New Midea IR component, improvements and fixes (#2847)

Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
This commit is contained in:
Sergey Dudanov 2022-01-10 02:47:19 +04:00 committed by GitHub
parent b406c6403c
commit 9a70bfa471
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
19 changed files with 664 additions and 230 deletions

View file

@ -102,6 +102,7 @@ esphome/components/mcp9808/* @k7hpn
esphome/components/md5/* @esphome/core
esphome/components/mdns/* @esphome/core
esphome/components/midea/* @dudanov
esphome/components/midea_ir/* @dudanov
esphome/components/mitsubishi/* @RubyBailey
esphome/components/modbus_controller/* @martgras
esphome/components/modbus_controller/binary_sensor/* @martgras

View file

@ -10,21 +10,22 @@ climate::ClimateTraits ClimateIR::traits() {
auto traits = climate::ClimateTraits();
traits.set_supports_current_temperature(this->sensor_ != nullptr);
traits.set_supported_modes({climate::CLIMATE_MODE_OFF, climate::CLIMATE_MODE_HEAT_COOL});
if (supports_cool_)
if (this->supports_cool_)
traits.add_supported_mode(climate::CLIMATE_MODE_COOL);
if (supports_heat_)
if (this->supports_heat_)
traits.add_supported_mode(climate::CLIMATE_MODE_HEAT);
if (supports_dry_)
if (this->supports_dry_)
traits.add_supported_mode(climate::CLIMATE_MODE_DRY);
if (supports_fan_only_)
if (this->supports_fan_only_)
traits.add_supported_mode(climate::CLIMATE_MODE_FAN_ONLY);
traits.set_supports_two_point_target_temperature(false);
traits.set_visual_min_temperature(this->minimum_temperature_);
traits.set_visual_max_temperature(this->maximum_temperature_);
traits.set_visual_temperature_step(this->temperature_step_);
traits.set_supported_fan_modes(fan_modes_);
traits.set_supported_swing_modes(swing_modes_);
traits.set_supported_fan_modes(this->fan_modes_);
traits.set_supported_swing_modes(this->swing_modes_);
traits.set_supported_presets(this->presets_);
return traits;
}
@ -50,6 +51,7 @@ void ClimateIR::setup() {
roundf(clamp(this->current_temperature, this->minimum_temperature_, this->maximum_temperature_));
this->fan_mode = climate::CLIMATE_FAN_AUTO;
this->swing_mode = climate::CLIMATE_SWING_OFF;
this->preset = climate::CLIMATE_PRESET_NONE;
}
// Never send nan to HA
if (std::isnan(this->target_temperature))
@ -65,6 +67,8 @@ void ClimateIR::control(const climate::ClimateCall &call) {
this->fan_mode = *call.get_fan_mode();
if (call.get_swing_mode().has_value())
this->swing_mode = *call.get_swing_mode();
if (call.get_preset().has_value())
this->preset = *call.get_preset();
this->transmit_state();
this->publish_state();
}

View file

@ -22,7 +22,7 @@ class ClimateIR : public climate::Climate, public Component, public remote_base:
public:
ClimateIR(float minimum_temperature, float maximum_temperature, float temperature_step = 1.0f,
bool supports_dry = false, bool supports_fan_only = false, std::set<climate::ClimateFanMode> fan_modes = {},
std::set<climate::ClimateSwingMode> swing_modes = {}) {
std::set<climate::ClimateSwingMode> swing_modes = {}, std::set<climate::ClimatePreset> presets = {}) {
this->minimum_temperature_ = minimum_temperature;
this->maximum_temperature_ = maximum_temperature;
this->temperature_step_ = temperature_step;
@ -30,6 +30,7 @@ class ClimateIR : public climate::Climate, public Component, public remote_base:
this->supports_fan_only_ = supports_fan_only;
this->fan_modes_ = std::move(fan_modes);
this->swing_modes_ = std::move(swing_modes);
this->presets_ = std::move(presets);
}
void setup() override;
@ -61,6 +62,7 @@ class ClimateIR : public climate::Climate, public Component, public remote_base:
bool supports_fan_only_{false};
std::set<climate::ClimateFanMode> fan_modes_ = {};
std::set<climate::ClimateSwingMode> swing_modes_ = {};
std::set<climate::ClimatePreset> presets_ = {};
remote_transmitter::RemoteTransmitterComponent *transmitter_;
sensor::Sensor *sensor_{nullptr};

