Logically group and document helper functions (#3112)

This commit is contained in:
Oxan van Leeuwen 2022-01-27 08:35:42 +01:00 committed by GitHub
parent 0f3d4d9a47
commit 976f5d91ed
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 482 additions and 434 deletions

View file

@ -8,6 +8,11 @@
namespace esphome {
// https://stackoverflow.com/questions/7858817/unpacking-a-tuple-to-call-a-matching-function-pointer/7858971#7858971
template<int...> struct seq {}; // NOLINT
template<int N, int... S> struct gens : gens<N - 1, N - 1, S...> {}; // NOLINT
template<int... S> struct gens<0, S...> { using type = seq<S...>; }; // NOLINT
#define TEMPLATABLE_VALUE_(type, name) \
protected: \
TemplatableValue<type, Ts...> name##_{}; \

View file

@ -1,5 +1,8 @@
#include "esphome/core/helpers.h"
#include "esphome/core/defines.h"
#include "esphome/core/hal.h"
#include <cstdio>
#include <algorithm>
#include <cctype>
@ -18,95 +21,31 @@
#include <freertos/FreeRTOS.h>
#include <freertos/portmacro.h>
#endif
#ifdef USE_ESP32_IGNORE_EFUSE_MAC_CRC
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#endif
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
namespace esphome {
static const char *const TAG = "helpers";
// STL backports
void get_mac_address_raw(uint8_t *mac) {
#if defined(USE_ESP32)
#if defined(USE_ESP32_IGNORE_EFUSE_MAC_CRC)
// On some devices, the MAC address that is burnt into EFuse does not
// match the CRC that goes along with it. For those devices, this
// work-around reads and uses the MAC address as-is from EFuse,
// without doing the CRC check.
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
#else
esp_efuse_mac_get_default(mac);
#endif
#elif defined(USE_ESP8266)
wifi_get_macaddr(STATION_IF, mac);
#endif
}
std::string get_mac_address() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02x%02x%02x%02x%02x%02x", 12, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
std::string get_mac_address_pretty() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
#ifdef USE_ESP32
void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); }
#if _GLIBCXX_RELEASE < 7
std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
std::string to_string(float value) { return str_snprintf("%f", 32, value); }
std::string to_string(double value) { return str_snprintf("%f", 32, value); }
std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
#endif
std::string generate_hostname(const std::string &base) { return base + std::string("-") + get_mac_address(); }
float gamma_correct(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, gamma);
}
float gamma_uncorrect(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, 1 / gamma);
}
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) {
if (accuracy_decimals < 0) {
auto multiplier = powf(10.0f, accuracy_decimals);
value = roundf(value * multiplier) / multiplier;
accuracy_decimals = 0;
}
char tmp[32]; // should be enough, but we should maybe improve this at some point.
snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value);
return std::string(tmp);
}
ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) {
if (on == nullptr && strcasecmp(str, "on") == 0)
return PARSE_ON;
if (on != nullptr && strcasecmp(str, on) == 0)
return PARSE_ON;
if (off == nullptr && strcasecmp(str, "off") == 0)
return PARSE_OFF;
if (off != nullptr && strcasecmp(str, off) == 0)
return PARSE_OFF;
if (strcasecmp(str, "toggle") == 0)
return PARSE_TOGGLE;
return PARSE_NONE;
}
// Mathematics
float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
uint8_t crc8(uint8_t *data, uint8_t len) {
uint8_t crc = 0;
@ -122,21 +61,6 @@ uint8_t crc8(uint8_t *data, uint8_t len) {
}
return crc;
}
void delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
auto start = micros();
const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
// it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
// 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
if (us > lag) {
delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
while (micros() - start < us - lag)
delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
}
while (micros() - start < us) // fine delay the remaining usecs
;
}
uint32_t fnv1_hash(const std::string &str) {
uint32_t hash = 2166136261UL;
for (char c : str) {
@ -145,139 +69,6 @@ uint32_t fnv1_hash(const std::string &str) {
}
return hash;
}
bool str_equals_case_insensitive(const std::string &a, const std::string &b) {
return strcasecmp(a.c_str(), b.c_str()) == 0;
}
static int high_freq_num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void HighFrequencyLoopRequester::start() {
if (this->started_)
return;
high_freq_num_requests++;
this->started_ = true;
}
void HighFrequencyLoopRequester::stop() {
if (!this->started_)
return;
high_freq_num_requests--;
this->started_ = false;
}
bool HighFrequencyLoopRequester::is_high_frequency() { return high_freq_num_requests > 0; }
float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
bool str_startswith(const std::string &full, const std::string &start) { return full.rfind(start, 0) == 0; }
bool str_endswith(const std::string &full, const std::string &ending) {
return full.rfind(ending) == (full.size() - ending.size());
}
std::string str_snprintf(const char *fmt, size_t length, ...) {
std::string str;
va_list args;
str.resize(length);
va_start(args, length);
size_t out_length = vsnprintf(&str[0], length + 1, fmt, args);
va_end(args);
if (out_length < length)
str.resize(out_length);
return str;
}
std::string str_sprintf(const char *fmt, ...) {
std::string str;
va_list args;
va_start(args, fmt);
size_t length = vsnprintf(nullptr, 0, fmt, args);
va_end(args);
str.resize(length);
va_start(args, fmt);
vsnprintf(&str[0], length + 1, fmt, args);
va_end(args);
return str;
}
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) {
float max_color_value = std::max(std::max(red, green), blue);
float min_color_value = std::min(std::min(red, green), blue);
float delta = max_color_value - min_color_value;
if (delta == 0) {
hue = 0;
} else if (max_color_value == red) {
hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360));
} else if (max_color_value == green) {
hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360));
} else if (max_color_value == blue) {
hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360));
}
if (max_color_value == 0) {
saturation = 0;
} else {
saturation = delta / max_color_value;
}
value = max_color_value;
}
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) {
float chroma = value * saturation;
float hue_prime = fmod(hue / 60.0, 6);
float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1));
float delta = value - chroma;
if (0 <= hue_prime && hue_prime < 1) {
red = chroma;
green = intermediate;
blue = 0;
} else if (1 <= hue_prime && hue_prime < 2) {
red = intermediate;
green = chroma;
blue = 0;
} else if (2 <= hue_prime && hue_prime < 3) {
red = 0;
green = chroma;
blue = intermediate;
} else if (3 <= hue_prime && hue_prime < 4) {
red = 0;
green = intermediate;
blue = chroma;
} else if (4 <= hue_prime && hue_prime < 5) {
red = intermediate;
green = 0;
blue = chroma;
} else if (5 <= hue_prime && hue_prime < 6) {
red = chroma;
green = 0;
blue = intermediate;
} else {
red = 0;
green = 0;
blue = 0;
}
red += delta;
green += delta;
blue += delta;
}
#ifdef USE_ESP8266
IRAM_ATTR InterruptLock::InterruptLock() { xt_state_ = xt_rsil(15); }
IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(xt_state_); }
#endif
#ifdef USE_ESP32
IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); }
IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); }
#endif
// ---------------------------------------------------------------------------------------------------------------------
// Mathematics
uint32_t random_uint32() {
#ifdef USE_ESP32
@ -302,6 +93,13 @@ bool random_bytes(uint8_t *data, size_t len) {
// Strings
bool str_equals_case_insensitive(const std::string &a, const std::string &b) {
return strcasecmp(a.c_str(), b.c_str()) == 0;
}
bool str_startswith(const std::string &str, const std::string &start) { return str.rfind(start, 0) == 0; }
bool str_endswith(const std::string &str, const std::string &end) {
return str.rfind(end) == (str.size() - end.size());
}
std::string str_truncate(const std::string &str, size_t length) {
return str.length() > length ? str.substr(0, length) : str;
}
@ -334,6 +132,35 @@ std::string str_sanitize(const std::string &str) {
});
return out;
}
std::string str_snprintf(const char *fmt, size_t len, ...) {
std::string str;
va_list args;
str.resize(len);
va_start(args, len);
size_t out_length = vsnprintf(&str[0], len + 1, fmt, args);
va_end(args);
if (out_length < len)
str.resize(out_length);
return str;
}
std::string str_sprintf(const char *fmt, ...) {
std::string str;
va_list args;
va_start(args, fmt);
size_t length = vsnprintf(nullptr, 0, fmt, args);
va_end(args);
str.resize(length);
va_start(args, fmt);
vsnprintf(&str[0], length + 1, fmt, args);
va_end(args);
return str;
}
// Parsing & formatting
@ -385,4 +212,181 @@ std::string format_hex_pretty(const uint8_t *data, size_t length) {
}
std::string format_hex_pretty(const std::vector<uint8_t> &data) { return format_hex_pretty(data.data(), data.size()); }
ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) {
if (on == nullptr && strcasecmp(str, "on") == 0)
return PARSE_ON;
if (on != nullptr && strcasecmp(str, on) == 0)
return PARSE_ON;
if (off == nullptr && strcasecmp(str, "off") == 0)
return PARSE_OFF;
if (off != nullptr && strcasecmp(str, off) == 0)
return PARSE_OFF;
if (strcasecmp(str, "toggle") == 0)
return PARSE_TOGGLE;
return PARSE_NONE;
}
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) {
if (accuracy_decimals < 0) {
auto multiplier = powf(10.0f, accuracy_decimals);
value = roundf(value * multiplier) / multiplier;
accuracy_decimals = 0;
}
char tmp[32]; // should be enough, but we should maybe improve this at some point.
snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value);
return std::string(tmp);
}
// Colors
float gamma_correct(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, gamma);
}
float gamma_uncorrect(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, 1 / gamma);
}
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) {
float max_color_value = std::max(std::max(red, green), blue);
float min_color_value = std::min(std::min(red, green), blue);
float delta = max_color_value - min_color_value;
if (delta == 0) {
hue = 0;
} else if (max_color_value == red) {
hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360));
} else if (max_color_value == green) {
hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360));
} else if (max_color_value == blue) {
hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360));
}
if (max_color_value == 0) {
saturation = 0;
} else {
saturation = delta / max_color_value;
}
value = max_color_value;
}
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) {
float chroma = value * saturation;
float hue_prime = fmod(hue / 60.0, 6);
float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1));
float delta = value - chroma;
if (0 <= hue_prime && hue_prime < 1) {
red = chroma;
green = intermediate;
blue = 0;
} else if (1 <= hue_prime && hue_prime < 2) {
red = intermediate;
green = chroma;
blue = 0;
} else if (2 <= hue_prime && hue_prime < 3) {
red = 0;
green = chroma;
blue = intermediate;
} else if (3 <= hue_prime && hue_prime < 4) {
red = 0;
green = intermediate;
blue = chroma;
} else if (4 <= hue_prime && hue_prime < 5) {
red = intermediate;
green = 0;
blue = chroma;
} else if (5 <= hue_prime && hue_prime < 6) {
red = chroma;
green = 0;
blue = intermediate;
} else {
red = 0;
green = 0;
blue = 0;
}
red += delta;
green += delta;
blue += delta;
}
// System APIs
#if defined(USE_ESP8266)
IRAM_ATTR InterruptLock::InterruptLock() { xt_state_ = xt_rsil(15); }
IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(xt_state_); }
#elif defined(USE_ESP32)
IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); }
IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); }
#endif
uint8_t HighFrequencyLoopRequester::num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void HighFrequencyLoopRequester::start() {
if (this->started_)
return;
num_requests++;
this->started_ = true;
}
void HighFrequencyLoopRequester::stop() {
if (!this->started_)
return;
num_requests--;
this->started_ = false;
}
bool HighFrequencyLoopRequester::is_high_frequency() { return num_requests > 0; }
void get_mac_address_raw(uint8_t *mac) {
#if defined(USE_ESP32)
#if defined(USE_ESP32_IGNORE_EFUSE_MAC_CRC)
// On some devices, the MAC address that is burnt into EFuse does not
// match the CRC that goes along with it. For those devices, this
// work-around reads and uses the MAC address as-is from EFuse,
// without doing the CRC check.
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
#else
esp_efuse_mac_get_default(mac);
#endif
#elif defined(USE_ESP8266)
wifi_get_macaddr(STATION_IF, mac);
#endif
}
std::string get_mac_address() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02x%02x%02x%02x%02x%02x", 12, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
std::string get_mac_address_pretty() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
#ifdef USE_ESP32
void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); }
#endif
void delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
uint32_t start = micros();
const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
// it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
// 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
if (us > lag) {
delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
while (micros() - start < us - lag)
delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
}
while (micros() - start < us) // fine delay the remaining usecs
;
}
} // namespace esphome

View file

@ -2,19 +2,18 @@
#include <cmath>
#include <cstring>
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
#include "esphome/core/optional.h"
#ifdef USE_ESP32
#include <esp_heap_caps.h>
#endif
#include "esphome/core/optional.h"
#define HOT __attribute__((hot))
#define ESPDEPRECATED(msg, when) __attribute__((deprecated(msg)))
#define ALWAYS_INLINE __attribute__((always_inline))
@ -30,212 +29,26 @@
namespace esphome {
/// Get the device MAC address as raw bytes, written into the provided byte array (6 bytes).
void get_mac_address_raw(uint8_t *mac);
/// Get the device MAC address as a string, in lowercase hex notation.
std::string get_mac_address();
/// Get the device MAC address as a string, in colon-separated uppercase hex notation.
std::string get_mac_address_pretty();
#ifdef USE_ESP32
/// Set the MAC address to use from the provided byte array (6 bytes).
void set_mac_address(uint8_t *mac);
#endif
/// Compare string a to string b (ignoring case) and return whether they are equal.
bool str_equals_case_insensitive(const std::string &a, const std::string &b);
bool str_startswith(const std::string &full, const std::string &start);
bool str_endswith(const std::string &full, const std::string &ending);
/// snprintf-like function returning std::string with a given maximum length.
std::string __attribute__((format(printf, 1, 3))) str_snprintf(const char *fmt, size_t length, ...);
/// sprintf-like function returning std::string.
std::string __attribute__((format(printf, 1, 2))) str_sprintf(const char *fmt, ...);
class HighFrequencyLoopRequester {
public:
void start();
void stop();
static bool is_high_frequency();
protected:
bool started_{false};
};
/** Linearly interpolate between end start and end by completion.
*
* @tparam T The input/output typename.
* @param start The start value.
* @param end The end value.
* @param completion The completion. 0 is start value, 1 is end value.
* @return The linearly interpolated value.
*/
float lerp(float completion, float start, float end);
// Not all platforms we support target C++14 yet, so we can't unconditionally use std::make_unique. Provide our own
// implementation if needed, and otherwise pull std::make_unique into scope so that we have a uniform API.
#if __cplusplus >= 201402L
using std::make_unique;
#else
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&...args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
#endif
/// Applies gamma correction with the provided gamma to value.
float gamma_correct(float value, float gamma);
/// Reverts gamma correction with the provided gamma to value.
float gamma_uncorrect(float value, float gamma);
/// Create a string from a value and an accuracy in decimals.
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals);
/// Convert RGB floats (0-1) to hue (0-360) & saturation/value percentage (0-1)
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value);
/// Convert hue (0-360) & saturation/value percentage (0-1) to RGB floats (0-1)
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue);
/// Convert degrees Celsius to degrees Fahrenheit.
static inline float celsius_to_fahrenheit(float value) { return value * 1.8f + 32.0f; }
/// Convert degrees Fahrenheit to degrees Celsius.
static inline float fahrenheit_to_celsius(float value) { return (value - 32.0f) / 1.8f; }
/***
* An interrupt helper class.
*
* This behaves like std::lock_guard. As long as the value is visible in the current stack, all interrupts
* (including flash reads) will be disabled.
*
* Please note all functions called when the interrupt lock must be marked IRAM_ATTR (loading code into
* instruction cache is done via interrupts; disabling interrupts prevents data not already in cache from being
* pulled from flash).
*
* Example:
*
* ```cpp
* // interrupts are enabled
* {
* InterruptLock lock;
* // do something
* // interrupts are disabled
* }
* // interrupts are enabled
* ```
*/
class InterruptLock {
public:
InterruptLock();
~InterruptLock();
protected:
#ifdef USE_ESP8266
uint32_t xt_state_;
#endif
};
/// Calculate a crc8 of data with the provided data length.
uint8_t crc8(uint8_t *data, uint8_t len);
enum ParseOnOffState {
PARSE_NONE = 0,
PARSE_ON,
PARSE_OFF,
PARSE_TOGGLE,
};
ParseOnOffState parse_on_off(const char *str, const char *on = nullptr, const char *off = nullptr);
// https://stackoverflow.com/questions/7858817/unpacking-a-tuple-to-call-a-matching-function-pointer/7858971#7858971
template<int...> struct seq {}; // NOLINT
template<int N, int... S> struct gens : gens<N - 1, N - 1, S...> {}; // NOLINT
template<int... S> struct gens<0, S...> { using type = seq<S...>; }; // NOLINT
template<bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T, enable_if_t<!std::is_pointer<T>::value, int> = 0> T id(T value) { return value; }
template<typename T, enable_if_t<std::is_pointer<T *>::value, int> = 0> T &id(T *value) { return *value; }
template<typename... X> class CallbackManager;
/** Simple helper class to allow having multiple subscribers to a signal.
*
* @tparam Ts The arguments for the callback, wrapped in void().
*/
template<typename... Ts> class CallbackManager<void(Ts...)> {
public:
/// Add a callback to the internal callback list.
void add(std::function<void(Ts...)> &&callback) { this->callbacks_.push_back(std::move(callback)); }
/// Call all callbacks in this manager.
void call(Ts... args) {
for (auto &cb : this->callbacks_)
cb(args...);
}
/// Call all callbacks in this manager.
void operator()(Ts... args) { call(args...); }
protected:
std::vector<std::function<void(Ts...)>> callbacks_;
};
void delay_microseconds_safe(uint32_t us);
template<typename T> class Deduplicator {
public:
bool next(T value) {
if (this->has_value_) {
if (this->last_value_ == value)
return false;
}
this->has_value_ = true;
this->last_value_ = value;
return true;
}
bool has_value() const { return this->has_value_; }
protected:
bool has_value_{false};
T last_value_{};
};
template<typename T> class Parented {
public:
Parented() {}
Parented(T *parent) : parent_(parent) {}
T *get_parent() const { return parent_; }
void set_parent(T *parent) { parent_ = parent; }
protected:
T *parent_{nullptr};
};
uint32_t fnv1_hash(const std::string &str);
// ---------------------------------------------------------------------------------------------------------------------
/// @name STL backports
///@{
// Backports for various STL features we like to use. Pull in the STL implementation wherever available, to avoid
// ambiguity and to provide a uniform API.
// std::to_string() from C++11, available from libstdc++/g++ 8
// See https://github.com/espressif/esp-idf/issues/1445
#if _GLIBCXX_RELEASE >= 8
using std::to_string;
#else
inline std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
inline std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
inline std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
inline std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
inline std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
inline std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
inline std::string to_string(float value) { return str_snprintf("%f", 32, value); }
inline std::string to_string(double value) { return str_snprintf("%f", 32, value); }
inline std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
std::string to_string(int value); // NOLINT
std::string to_string(long value); // NOLINT
std::string to_string(long long value); // NOLINT
std::string to_string(unsigned value); // NOLINT
std::string to_string(unsigned long value); // NOLINT
std::string to_string(unsigned long long value); // NOLINT
std::string to_string(float value);
std::string to_string(double value);
std::string to_string(long double value);
#endif
// std::is_trivially_copyable from C++11, implemented in libstdc++/g++ 5.1 (but minor releases can't be detected)
@ -248,6 +61,22 @@ using std::is_trivially_copyable;
template<typename T> struct is_trivially_copyable : public std::integral_constant<bool, true> {};
#endif
// std::make_unique() from C++14
#if __cpp_lib_make_unique >= 201304
using std::make_unique;
#else
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&...args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
#endif
// std::enable_if_t from C++14
#if __cplusplus >= 201402L
using std::enable_if_t;
#else
template<bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
#endif
// std::clamp from C++17
#if __cpp_lib_clamp >= 201603
using std::clamp;
@ -309,6 +138,20 @@ template<> constexpr14 int64_t byteswap(int64_t n) { return __builtin_bswap64(n)
/// @name Mathematics
///@{
/// Linearly interpolate between \p start and \p end by \p completion (between 0 and 1).
float lerp(float completion, float start, float end);
/// Remap \p value from the range (\p min, \p max) to (\p min_out, \p max_out).
template<typename T, typename U> T remap(U value, U min, U max, T min_out, T max_out) {
return (value - min) * (max_out - min_out) / (max - min) + min_out;
}
/// Calculate a CRC-8 checksum of \p data with size \p len.
uint8_t crc8(uint8_t *data, uint8_t len);
/// Calculate a FNV-1 hash of \p str.
uint32_t fnv1_hash(const std::string &str);
/// Return a random 32-bit unsigned integer.
uint32_t random_uint32();
/// Return a random float between 0 and 1.
@ -397,6 +240,14 @@ template<typename T> constexpr14 T convert_little_endian(T val) {
/// @name Strings
///@{
/// Compare strings for equality in case-insensitive manner.
bool str_equals_case_insensitive(const std::string &a, const std::string &b);
/// Check whether a string starts with a value.
bool str_startswith(const std::string &str, const std::string &start);
/// Check whether a string ends with a value.
bool str_endswith(const std::string &str, const std::string &end);
/// Convert the value to a string (added as extra overload so that to_string() can be used on all stringifiable types).
inline std::string to_string(const std::string &val) { return val; }
@ -419,6 +270,12 @@ std::string str_snake_case(const std::string &str);
/// Sanitizes the input string by removing all characters but alphanumerics, dashes and underscores.
std::string str_sanitize(const std::string &str);
/// snprintf-like function returning std::string of maximum length \p len (excluding null terminator).
std::string __attribute__((format(printf, 1, 3))) str_snprintf(const char *fmt, size_t len, ...);
/// sprintf-like function returning std::string.
std::string __attribute__((format(printf, 1, 2))) str_sprintf(const char *fmt, ...);
///@}
/// @name Parsing & formatting
@ -537,15 +394,181 @@ template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::stri
return format_hex_pretty(reinterpret_cast<uint8_t *>(&val), sizeof(T));
}
/// Return values for parse_on_off().
enum ParseOnOffState {
PARSE_NONE = 0,
PARSE_ON,
PARSE_OFF,
PARSE_TOGGLE,
};
/// Parse a string that contains either on, off or toggle.
ParseOnOffState parse_on_off(const char *str, const char *on = nullptr, const char *off = nullptr);
/// Create a string from a value and an accuracy in decimals.
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals);
///@}
/// @name Number manipulation
/// @name Colors
///@{
/// Remap a number from one range to another.
template<typename T, typename U> constexpr T remap(U value, U min, U max, T min_out, T max_out) {
return (value - min) * (max_out - min_out) / (max - min) + min_out;
}
/// Applies gamma correction of \p gamma to \p value.
float gamma_correct(float value, float gamma);
/// Reverts gamma correction of \p gamma to \p value.
float gamma_uncorrect(float value, float gamma);
/// Convert \p red, \p green and \p blue (all 0-1) values to \p hue (0-360), \p saturation (0-1) and \p value (0-1).
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value);
/// Convert \p hue (0-360), \p saturation (0-1) and \p value (0-1) to \p red, \p green and \p blue (all 0-1).
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue);
///@}
/// @name Units
///@{
/// Convert degrees Celsius to degrees Fahrenheit.
constexpr float celsius_to_fahrenheit(float value) { return value * 1.8f + 32.0f; }
/// Convert degrees Fahrenheit to degrees Celsius.
constexpr float fahrenheit_to_celsius(float value) { return (value - 32.0f) / 1.8f; }
///@}
/// @name Utilities
/// @{
template<typename... X> class CallbackManager;
/** Helper class to allow having multiple subscribers to a callback.
