[helpers] Provide calls to get free heap and largest available block. (#7978)

This commit is contained in:
Clyde Stubbs 2024-12-19 14:40:08 +11:00 committed by GitHub
parent ac631711ab
commit b33b4481ea
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 61 additions and 46 deletions

View file

@ -1,38 +1,20 @@
#include "json_util.h" #include "json_util.h"
#include "esphome/core/log.h" #include "esphome/core/log.h"
#ifdef USE_ESP8266
#include <Esp.h>
#endif
#ifdef USE_ESP32
#include <esp_heap_caps.h>
#endif
#ifdef USE_RP2040
#include <Arduino.h>
#endif
namespace esphome { namespace esphome {
namespace json { namespace json {
static const char *const TAG = "json"; static const char *const TAG = "json";
static std::vector<char> global_json_build_buffer; // NOLINT static std::vector<char> global_json_build_buffer; // NOLINT
static const auto ALLOCATOR = RAMAllocator<uint8_t>(RAMAllocator<uint8_t>::ALLOC_INTERNAL);
std::string build_json(const json_build_t &f) { std::string build_json(const json_build_t &f) {
// Here we are allocating up to 5kb of memory, // Here we are allocating up to 5kb of memory,
// with the heap size minus 2kb to be safe if less than 5kb // with the heap size minus 2kb to be safe if less than 5kb
// as we can not have a true dynamic sized document. // as we can not have a true dynamic sized document.
// The excess memory is freed below with `shrinkToFit()` // The excess memory is freed below with `shrinkToFit()`
#ifdef USE_ESP8266 auto free_heap = ALLOCATOR.get_max_free_block_size();
const size_t free_heap = ESP.getMaxFreeBlockSize(); // NOLINT(readability-static-accessed-through-instance)
#elif defined(USE_ESP32)
const size_t free_heap = heap_caps_get_largest_free_block(MALLOC_CAP_8BIT);
#elif defined(USE_RP2040)
const size_t free_heap = rp2040.getFreeHeap();
#elif defined(USE_LIBRETINY)
const size_t free_heap = lt_heap_get_free();
#endif
size_t request_size = std::min(free_heap, (size_t) 512); size_t request_size = std::min(free_heap, (size_t) 512);
while (true) { while (true) {
ESP_LOGV(TAG, "Attempting to allocate %u bytes for JSON serialization", request_size); ESP_LOGV(TAG, "Attempting to allocate %u bytes for JSON serialization", request_size);
@ -67,20 +49,12 @@ bool parse_json(const std::string &data, const json_parse_t &f) {
// with the heap size minus 2kb to be safe if less than that // with the heap size minus 2kb to be safe if less than that
// as we can not have a true dynamic sized document. // as we can not have a true dynamic sized document.
// The excess memory is freed below with `shrinkToFit()` // The excess memory is freed below with `shrinkToFit()`
#ifdef USE_ESP8266 auto free_heap = ALLOCATOR.get_max_free_block_size();
const size_t free_heap = ESP.getMaxFreeBlockSize(); // NOLINT(readability-static-accessed-through-instance)
#elif defined(USE_ESP32)
const size_t free_heap = heap_caps_get_largest_free_block(MALLOC_CAP_8BIT);
#elif defined(USE_RP2040)
const size_t free_heap = rp2040.getFreeHeap();
#elif defined(USE_LIBRETINY)
const size_t free_heap = lt_heap_get_free();
#endif
size_t request_size = std::min(free_heap, (size_t) (data.size() * 1.5)); size_t request_size = std::min(free_heap, (size_t) (data.size() * 1.5));
while (true) { while (true) {
DynamicJsonDocument json_document(request_size); DynamicJsonDocument json_document(request_size);
if (json_document.capacity() == 0) { if (json_document.capacity() == 0) {
ESP_LOGE(TAG, "Could not allocate memory for JSON document! Requested %u bytes, free heap: %u", request_size, ESP_LOGE(TAG, "Could not allocate memory for JSON document! Requested %zu bytes, free heap: %zu", request_size,
free_heap); free_heap);
return false; return false;
} }

View file

@ -80,15 +80,7 @@ bool OnlineImage::resize_(int width_in, int height_in) {
this->width_ = width; this->width_ = width;
ESP_LOGD(TAG, "New size: (%d, %d)", width, height); ESP_LOGD(TAG, "New size: (%d, %d)", width, height);
} else { } else {
#if defined(USE_ESP8266) ESP_LOGE(TAG, "allocation failed. Biggest block in heap: %zu Bytes", this->allocator_.get_max_free_block_size());
// NOLINTNEXTLINE(readability-static-accessed-through-instance)
int max_block = ESP.getMaxFreeBlockSize();
#elif defined(USE_ESP32)
int max_block = heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL);
#else
int max_block = -1;
#endif
ESP_LOGE(TAG, "allocation failed. Biggest block in heap: %d Bytes", max_block);
this->end_connection_(); this->end_connection_();
return false; return false;
} }

View file

@ -11,6 +11,14 @@
#include "esphome/core/optional.h" #include "esphome/core/optional.h"
#ifdef USE_ESP8266
#include <Esp.h>
#endif
#ifdef USE_RP2040
#include <Arduino.h>
#endif
#ifdef USE_ESP32 #ifdef USE_ESP32
#include <esp_heap_caps.h> #include <esp_heap_caps.h>
#endif #endif
@ -684,20 +692,23 @@ template<class T> class RAMAllocator {
}; };
RAMAllocator() = default; RAMAllocator() = default;
RAMAllocator(uint8_t flags) : flags_{flags} {} RAMAllocator(uint8_t flags) {
// default is both external and internal
flags &= ALLOC_INTERNAL | ALLOC_EXTERNAL;
if (flags != 0)
this->flags_ = flags;
}
template<class U> constexpr RAMAllocator(const RAMAllocator<U> &other) : flags_{other.flags_} {} template<class U> constexpr RAMAllocator(const RAMAllocator<U> &other) : flags_{other.flags_} {}
T *allocate(size_t n) { T *allocate(size_t n) {
size_t size = n * sizeof(T); size_t size = n * sizeof(T);
T *ptr = nullptr; T *ptr = nullptr;
#ifdef USE_ESP32 #ifdef USE_ESP32
// External allocation by default or if explicitely requested if (this->flags_ & Flags::ALLOC_EXTERNAL) {
if ((this->flags_ & Flags::ALLOC_EXTERNAL) || ((this->flags_ & Flags::ALLOC_INTERNAL) == 0)) {
ptr = static_cast<T *>(heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT)); ptr = static_cast<T *>(heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT));
} }
// Fallback to internal allocation if explicitely requested or no flag is specified if (ptr == nullptr && this->flags_ & Flags::ALLOC_INTERNAL) {
if (ptr == nullptr && ((this->flags_ & Flags::ALLOC_INTERNAL) || (this->flags_ & Flags::ALLOC_EXTERNAL) == 0)) { ptr = static_cast<T *>(heap_caps_malloc(size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
ptr = static_cast<T *>(malloc(size)); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
} }
#else #else
// Ignore ALLOC_EXTERNAL/ALLOC_INTERNAL flags if external allocation is not supported // Ignore ALLOC_EXTERNAL/ALLOC_INTERNAL flags if external allocation is not supported
@ -710,8 +721,46 @@ template<class T> class RAMAllocator {
free(p); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc) free(p); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
} }
/**
* Return the total heap space available via this allocator
*/
size_t get_free_heap_size() const {
#ifdef USE_ESP8266
return ESP.getFreeHeap(); // NOLINT(readability-static-accessed-through-instance)
#elif defined(USE_ESP32)
auto max_internal =
this->flags_ & ALLOC_INTERNAL ? heap_caps_get_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL) : 0;
auto max_external =
this->flags_ & ALLOC_EXTERNAL ? heap_caps_get_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM) : 0;
return max_internal + max_external;
#elif defined(USE_RP2040)
return ::rp2040.getFreeHeap();
#elif defined(USE_LIBRETINY)
return lt_heap_get_free();
#else
return 100000;
#endif
}
/**
* Return the maximum size block this allocator could allocate. This may be an approximation on some platforms
*/
size_t get_max_free_block_size() const {
#ifdef USE_ESP8266
return ESP.getMaxFreeBlockSize(); // NOLINT(readability-static-accessed-through-instance)
#elif defined(USE_ESP32)
auto max_internal =
this->flags_ & ALLOC_INTERNAL ? heap_caps_get_largest_free_block(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL) : 0;
auto max_external =
this->flags_ & ALLOC_EXTERNAL ? heap_caps_get_largest_free_block(MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM) : 0;
return std::max(max_internal, max_external);
#else
return this->get_free_heap_size();
#endif
}
private: private:
uint8_t flags_{Flags::ALLOW_FAILURE}; uint8_t flags_{ALLOC_INTERNAL | ALLOC_EXTERNAL};
}; };
template<class T> using ExternalRAMAllocator = RAMAllocator<T>; template<class T> using ExternalRAMAllocator = RAMAllocator<T>;