View file

@ -1,4 +1,5 @@
#include "coolix.h"
#include "esphome/components/remote_base/coolix_protocol.h"
#include "esphome/core/log.h"
namespace esphome {
@ -6,29 +7,29 @@ namespace coolix {
static const char *const TAG = "coolix.climate";
const uint32_t COOLIX_OFF = 0xB27BE0;
const uint32_t COOLIX_SWING = 0xB26BE0;
const uint32_t COOLIX_LED = 0xB5F5A5;
const uint32_t COOLIX_SILENCE_FP = 0xB5F5B6;
static const uint32_t COOLIX_OFF = 0xB27BE0;
static const uint32_t COOLIX_SWING = 0xB26BE0;
static const uint32_t COOLIX_LED = 0xB5F5A5;
static const uint32_t COOLIX_SILENCE_FP = 0xB5F5B6;
// On, 25C, Mode: Auto, Fan: Auto, Zone Follow: Off, Sensor Temp: Ignore.
const uint8_t COOLIX_COOL = 0b0000;
const uint8_t COOLIX_DRY_FAN = 0b0100;
const uint8_t COOLIX_AUTO = 0b1000;
const uint8_t COOLIX_HEAT = 0b1100;
const uint32_t COOLIX_MODE_MASK = 0b1100;
const uint32_t COOLIX_FAN_MASK = 0xF000;
const uint32_t COOLIX_FAN_MODE_AUTO_DRY = 0x1000;
const uint32_t COOLIX_FAN_AUTO = 0xB000;
const uint32_t COOLIX_FAN_MIN = 0x9000;
const uint32_t COOLIX_FAN_MED = 0x5000;
const uint32_t COOLIX_FAN_MAX = 0x3000;
static const uint8_t COOLIX_COOL = 0b0000;
static const uint8_t COOLIX_DRY_FAN = 0b0100;
static const uint8_t COOLIX_AUTO = 0b1000;
static const uint8_t COOLIX_HEAT = 0b1100;
static const uint32_t COOLIX_MODE_MASK = 0b1100;
static const uint32_t COOLIX_FAN_MASK = 0xF000;
static const uint32_t COOLIX_FAN_MODE_AUTO_DRY = 0x1000;
static const uint32_t COOLIX_FAN_AUTO = 0xB000;
static const uint32_t COOLIX_FAN_MIN = 0x9000;
static const uint32_t COOLIX_FAN_MED = 0x5000;
static const uint32_t COOLIX_FAN_MAX = 0x3000;
// Temperature
const uint8_t COOLIX_TEMP_RANGE = COOLIX_TEMP_MAX - COOLIX_TEMP_MIN + 1;
const uint8_t COOLIX_FAN_TEMP_CODE = 0b11100000; // Part of Fan Mode.
const uint32_t COOLIX_TEMP_MASK = 0b11110000;
const uint8_t COOLIX_TEMP_MAP[COOLIX_TEMP_RANGE] = {
static const uint8_t COOLIX_TEMP_RANGE = COOLIX_TEMP_MAX - COOLIX_TEMP_MIN + 1;
static const uint8_t COOLIX_FAN_TEMP_CODE = 0b11100000; // Part of Fan Mode.
static const uint32_t COOLIX_TEMP_MASK = 0b11110000;
static const uint8_t COOLIX_TEMP_MAP[COOLIX_TEMP_RANGE] = {
0b00000000, // 17C
0b00010000, // 18c
0b00110000, // 19C
@ -45,17 +46,6 @@ const uint8_t COOLIX_TEMP_MAP[COOLIX_TEMP_RANGE] = {
0b10110000 // 30C
};
// Constants
static const uint32_t BIT_MARK_US = 660;
static const uint32_t HEADER_MARK_US = 560 * 8;
static const uint32_t HEADER_SPACE_US = 560 * 8;
static const uint32_t BIT_ONE_SPACE_US = 1500;
static const uint32_t BIT_ZERO_SPACE_US = 450;
static const uint32_t FOOTER_MARK_US = BIT_MARK_US;
static const uint32_t FOOTER_SPACE_US = HEADER_SPACE_US;
const uint16_t COOLIX_BITS = 24;
void CoolixClimate::transmit_state() {
uint32_t remote_state = 0xB20F00;
@ -111,119 +101,60 @@ void CoolixClimate::transmit_state() {
}
}
}
ESP_LOGV(TAG, "Sending coolix code: 0x%02X", remote_state);
ESP_LOGV(TAG, "Sending coolix code: 0x%06X", remote_state);
auto transmit = this->transmitter_->transmit();
auto data = transmit.get_data();
data->set_carrier_frequency(38000);
uint16_t repeat = 1;
for (uint16_t r = 0; r <= repeat; r++) {
// Header
data->mark(HEADER_MARK_US);
data->space(HEADER_SPACE_US);
// Data
// Break data into bytes, starting at the Most Significant
// Byte. Each byte then being sent normal, then followed inverted.
for (uint16_t i = 8; i <= COOLIX_BITS; i += 8) {
// Grab a bytes worth of data.
uint8_t byte = (remote_state >> (COOLIX_BITS - i)) & 0xFF;
// Normal
for (uint64_t mask = 1ULL << 7; mask; mask >>= 1) {
data->mark(BIT_MARK_US);
data->space((byte & mask) ? BIT_ONE_SPACE_US : BIT_ZERO_SPACE_US);
}
// Inverted
for (uint64_t mask = 1ULL << 7; mask; mask >>= 1) {
data->mark(BIT_MARK_US);
data->space(!(byte & mask) ? BIT_ONE_SPACE_US : BIT_ZERO_SPACE_US);
}
}
// Footer
data->mark(BIT_MARK_US);
data->space(FOOTER_SPACE_US); // Pause before repeating
}
remote_base::CoolixProtocol().encode(data, remote_state);
transmit.perform();
}
bool CoolixClimate::on_receive(remote_base::RemoteReceiveData data) {
bool CoolixClimate::on_coolix(climate::Climate *parent, remote_base::RemoteReceiveData data) {
auto decoded = remote_base::CoolixProtocol().decode(data);
if (!decoded.has_value())
return false;
// Decoded remote state y 3 bytes long code.
uint32_t remote_state = 0;
// The protocol sends the data twice, read here
uint32_t loop_read;
for (uint16_t loop = 1; loop <= 2; loop++) {
if (!data.expect_item(HEADER_MARK_US, HEADER_SPACE_US))
return false;
loop_read = 0;
for (uint8_t a_byte = 0; a_byte < 3; a_byte++) {
uint8_t byte = 0;
for (int8_t a_bit = 7; a_bit >= 0; a_bit--) {
if (data.expect_item(BIT_MARK_US, BIT_ONE_SPACE_US))
byte |= 1 << a_bit;
else if (!data.expect_item(BIT_MARK_US, BIT_ZERO_SPACE_US))
return false;
}
// Need to see this segment inverted
for (int8_t a_bit = 7; a_bit >= 0; a_bit--) {
bool bit = byte & (1 << a_bit);
if (!data.expect_item(BIT_MARK_US, bit ? BIT_ZERO_SPACE_US : BIT_ONE_SPACE_US))
return false;
}
// Receiving MSB first: reorder bytes
loop_read |= byte << ((2 - a_byte) * 8);
}
// Footer Mark
if (!data.expect_mark(BIT_MARK_US))
return false;
if (loop == 1) {
// Back up state on first loop
remote_state = loop_read;
if (!data.expect_space(FOOTER_SPACE_US))
return false;
}
}
ESP_LOGV(TAG, "Decoded 0x%02X", remote_state);
if (remote_state != loop_read || (remote_state & 0xFF0000) != 0xB20000)
uint32_t remote_state = *decoded;
ESP_LOGV(TAG, "Decoded 0x%06X", remote_state);
if ((remote_state & 0xFF0000) != 0xB20000)
return false;
if (remote_state == COOLIX_OFF) {
this->mode = climate::CLIMATE_MODE_OFF;
parent->mode = climate::CLIMATE_MODE_OFF;
} else if (remote_state == COOLIX_SWING) {
this->swing_mode =
this->swing_mode == climate::CLIMATE_SWING_OFF ? climate::CLIMATE_SWING_VERTICAL : climate::CLIMATE_SWING_OFF;
parent->swing_mode =
parent->swing_mode == climate::CLIMATE_SWING_OFF ? climate::CLIMATE_SWING_VERTICAL : climate::CLIMATE_SWING_OFF;
} else {
if ((remote_state & COOLIX_MODE_MASK) == COOLIX_HEAT)
this->mode = climate::CLIMATE_MODE_HEAT;
parent->mode = climate::CLIMATE_MODE_HEAT;
else if ((remote_state & COOLIX_MODE_MASK) == COOLIX_AUTO)
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
parent->mode = climate::CLIMATE_MODE_HEAT_COOL;
else if ((remote_state & COOLIX_MODE_MASK) == COOLIX_DRY_FAN) {
if ((remote_state & COOLIX_FAN_MASK) == COOLIX_FAN_MODE_AUTO_DRY)
this->mode = climate::CLIMATE_MODE_DRY;
parent->mode = climate::CLIMATE_MODE_DRY;
else
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
parent->mode = climate::CLIMATE_MODE_FAN_ONLY;
} else
this->mode = climate::CLIMATE_MODE_COOL;
parent->mode = climate::CLIMATE_MODE_COOL;
// Fan Speed
if ((remote_state & COOLIX_FAN_AUTO) == COOLIX_FAN_AUTO || this->mode == climate::CLIMATE_MODE_HEAT_COOL ||
this->mode == climate::CLIMATE_MODE_DRY)
this->fan_mode = climate::CLIMATE_FAN_AUTO;
if ((remote_state & COOLIX_FAN_AUTO) == COOLIX_FAN_AUTO || parent->mode == climate::CLIMATE_MODE_HEAT_COOL ||
parent->mode == climate::CLIMATE_MODE_DRY)
parent->fan_mode = climate::CLIMATE_FAN_AUTO;
else if ((remote_state & COOLIX_FAN_MIN) == COOLIX_FAN_MIN)
this->fan_mode = climate::CLIMATE_FAN_LOW;
parent->fan_mode = climate::CLIMATE_FAN_LOW;
else if ((remote_state & COOLIX_FAN_MED) == COOLIX_FAN_MED)
this->fan_mode = climate::CLIMATE_FAN_MEDIUM;
parent->fan_mode = climate::CLIMATE_FAN_MEDIUM;
else if ((remote_state & COOLIX_FAN_MAX) == COOLIX_FAN_MAX)
this->fan_mode = climate::CLIMATE_FAN_HIGH;
parent->fan_mode = climate::CLIMATE_FAN_HIGH;
// Temperature
uint8_t temperature_code = remote_state & COOLIX_TEMP_MASK;
for (uint8_t i = 0; i < COOLIX_TEMP_RANGE; i++)
if (COOLIX_TEMP_MAP[i] == temperature_code)
this->target_temperature = i + COOLIX_TEMP_MIN;
parent->target_temperature = i + COOLIX_TEMP_MIN;
}
this->publish_state();
parent->publish_state();
return true;
}

View file

@ -26,11 +26,15 @@ class CoolixClimate : public climate_ir::ClimateIR {
climate_ir::ClimateIR::control(call);
}
/// This static method can be used in other climate components that accept the Coolix protocol. See midea_ir for
/// example.
static bool on_coolix(climate::Climate *parent, remote_base::RemoteReceiveData data);
protected:
/// Transmit via IR the state of this climate controller.
void transmit_state() override;
/// Handle received IR Buffer
bool on_receive(remote_base::RemoteReceiveData data) override;
bool on_receive(remote_base::RemoteReceiveData data) override { return CoolixClimate::on_coolix(this, data); }
bool send_swing_cmd_{false};
};

View file

@ -23,12 +23,12 @@ class IrFollowMeData : public IrData {
}
/* TEMPERATURE */
uint8_t temp() const { return this->data_[4] - 1; }
void set_temp(uint8_t val) { this->data_[4] = std::min(MAX_TEMP, val) + 1; }
uint8_t temp() const { return this->get_value_(4) - 1; }
void set_temp(uint8_t val) { this->set_value_(4, std::min(MAX_TEMP, val) + 1); }
/* BEEPER */
bool beeper() const { return this->data_[3] & 128; }
void set_beeper(bool val) { this->set_value_(3, 1, 7, val); }
bool beeper() const { return this->get_value_(3, 128); }
void set_beeper(bool val) { this->set_mask_(3, val, 128); }
protected:
static const uint8_t MAX_TEMP = 37;

View file

View file

@ -0,0 +1,25 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import climate_ir
from esphome.const import CONF_ID
AUTO_LOAD = ["climate_ir", "coolix"]
CODEOWNERS = ["@dudanov"]
midea_ir_ns = cg.esphome_ns.namespace("midea_ir")
MideaIR = midea_ir_ns.class_("MideaIR", climate_ir.ClimateIR)
CONF_USE_FAHRENHEIT = "use_fahrenheit"
CONFIG_SCHEMA = climate_ir.CLIMATE_IR_WITH_RECEIVER_SCHEMA.extend(
{
cv.GenerateID(): cv.declare_id(MideaIR),
cv.Optional(CONF_USE_FAHRENHEIT, default=False): cv.boolean,
}
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await climate_ir.register_climate_ir(var, config)
cg.add(var.set_fahrenheit(config[CONF_USE_FAHRENHEIT]))

View file

@ -0,0 +1,92 @@
#pragma once
#include "esphome/components/remote_base/midea_protocol.h"
#include "esphome/components/climate/climate_mode.h"
namespace esphome {
namespace midea_ir {
using climate::ClimateMode;
using climate::ClimateFanMode;
using remote_base::MideaData;
class ControlData : public MideaData {
public:
// Default constructor (power: ON, mode: AUTO, fan: AUTO, temp: 25C)
ControlData() : MideaData({MIDEA_TYPE_CONTROL, 0x82, 0x48, 0xFF, 0xFF}) {}
// Copy from Base
ControlData(const MideaData &data) : MideaData(data) {}
void set_temp(float temp);
float get_temp() const;
void set_mode(ClimateMode mode);
ClimateMode get_mode() const;
void set_fan_mode(ClimateFanMode mode);
ClimateFanMode get_fan_mode() const;
void set_sleep_preset(bool value) { this->set_mask_(1, value, 64); }
bool get_sleep_preset() const { return this->get_value_(1, 64); }
void set_fahrenheit(bool value) { this->set_mask_(2, value, 32); }
bool get_fahrenheit() const { return this->get_value_(2, 32); }
void fix();
protected:
enum Mode : uint8_t {
MODE_COOL,
MODE_DRY,
MODE_AUTO,
MODE_HEAT,
MODE_FAN_ONLY,
};
enum FanMode : uint8_t {
FAN_AUTO,
FAN_LOW,
FAN_MEDIUM,
FAN_HIGH,
};
void set_fan_mode_(FanMode mode) { this->set_value_(1, mode, 3, 3); }
FanMode get_fan_mode_() const { return static_cast<FanMode>(this->get_value_(1, 3, 3)); }
void set_mode_(Mode mode) { this->set_value_(1, mode, 7); }
Mode get_mode_() const { return static_cast<Mode>(this->get_value_(1, 7)); }
void set_power_(bool value) { this->set_mask_(1, value, 128); }
bool get_power_() const { return this->get_value_(1, 128); }
};
class FollowMeData : public MideaData {
public:
// Default constructor (temp: 30C, beeper: off)
FollowMeData() : MideaData({MIDEA_TYPE_FOLLOW_ME, 0x82, 0x48, 0x7F, 0x1F}) {}
// Copy from Base
FollowMeData(const MideaData &data) : MideaData(data) {}
// Direct from temperature and beeper values
FollowMeData(uint8_t temp, bool beeper = false) : FollowMeData() {
this->set_temp(temp);
this->set_beeper(beeper);
}
/* TEMPERATURE */
uint8_t temp() const { return this->get_value_(4) - 1; }
void set_temp(uint8_t val) { this->set_value_(4, std::min(MAX_TEMP, val) + 1); }
/* BEEPER */
bool beeper() const { return this->get_value_(3, 128); }
void set_beeper(bool value) { this->set_mask_(3, value, 128); }
protected:
static const uint8_t MAX_TEMP = 37;
};
class SpecialData : public MideaData {
public:
SpecialData(uint8_t code) : MideaData({MIDEA_TYPE_SPECIAL, code, 0xFF, 0xFF, 0xFF}) {}
static const uint8_t VSWING_STEP = 1;
static const uint8_t VSWING_TOGGLE = 2;
static const uint8_t TURBO_TOGGLE = 9;
};
} // namespace midea_ir
} // namespace esphome

View file

@ -0,0 +1,201 @@
#include "midea_ir.h"
#include "midea_data.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include "esphome/components/coolix/coolix.h"
namespace esphome {
namespace midea_ir {
static const char *const TAG = "midea_ir.climate";
void ControlData::set_temp(float temp) {
uint8_t min;
if (this->get_fahrenheit()) {
min = MIDEA_TEMPF_MIN;
temp = esphome::clamp<float>(celsius_to_fahrenheit(temp), MIDEA_TEMPF_MIN, MIDEA_TEMPF_MAX);
} else {
min = MIDEA_TEMPC_MIN;
temp = esphome::clamp<float>(temp, MIDEA_TEMPC_MIN, MIDEA_TEMPC_MAX);
}
this->set_value_(2, lroundf(temp) - min, 31);
}
float ControlData::get_temp() const {
const uint8_t temp = this->get_value_(2, 31);
if (this->get_fahrenheit())
return fahrenheit_to_celsius(static_cast<float>(temp + MIDEA_TEMPF_MIN));
return static_cast<float>(temp + MIDEA_TEMPC_MIN);
}
void ControlData::fix() {
// In FAN_AUTO, modes COOL, HEAT and FAN_ONLY bit #5 in byte #1 must be set
const uint8_t value = this->get_value_(1, 31);
if (value == 0 || value == 3 || value == 4)
this->set_mask_(1, true, 32);
// In FAN_ONLY mode we need to set all temperature bits
if (this->get_mode_() == MODE_FAN_ONLY)
this->set_mask_(2, true, 31);
}
void ControlData::set_mode(ClimateMode mode) {
switch (mode) {
case ClimateMode::CLIMATE_MODE_OFF:
this->set_power_(false);
return;
case ClimateMode::CLIMATE_MODE_COOL:
this->set_mode_(MODE_COOL);
break;
case ClimateMode::CLIMATE_MODE_DRY:
this->set_mode_(MODE_DRY);
break;
case ClimateMode::CLIMATE_MODE_FAN_ONLY:
this->set_mode_(MODE_FAN_ONLY);
break;
case ClimateMode::CLIMATE_MODE_HEAT:
this->set_mode_(MODE_HEAT);
break;
default:
this->set_mode_(MODE_AUTO);
break;
}
this->set_power_(true);
}
ClimateMode ControlData::get_mode() const {
if (!this->get_power_())
return ClimateMode::CLIMATE_MODE_OFF;
switch (this->get_mode_()) {
case MODE_COOL:
return ClimateMode::CLIMATE_MODE_COOL;
case MODE_DRY:
return ClimateMode::CLIMATE_MODE_DRY;
case MODE_FAN_ONLY:
return ClimateMode::CLIMATE_MODE_FAN_ONLY;
case MODE_HEAT:
return ClimateMode::CLIMATE_MODE_HEAT;
default:
return ClimateMode::CLIMATE_MODE_HEAT_COOL;
}
}
void ControlData::set_fan_mode(ClimateFanMode mode) {
switch (mode) {
case ClimateFanMode::CLIMATE_FAN_LOW:
this->set_fan_mode_(FAN_LOW);
break;
case ClimateFanMode::CLIMATE_FAN_MEDIUM:
this->set_fan_mode_(FAN_MEDIUM);
break;
case ClimateFanMode::CLIMATE_FAN_HIGH:
this->set_fan_mode_(FAN_HIGH);
break;
default:
this->set_fan_mode_(FAN_AUTO);
break;
}
}
ClimateFanMode ControlData::get_fan_mode() const {
switch (this->get_fan_mode_()) {
case FAN_LOW:
return ClimateFanMode::CLIMATE_FAN_LOW;
case FAN_MEDIUM:
return ClimateFanMode::CLIMATE_FAN_MEDIUM;
case FAN_HIGH:
return ClimateFanMode::CLIMATE_FAN_HIGH;
default:
return ClimateFanMode::CLIMATE_FAN_AUTO;
}
}
void MideaIR::control(const climate::ClimateCall &call) {
// swing and preset resets after unit powered off
if (call.get_mode() == climate::CLIMATE_MODE_OFF) {
this->swing_mode = climate::CLIMATE_SWING_OFF;
this->preset = climate::CLIMATE_PRESET_NONE;
} else if (call.get_swing_mode().has_value() && ((*call.get_swing_mode() == climate::CLIMATE_SWING_OFF &&
this->swing_mode == climate::CLIMATE_SWING_VERTICAL) ||
(*call.get_swing_mode() == climate::CLIMATE_SWING_VERTICAL &&
this->swing_mode == climate::CLIMATE_SWING_OFF))) {
this->swing_ = true;
} else if (call.get_preset().has_value() &&
((*call.get_preset() == climate::CLIMATE_PRESET_NONE && this->preset == climate::CLIMATE_PRESET_BOOST) ||
(*call.get_preset() == climate::CLIMATE_PRESET_BOOST && this->preset == climate::CLIMATE_PRESET_NONE))) {
this->boost_ = true;
}
climate_ir::ClimateIR::control(call);
}
void MideaIR::transmit_(MideaData &data) {
data.finalize();
auto transmit = this->transmitter_->transmit();
remote_base::MideaProtocol().encode(transmit.get_data(), data);
transmit.perform();
}
void MideaIR::transmit_state() {
if (this->swing_) {
SpecialData data(SpecialData::VSWING_TOGGLE);
this->transmit_(data);
this->swing_ = false;
return;
}
if (this->boost_) {
SpecialData data(SpecialData::TURBO_TOGGLE);
this->transmit_(data);
this->boost_ = false;
return;
}
ControlData data;
data.set_fahrenheit(this->fahrenheit_);
data.set_temp(this->target_temperature);
data.set_mode(this->mode);
data.set_fan_mode(this->fan_mode.value_or(ClimateFanMode::CLIMATE_FAN_AUTO));
data.set_sleep_preset(this->preset == climate::CLIMATE_PRESET_SLEEP);
data.fix();
this->transmit_(data);
}
bool MideaIR::on_receive(remote_base::RemoteReceiveData data) {
auto midea = remote_base::MideaProtocol().decode(data);
if (midea.has_value())
return this->on_midea_(*midea);
return coolix::CoolixClimate::on_coolix(this, data);
}
bool MideaIR::on_midea_(const MideaData &data) {
ESP_LOGV(TAG, "Decoded Midea IR data: %s", data.to_string().c_str());
if (data.type() == MideaData::MIDEA_TYPE_CONTROL) {
const ControlData status = data;
if (status.get_mode() != climate::CLIMATE_MODE_FAN_ONLY)
this->target_temperature = status.get_temp();
this->mode = status.get_mode();
this->fan_mode = status.get_fan_mode();
if (status.get_sleep_preset())
this->preset = climate::CLIMATE_PRESET_SLEEP;
else if (this->preset == climate::CLIMATE_PRESET_SLEEP)
this->preset = climate::CLIMATE_PRESET_NONE;
this->publish_state();
return true;
}
if (data.type() == MideaData::MIDEA_TYPE_SPECIAL) {
switch (data[1]) {
case SpecialData::VSWING_TOGGLE:
this->swing_mode = this->swing_mode == climate::CLIMATE_SWING_VERTICAL ? climate::CLIMATE_SWING_OFF
: climate::CLIMATE_SWING_VERTICAL;
break;
case SpecialData::TURBO_TOGGLE:
this->preset = this->preset == climate::CLIMATE_PRESET_BOOST ? climate::CLIMATE_PRESET_NONE
: climate::CLIMATE_PRESET_BOOST;
break;
}
this->publish_state();
return true;
}
return false;
}
} // namespace midea_ir
} // namespace esphome

View file

@ -0,0 +1,47 @@
#pragma once
#include "esphome/components/climate_ir/climate_ir.h"
#include "midea_data.h"
namespace esphome {
namespace midea_ir {
// Temperature
const uint8_t MIDEA_TEMPC_MIN = 17; // Celsius
const uint8_t MIDEA_TEMPC_MAX = 30; // Celsius
const uint8_t MIDEA_TEMPF_MIN = 62; // Fahrenheit
const uint8_t MIDEA_TEMPF_MAX = 86; // Fahrenheit
class MideaIR : public climate_ir::ClimateIR {
public:
MideaIR()
: climate_ir::ClimateIR(
MIDEA_TEMPC_MIN, MIDEA_TEMPC_MAX, 1.0f, true, true,
{climate::CLIMATE_FAN_AUTO, climate::CLIMATE_FAN_LOW, climate::CLIMATE_FAN_MEDIUM,
climate::CLIMATE_FAN_HIGH},
{climate::CLIMATE_SWING_OFF, climate::CLIMATE_SWING_VERTICAL},
{climate::CLIMATE_PRESET_NONE, climate::CLIMATE_PRESET_SLEEP, climate::CLIMATE_PRESET_BOOST}) {}
/// Override control to change settings of the climate device.
void control(const climate::ClimateCall &call) override;
/// Set use of Fahrenheit units
void set_fahrenheit(bool value) {
this->fahrenheit_ = value;
this->temperature_step_ = value ? 0.5f : 1.0f;
}
protected:
/// Transmit via IR the state of this climate controller.
void transmit_state() override;
void transmit_(MideaData &data);
/// Handle received IR Buffer
bool on_receive(remote_base::RemoteReceiveData data) override;
bool on_midea_(const MideaData &data);
bool fahrenheit_{false};
bool swing_{false};
bool boost_{false};
};
} // namespace midea_ir
} // namespace esphome

View file

@ -234,6 +234,45 @@ async def build_dumpers(config):
return dumpers
# Coolix
(
CoolixData,
CoolixBinarySensor,
CoolixTrigger,
CoolixAction,
CoolixDumper,
) = declare_protocol("Coolix")
COOLIX_SCHEMA = cv.Schema({cv.Required(CONF_DATA): cv.hex_uint32_t})
@register_binary_sensor("coolix", CoolixBinarySensor, COOLIX_SCHEMA)
def coolix_binary_sensor(var, config):
cg.add(
var.set_data(
cg.StructInitializer(
CoolixData,
("data", config[CONF_DATA]),
)
)
)
@register_trigger("coolix", CoolixTrigger, CoolixData)
def coolix_trigger(var, config):
pass
@register_dumper("coolix", CoolixDumper)
def coolix_dumper(var, config):
pass
@register_action("coolix", CoolixAction, COOLIX_SCHEMA)
async def coolix_action(var, config, args):
template_ = await cg.templatable(config[CONF_DATA], args, cg.uint32)
cg.add(var.set_data(template_))
# Dish
DishData, DishBinarySensor, DishTrigger, DishAction, DishDumper = declare_protocol(
"Dish"

View file

@ -0,0 +1,84 @@
#include "coolix_protocol.h"
#include "esphome/core/log.h"
namespace esphome {
namespace remote_base {
static const char *const TAG = "remote.coolix";
static const int32_t TICK_US = 560;
static const int32_t HEADER_MARK_US = 8 * TICK_US;
static const int32_t HEADER_SPACE_US = 8 * TICK_US;
static const int32_t BIT_MARK_US = 1 * TICK_US;
static const int32_t BIT_ONE_SPACE_US = 3 * TICK_US;
static const int32_t BIT_ZERO_SPACE_US = 1 * TICK_US;
static const int32_t FOOTER_MARK_US = 1 * TICK_US;
static const int32_t FOOTER_SPACE_US = 10 * TICK_US;
static void encode_data(RemoteTransmitData *dst, const CoolixData &src) {
// Break data into bytes, starting at the Most Significant
// Byte. Each byte then being sent normal, then followed inverted.
for (unsigned shift = 16;; shift -= 8) {
// Grab a bytes worth of data.
const uint8_t byte = src >> shift;
// Normal
for (uint8_t mask = 1 << 7; mask; mask >>= 1)
dst->item(BIT_MARK_US, (byte & mask) ? BIT_ONE_SPACE_US : BIT_ZERO_SPACE_US);
// Inverted
for (uint8_t mask = 1 << 7; mask; mask >>= 1)
dst->item(BIT_MARK_US, (byte & mask) ? BIT_ZERO_SPACE_US : BIT_ONE_SPACE_US);
// Data end
if (shift == 0)
break;
}
}
void CoolixProtocol::encode(RemoteTransmitData *dst, const CoolixData &data) {
dst->set_carrier_frequency(38000);
dst->reserve(2 + 2 * 48 + 2 + 2 + 2 * 48 + 1);
dst->item(HEADER_MARK_US, HEADER_SPACE_US);
encode_data(dst, data);
dst->item(FOOTER_MARK_US, FOOTER_SPACE_US);
dst->item(HEADER_MARK_US, HEADER_SPACE_US);
encode_data(dst, data);
dst->mark(FOOTER_MARK_US);
}
static bool decode_data(RemoteReceiveData &src, CoolixData &dst) {
uint32_t data = 0;
for (unsigned n = 3;; data <<= 8) {
// Read byte
for (uint32_t mask = 1 << 7; mask; mask >>= 1) {
if (!src.expect_mark(BIT_MARK_US))
return false;
if (src.expect_space(BIT_ONE_SPACE_US))
data |= mask;
else if (!src.expect_space(BIT_ZERO_SPACE_US))
return false;
}
// Check for inverse byte
for (uint32_t mask = 1 << 7; mask; mask >>= 1) {
if (!src.expect_item(BIT_MARK_US, (data & mask) ? BIT_ZERO_SPACE_US : BIT_ONE_SPACE_US))
return false;
}
// Checking the end of reading
if (--n == 0) {
dst = data;
return true;
}
}
}
optional<CoolixData> CoolixProtocol::decode(RemoteReceiveData data) {
CoolixData first, second;
if (data.expect_item(HEADER_MARK_US, HEADER_SPACE_US) && decode_data(data, first) &&
data.expect_item(FOOTER_MARK_US, FOOTER_SPACE_US) && data.expect_item(HEADER_MARK_US, HEADER_SPACE_US) &&
decode_data(data, second) && data.expect_mark(FOOTER_MARK_US) && first == second)
return first;
return {};
}
void CoolixProtocol::dump(const CoolixData &data) { ESP_LOGD(TAG, "Received Coolix: 0x%06X", data); }
} // namespace remote_base
} // namespace esphome

View file

@ -0,0 +1,30 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/core/helpers.h"
#include "remote_base.h"
namespace esphome {
namespace remote_base {
using CoolixData = uint32_t;
class CoolixProtocol : public RemoteProtocol<CoolixData> {
public:
void encode(RemoteTransmitData *dst, const CoolixData &data) override;
optional<CoolixData> decode(RemoteReceiveData data) override;
void dump(const CoolixData &data) override;
};
DECLARE_REMOTE_PROTOCOL(Coolix)
template<typename... Ts> class CoolixAction : public RemoteTransmitterActionBase<Ts...> {
TEMPLATABLE_VALUE(CoolixData, data)
void encode(RemoteTransmitData *dst, Ts... x) override {
CoolixData data = this->data_.value(x...);
CoolixProtocol().encode(dst, data);
}
};
} // namespace remote_base
} // namespace esphome

View file

@ -6,89 +6,63 @@ namespace remote_base {
static const char *const TAG = "remote.midea";
static const int32_t TICK_US = 560;
static const int32_t HEADER_MARK_US = 8 * TICK_US;
static const int32_t HEADER_SPACE_US = 8 * TICK_US;
static const int32_t BIT_MARK_US = 1 * TICK_US;
static const int32_t BIT_ONE_SPACE_US = 3 * TICK_US;
static const int32_t BIT_ZERO_SPACE_US = 1 * TICK_US;
static const int32_t FOOTER_MARK_US = 1 * TICK_US;
static const int32_t FOOTER_SPACE_US = 10 * TICK_US;
uint8_t MideaData::calc_cs_() const {
uint8_t cs = 0;
for (const uint8_t *it = this->data(); it != this->data() + OFFSET_CS; ++it)
cs -= reverse_bits(*it);
for (uint8_t idx = 0; idx < OFFSET_CS; idx++)
cs -= reverse_bits(this->data_[idx]);
return reverse_bits(cs);
}
bool MideaData::check_compliment(const MideaData &rhs) const {
const uint8_t *it0 = rhs.data();
for (const uint8_t *it1 = this->data(); it1 != this->data() + this->size(); ++it0, ++it1) {
if (*it0 != ~(*it1))
return false;
}
return true;
bool MideaData::is_compliment(const MideaData &rhs) const {
return std::equal(this->data_.begin(), this->data_.end(), rhs.data_.begin(),
[](const uint8_t &a, const uint8_t &b) { return a + b == 255; });
}
void MideaProtocol::data(RemoteTransmitData *dst, const MideaData &src, bool compliment) {
for (const uint8_t *it = src.data(); it != src.data() + src.size(); ++it) {
const uint8_t data = compliment ? ~(*it) : *it;
for (uint8_t mask = 128; mask; mask >>= 1) {
if (data & mask)
one(dst);
else
zero(dst);
}
}
}
void MideaProtocol::encode(RemoteTransmitData *dst, const MideaData &data) {
void MideaProtocol::encode(RemoteTransmitData *dst, const MideaData &src) {
dst->set_carrier_frequency(38000);
dst->reserve(2 + 48 * 2 + 2 + 2 + 48 * 2 + 2);
MideaProtocol::header(dst);
MideaProtocol::data(dst, data);
MideaProtocol::footer(dst);
MideaProtocol::header(dst);
MideaProtocol::data(dst, data, true);
MideaProtocol::footer(dst);
dst->reserve(2 + 48 * 2 + 2 + 2 + 48 * 2 + 1);
dst->item(HEADER_MARK_US, HEADER_SPACE_US);
for (unsigned idx = 0; idx < 6; idx++)
for (uint8_t mask = 1 << 7; mask; mask >>= 1)
dst->item(BIT_MARK_US, (src[idx] & mask) ? BIT_ONE_SPACE_US : BIT_ZERO_SPACE_US);
dst->item(FOOTER_MARK_US, FOOTER_SPACE_US);
dst->item(HEADER_MARK_US, HEADER_SPACE_US);
for (unsigned idx = 0; idx < 6; idx++)
for (uint8_t mask = 1 << 7; mask; mask >>= 1)
dst->item(BIT_MARK_US, (src[idx] & mask) ? BIT_ZERO_SPACE_US : BIT_ONE_SPACE_US);
dst->mark(FOOTER_MARK_US);
}
bool MideaProtocol::expect_one(RemoteReceiveData &src) {
if (!src.peek_item(BIT_HIGH_US, BIT_ONE_LOW_US))
return false;
src.advance(2);
return true;
}
bool MideaProtocol::expect_zero(RemoteReceiveData &src) {
if (!src.peek_item(BIT_HIGH_US, BIT_ZERO_LOW_US))
return false;
src.advance(2);
return true;
}
bool MideaProtocol::expect_header(RemoteReceiveData &src) {
if (!src.peek_item(HEADER_HIGH_US, HEADER_LOW_US))
return false;
src.advance(2);
return true;
}
bool MideaProtocol::expect_footer(RemoteReceiveData &src) {
if (!src.peek_item(BIT_HIGH_US, MIN_GAP_US))
return false;
src.advance(2);
return true;
}
bool MideaProtocol::expect_data(RemoteReceiveData &src, MideaData &out) {
for (uint8_t *dst = out.data(); dst != out.data() + out.size(); ++dst) {
for (uint8_t mask = 128; mask; mask >>= 1) {
if (MideaProtocol::expect_one(src))
*dst |= mask;
else if (!MideaProtocol::expect_zero(src))
static bool decode_data(RemoteReceiveData &src, MideaData &dst) {
for (unsigned idx = 0; idx < 6; idx++) {
uint8_t data = 0;
for (uint8_t mask = 1 << 7; mask; mask >>= 1) {
if (!src.expect_mark(BIT_MARK_US))
return false;
if (src.expect_space(BIT_ONE_SPACE_US))
data |= mask;
else if (!src.expect_space(BIT_ZERO_SPACE_US))
return false;
}
dst[idx] = data;
}
return true;
}
optional<MideaData> MideaProtocol::decode(RemoteReceiveData src) {
MideaData out, inv;
if (MideaProtocol::expect_header(src) && MideaProtocol::expect_data(src, out) && MideaProtocol::expect_footer(src) &&
out.is_valid() && MideaProtocol::expect_data(src, inv) && out.check_compliment(inv))
if (src.expect_item(HEADER_MARK_US, HEADER_SPACE_US) && decode_data(src, out) && out.is_valid() &&
src.expect_item(FOOTER_MARK_US, FOOTER_SPACE_US) && src.expect_item(HEADER_MARK_US, HEADER_SPACE_US) &&
decode_data(src, inv) && src.expect_mark(FOOTER_MARK_US) && out.is_compliment(inv))
return out;
return {};
}

