Remove "delay_microseconds_accurate()" and improve systemwide delayMicroseconds() (#2497)

This commit is contained in:
Carlos Garcia Saura 2021-11-10 04:22:00 +01:00 committed by GitHub
parent 6e5cfac927
commit 875b803483
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 25 additions and 30 deletions

View file

@ -73,7 +73,7 @@ void AHT10Component::update() {
bool success = false; bool success = false;
for (int i = 0; i < AHT10_ATTEMPTS; ++i) { for (int i = 0; i < AHT10_ATTEMPTS; ++i) {
ESP_LOGVV(TAG, "Attempt %d at %6u", i, millis()); ESP_LOGVV(TAG, "Attempt %d at %6u", i, millis());
delay_microseconds_accurate(4); delayMicroseconds(4);
uint8_t reg = 0; uint8_t reg = 0;
if (this->write(&reg, 1) != i2c::ERROR_OK) { if (this->write(&reg, 1) != i2c::ERROR_OK) {

View file

@ -21,11 +21,7 @@ void IRAM_ATTR HOT yield() { vPortYield(); }
uint32_t IRAM_ATTR HOT millis() { return (uint32_t)(esp_timer_get_time() / 1000ULL); } uint32_t IRAM_ATTR HOT millis() { return (uint32_t)(esp_timer_get_time() / 1000ULL); }
void IRAM_ATTR HOT delay(uint32_t ms) { vTaskDelay(ms / portTICK_PERIOD_MS); } void IRAM_ATTR HOT delay(uint32_t ms) { vTaskDelay(ms / portTICK_PERIOD_MS); }
uint32_t IRAM_ATTR HOT micros() { return (uint32_t) esp_timer_get_time(); } uint32_t IRAM_ATTR HOT micros() { return (uint32_t) esp_timer_get_time(); }
void IRAM_ATTR HOT delayMicroseconds(uint32_t us) { void IRAM_ATTR HOT delayMicroseconds(uint32_t us) { delay_microseconds_safe(us); }
auto start = (uint64_t) esp_timer_get_time();
while (((uint64_t) esp_timer_get_time()) - start < us)
;
}
void arch_restart() { void arch_restart() {
esp_restart(); esp_restart();
// restart() doesn't always end execution // restart() doesn't always end execution

View file

@ -12,7 +12,7 @@ void IRAM_ATTR HOT yield() { ::yield(); }
uint32_t IRAM_ATTR HOT millis() { return ::millis(); } uint32_t IRAM_ATTR HOT millis() { return ::millis(); }
void IRAM_ATTR HOT delay(uint32_t ms) { ::delay(ms); } void IRAM_ATTR HOT delay(uint32_t ms) { ::delay(ms); }
uint32_t IRAM_ATTR HOT micros() { return ::micros(); } uint32_t IRAM_ATTR HOT micros() { return ::micros(); }
void IRAM_ATTR HOT delayMicroseconds(uint32_t us) { ::delayMicroseconds(us); } void IRAM_ATTR HOT delayMicroseconds(uint32_t us) { delay_microseconds_safe(us); }
void arch_restart() { void arch_restart() {
ESP.restart(); // NOLINT(readability-static-accessed-through-instance) ESP.restart(); // NOLINT(readability-static-accessed-through-instance)
// restart() doesn't always end execution // restart() doesn't always end execution

View file

@ -121,10 +121,8 @@ void RemoteTransmitterComponent::send_internal(uint32_t send_times, uint32_t sen
} else { } else {
this->status_clear_warning(); this->status_clear_warning();
} }
if (i + 1 < send_times) { if (i + 1 < send_times)
delay(send_wait / 1000UL); delayMicroseconds(send_wait);
delayMicroseconds(send_wait % 1000UL);
}
} }
} }