*
* @tparam Ts The arguments for the callbacks, wrapped in void().
*/
template<typename... Ts> class CallbackManager<void(Ts...)> {
public:
/// Add a callback to the list.
void add(std::function<void(Ts...)> &&callback) { this->callbacks_.push_back(std::move(callback)); }
/// Call all callbacks in this manager.
void call(Ts... args) {
for (auto &cb : this->callbacks_)
cb(args...);
}
/// Call all callbacks in this manager.
void operator()(Ts... args) { call(args...); }
protected:
std::vector<std::function<void(Ts...)>> callbacks_;
};
/// Helper class to deduplicate items in a series of values.
template<typename T> class Deduplicator {
public:
/// Feeds the next item in the series to the deduplicator and returns whether this is a duplicate.
bool next(T value) {
if (this->has_value_) {
if (this->last_value_ == value)
return false;
}
this->has_value_ = true;
this->last_value_ = value;
return true;
}
/// Returns whether this deduplicator has processed any items so far.
bool has_value() const { return this->has_value_; }
protected:
bool has_value_{false};
T last_value_{};
};
/// Helper class to easily give an object a parent of type \p T.
template<typename T> class Parented {
public:
Parented() {}
Parented(T *parent) : parent_(parent) {}
/// Get the parent of this object.
T *get_parent() const { return parent_; }
/// Set the parent of this object.
void set_parent(T *parent) { parent_ = parent; }
protected:
T *parent_{nullptr};
};
/// @}
/// @name System APIs
///@{
/** Helper class to disable interrupts.
*
* This behaves like std::lock_guard: as long as the object is alive, all interrupts are disabled.
*
* Please note all functions called when the interrupt lock must be marked IRAM_ATTR (loading code into
* instruction cache is done via interrupts; disabling interrupts prevents data not already in cache from being
* pulled from flash).
*
* Example usage:
*
* \code{.cpp}
* // interrupts are enabled
* {
* InterruptLock lock;
* // do something
* // interrupts are disabled
* }
* // interrupts are enabled
* \endcode
*/
class InterruptLock {
public:
InterruptLock();
~InterruptLock();
protected:
#ifdef USE_ESP8266
uint32_t xt_state_;
#endif
};
/** Helper class to request `loop()` to be called as fast as possible.
*
* Usually the ESPHome main loop runs at 60 Hz, sleeping in between invocations of `loop()` if necessary. When a higher
* execution frequency is necessary, you can use this class to make the loop run continuously without waiting.
*/
class HighFrequencyLoopRequester {
public:
/// Start running the loop continuously.
void start();
/// Stop running the loop continuously.
void stop();
/// Check whether the loop is running continuously.
static bool is_high_frequency();
protected:
bool started_{false};
static uint8_t num_requests; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
};
/// Get the device MAC address as raw bytes, written into the provided byte array (6 bytes).
void get_mac_address_raw(uint8_t *mac);
/// Get the device MAC address as a string, in lowercase hex notation.
std::string get_mac_address();
/// Get the device MAC address as a string, in colon-separated uppercase hex notation.
std::string get_mac_address_pretty();
#ifdef USE_ESP32
/// Set the MAC address to use from the provided byte array (6 bytes).
void set_mac_address(uint8_t *mac);
#endif
/// Delay for the given amount of microseconds, possibly yielding to other processes during the wait.
void delay_microseconds_safe(uint32_t us);
///@}
@ -594,6 +617,22 @@ template<class T> class ExternalRAMAllocator {
/// @}
/// @name Internal functions
///@{
/** Helper function to make `id(var)` known from lambdas work in custom components.
*
* This function is not called from lambdas, the code generator replaces calls to it with the appropriate variable.
*/
template<typename T, enable_if_t<!std::is_pointer<T>::value, int> = 0> T id(T value) { return value; }
/** Helper function to make `id(var)` known from lambdas work in custom components.
*
* This function is not called from lambdas, the code generator replaces calls to it with the appropriate variable.
*/
template<typename T, enable_if_t<std::is_pointer<T *>::value, int> = 0> T &id(T *value) { return *value; }
///@}
/// @name Deprecated functions
///@{