View file

@ -1,5 +1,6 @@
#pragma once
#include <array>
#include "esphome/core/component.h"
#include "esphome/core/helpers.h"
#include "remote_base.h"
@ -9,70 +10,61 @@ namespace remote_base {
class MideaData {
public:
// Make zero-filled
MideaData() { memset(this->data_, 0, sizeof(this->data_)); }
// Make default
MideaData() {}
// Make from initializer_list
MideaData(std::initializer_list<uint8_t> data) { std::copy(data.begin(), data.end(), this->data()); }
MideaData(std::initializer_list<uint8_t> data) {
std::copy_n(data.begin(), std::min(data.size(), this->data_.size()), this->data_.begin());
}
// Make from vector
MideaData(const std::vector<uint8_t> &data) {
memcpy(this->data_, data.data(), std::min<size_t>(data.size(), sizeof(this->data_)));
std::copy_n(data.begin(), std::min(data.size(), this->data_.size()), this->data_.begin());
}
// Default copy constructor
MideaData(const MideaData &) = default;
uint8_t *data() { return this->data_; }
const uint8_t *data() const { return this->data_; }
uint8_t size() const { return sizeof(this->data_); }
uint8_t *data() { return this->data_.data(); }
const uint8_t *data() const { return this->data_.data(); }
uint8_t size() const { return this->data_.size(); }
bool is_valid() const { return this->data_[OFFSET_CS] == this->calc_cs_(); }
void finalize() { this->data_[OFFSET_CS] = this->calc_cs_(); }
bool check_compliment(const MideaData &rhs) const;
std::string to_string() const { return format_hex_pretty(this->data_, sizeof(this->data_)); }
bool is_compliment(const MideaData &rhs) const;
std::string to_string() const { return format_hex_pretty(this->data_.data(), this->data_.size()); }
// compare only 40-bits
bool operator==(const MideaData &rhs) const { return !memcmp(this->data_, rhs.data_, OFFSET_CS); }
bool operator==(const MideaData &rhs) const {
return std::equal(this->data_.begin(), this->data_.begin() + OFFSET_CS, rhs.data_.begin());
}
enum MideaDataType : uint8_t {
MIDEA_TYPE_COMMAND = 0xA1,
MIDEA_TYPE_CONTROL = 0xA1,
MIDEA_TYPE_SPECIAL = 0xA2,
MIDEA_TYPE_FOLLOW_ME = 0xA4,
};
MideaDataType type() const { return static_cast<MideaDataType>(this->data_[0]); }
template<typename T> T to() const { return T(*this); }
uint8_t &operator[](size_t idx) { return this->data_[idx]; }
const uint8_t &operator[](size_t idx) const { return this->data_[idx]; }
protected:
void set_value_(uint8_t offset, uint8_t val_mask, uint8_t shift, uint8_t val) {
data_[offset] &= ~(val_mask << shift);
data_[offset] |= (val << shift);
uint8_t get_value_(uint8_t idx, uint8_t mask = 255, uint8_t shift = 0) const {
return (this->data_[idx] >> shift) & mask;
}
void set_value_(uint8_t idx, uint8_t value, uint8_t mask = 255, uint8_t shift = 0) {
this->data_[idx] &= ~(mask << shift);
this->data_[idx] |= (value << shift);
}
void set_mask_(uint8_t idx, bool state, uint8_t mask = 255) { this->set_value_(idx, state ? mask : 0, mask); }
static const uint8_t OFFSET_CS = 5;
// 48-bits data
uint8_t data_[6];
std::array<uint8_t, 6> data_;
// Calculate checksum
uint8_t calc_cs_() const;
};
class MideaProtocol : public RemoteProtocol<MideaData> {
public:
void encode(RemoteTransmitData *dst, const MideaData &data) override;
void encode(RemoteTransmitData *dst, const MideaData &src) override;
optional<MideaData> decode(RemoteReceiveData src) override;
void dump(const MideaData &data) override;
protected:
static const int32_t TICK_US = 560;
static const int32_t HEADER_HIGH_US = 8 * TICK_US;
static const int32_t HEADER_LOW_US = 8 * TICK_US;
static const int32_t BIT_HIGH_US = 1 * TICK_US;
static const int32_t BIT_ONE_LOW_US = 3 * TICK_US;
static const int32_t BIT_ZERO_LOW_US = 1 * TICK_US;
static const int32_t MIN_GAP_US = 10 * TICK_US;
static void one(RemoteTransmitData *dst) { dst->item(BIT_HIGH_US, BIT_ONE_LOW_US); }
static void zero(RemoteTransmitData *dst) { dst->item(BIT_HIGH_US, BIT_ZERO_LOW_US); }
static void header(RemoteTransmitData *dst) { dst->item(HEADER_HIGH_US, HEADER_LOW_US); }
static void footer(RemoteTransmitData *dst) { dst->item(BIT_HIGH_US, MIN_GAP_US); }
static void data(RemoteTransmitData *dst, const MideaData &src, bool compliment = false);
static bool expect_one(RemoteReceiveData &src);
static bool expect_zero(RemoteReceiveData &src);
static bool expect_header(RemoteReceiveData &src);
static bool expect_footer(RemoteReceiveData &src);
static bool expect_data(RemoteReceiveData &src, MideaData &out);
};
class MideaBinarySensor : public RemoteReceiverBinarySensorBase {

View file

@ -378,7 +378,7 @@ std::string format_hex(const uint8_t *data, size_t length) {
}
return ret;
}
std::string format_hex(std::vector<uint8_t> data) { return format_hex(data.data(), data.size()); }
std::string format_hex(const std::vector<uint8_t> &data) { return format_hex(data.data(), data.size()); }
static char format_hex_pretty_char(uint8_t v) { return v >= 10 ? 'A' + (v - 10) : '0' + v; }
std::string format_hex_pretty(const uint8_t *data, size_t length) {
@ -396,6 +396,6 @@ std::string format_hex_pretty(const uint8_t *data, size_t length) {
return ret + " (" + to_string(length) + ")";
return ret;
}
std::string format_hex_pretty(std::vector<uint8_t> data) { return format_hex_pretty(data.data(), data.size()); }
std::string format_hex_pretty(const std::vector<uint8_t> &data) { return format_hex_pretty(data.data(), data.size()); }
} // namespace esphome

View file

@ -110,6 +110,11 @@ void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation,
/// Convert hue (0-360) & saturation/value percentage (0-1) to RGB floats (0-1)
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue);
/// Convert degrees Celsius to degrees Fahrenheit.
static inline float celsius_to_fahrenheit(float value) { return value * 1.8f + 32.0f; }
/// Convert degrees Fahrenheit to degrees Celsius.
static inline float fahrenheit_to_celsius(float value) { return (value - 32.0f) / 1.8f; }
/***
* An interrupt helper class.
*
@ -491,7 +496,7 @@ template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> optional<
/// Format the byte array \p data of length \p len in lowercased hex.
std::string format_hex(const uint8_t *data, size_t length);
/// Format the vector \p data in lowercased hex.
std::string format_hex(std::vector<uint8_t> data);
std::string format_hex(const std::vector<uint8_t> &data);
/// Format an unsigned integer in lowercased hex, starting with the most significant byte.
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_hex(T val) {
val = convert_big_endian(val);
@ -501,7 +506,7 @@ template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::stri
/// Format the byte array \p data of length \p len in pretty-printed, human-readable hex.
std::string format_hex_pretty(const uint8_t *data, size_t length);
/// Format the vector \p data in pretty-printed, human-readable hex.
std::string format_hex_pretty(std::vector<uint8_t> data);
std::string format_hex_pretty(const std::vector<uint8_t> &data);
/// Format an unsigned integer in pretty-printed, human-readable hex, starting with the most significant byte.
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_hex_pretty(T val) {
val = convert_big_endian(val);

View file

@ -1718,6 +1718,9 @@ climate:
name: HeatpumpIR Climate
min_temperature: 18
max_temperature: 30
- platform: midea_ir
name: Midea IR
use_fahrenheit: true
- platform: midea
on_state:
logger.log: "State changed!"