View file

@ -36,7 +36,7 @@ void RemoteTransmitterComponent::calculate_on_off_time_(uint32_t carrier_frequen
void RemoteTransmitterComponent::mark_(uint32_t on_time, uint32_t off_time, uint32_t usec) { void RemoteTransmitterComponent::mark_(uint32_t on_time, uint32_t off_time, uint32_t usec) {
if (this->carrier_duty_percent_ == 100 || (on_time == 0 && off_time == 0)) { if (this->carrier_duty_percent_ == 100 || (on_time == 0 && off_time == 0)) {
this->pin_->digital_write(true); this->pin_->digital_write(true);
delay_microseconds_accurate(usec); delayMicroseconds(usec);
this->pin_->digital_write(false); this->pin_->digital_write(false);
return; return;
} }
@ -48,19 +48,19 @@ void RemoteTransmitterComponent::mark_(uint32_t on_time, uint32_t off_time, uint
const uint32_t elapsed = current_time - start_time; const uint32_t elapsed = current_time - start_time;
this->pin_->digital_write(true); this->pin_->digital_write(true);
delay_microseconds_accurate(std::min(on_time, usec - elapsed)); delayMicroseconds(std::min(on_time, usec - elapsed));
this->pin_->digital_write(false); this->pin_->digital_write(false);
if (elapsed + on_time >= usec) if (elapsed + on_time >= usec)
return; return;
delay_microseconds_accurate(std::min(usec - elapsed - on_time, off_time)); delayMicroseconds(std::min(usec - elapsed - on_time, off_time));
current_time = micros(); current_time = micros();
} }
} }
void RemoteTransmitterComponent::space_(uint32_t usec) { void RemoteTransmitterComponent::space_(uint32_t usec) {
this->pin_->digital_write(false); this->pin_->digital_write(false);
delay_microseconds_accurate(usec); delayMicroseconds(usec);
} }
void RemoteTransmitterComponent::send_internal(uint32_t send_times, uint32_t send_wait) { void RemoteTransmitterComponent::send_internal(uint32_t send_times, uint32_t send_wait) {
ESP_LOGD(TAG, "Sending remote code..."); ESP_LOGD(TAG, "Sending remote code...");
@ -81,9 +81,8 @@ void RemoteTransmitterComponent::send_internal(uint32_t send_times, uint32_t sen
} }
} }
if (i + 1 < send_times) { if (i + 1 < send_times)
delay_microseconds_accurate(send_wait); delayMicroseconds(send_wait);
}
} }
} }

View file

@ -1,5 +1,6 @@
#include "sdp3x.h" #include "sdp3x.h"
#include "esphome/core/log.h" #include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include "esphome/core/helpers.h" #include "esphome/core/helpers.h"
namespace esphome { namespace esphome {
@ -25,7 +26,7 @@ void SDP3XComponent::setup() {
ESP_LOGW(TAG, "Soft Reset SDP3X failed!"); // This sometimes fails for no good reason ESP_LOGW(TAG, "Soft Reset SDP3X failed!"); // This sometimes fails for no good reason
} }
delay_microseconds_accurate(20000); delayMicroseconds(20000);
if (this->write(SDP3X_READ_ID1, 2) != i2c::ERROR_OK) { if (this->write(SDP3X_READ_ID1, 2) != i2c::ERROR_OK) {
ESP_LOGE(TAG, "Read ID1 SDP3X failed!"); ESP_LOGE(TAG, "Read ID1 SDP3X failed!");

View file

@ -209,17 +209,18 @@ uint8_t crc8(uint8_t *data, uint8_t len) {
return crc; return crc;
} }
void delay_microseconds_accurate(uint32_t usec) { void delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
if (usec == 0) auto start = micros();
return; const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
if (usec < 5000UL) { // it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
delayMicroseconds(usec); // 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
return; if (us > lag) {
} delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
uint32_t start = micros(); while (micros() - start < us - lag)
while (micros() - start < usec) { delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
delay(0);
} }
while (micros() - start < us) // fine delay the remaining usecs
;
} }
uint8_t reverse_bits_8(uint8_t x) { uint8_t reverse_bits_8(uint8_t x) {

View file

@ -255,7 +255,7 @@ struct is_callable // NOLINT
static constexpr auto value = decltype(test<T>(nullptr))::value; // NOLINT static constexpr auto value = decltype(test<T>(nullptr))::value; // NOLINT
}; };
void delay_microseconds_accurate(uint32_t usec); void delay_microseconds_safe(uint32_t us);
template<typename T> class Deduplicator { template<typename T> class Deduplicator {
public: public: