncing and exit the ISR ASAP
if (pin_val == sensor->sensor_is_high_) {
sensor->pending_state_change_ = NONE;
return;
}
sensor->pending_state_change_ = pin_val ? TO_HIGH : TO_LOW;
sensor->last_detected_edge_us_ = now;
}
}
void PulseMeterSensor::handle_state_change_(uint32_t now, uint32_t last_detected_edge_us, uint32_t last_valid_edge_us,
bool has_valid_edge) {
if (this->pending_state_change_ == NONE) {
return;
}
const bool pin_val = this->isr_pin_.digital_read();
if (pin_val == this->sensor_is_high_) {
// Most likely caused by high frequency bouncing. Theoretically we should
// expect interrupts of alternating state. Here we are registering an
// interrupt with no change in state. Another interrupt will likely trigger
// just after this one and have an alternate state.
this->pending_state_change_ = NONE;
return;
}
if ((now - last_detected_edge_us) > this->filter_us_) {
this->sensor_is_high_ = pin_val;
ESP_LOGVV(TAG, "State is now %s", pin_val ? "high" : "low");
// Increment with valid rising edges only
if (pin_val) {
this->total_pulses_++;
ESP_LOGVV(TAG, "Incremented pulses to %u", this->total_pulses_);
if (has_valid_edge) {
this->pulse_width_us_ = last_detected_edge_us - last_valid_edge_us;
ESP_LOGVV(TAG, "Set pulse width to %u", this->pulse_width_us_);
}
this->has_valid_edge_ = true;
this->last_valid_edge_us_ = last_detected_edge_us;
ESP_LOGVV(TAG, "last_valid_edge_us_ is now %u", this->last_valid_edge_us_);
}
this->pending_state_change_ = NONE;
}
}

View file

@ -29,7 +29,11 @@ class PulseMeterSensor : public sensor::Sensor, public Component {
void dump_config() override;
protected:
enum StateChange { TO_LOW = 0, TO_HIGH, NONE };
static void gpio_intr(PulseMeterSensor *sensor);
void handle_state_change_(uint32_t now, uint32_t last_detected_edge_us, uint32_t last_valid_edge_us,
bool has_valid_edge);
InternalGPIOPin *pin_{nullptr};
ISRInternalGPIOPin isr_pin_;
@ -42,14 +46,12 @@ class PulseMeterSensor : public sensor::Sensor, public Component {
Deduplicator<uint32_t> total_dedupe_;
volatile uint32_t last_detected_edge_us_ = 0;
volatile uint32_t last_valid_high_edge_us_ = 0;
volatile uint32_t last_valid_low_edge_us_ = 0;
volatile uint32_t last_valid_edge_us_ = 0;
volatile uint32_t pulse_width_us_ = 0;
volatile uint32_t total_pulses_ = 0;
volatile bool sensor_is_high_ = false;
volatile bool has_detected_edge_ = false;
volatile bool has_valid_high_edge_ = false;
volatile bool has_valid_low_edge_ = false;
volatile bool has_valid_edge_ = false;
volatile StateChange pending_state_change_{NONE};
};
} // namespace pulse_meter