Add central function scheduler (#609)

* Add central function scheduler

* Avoid unnecessary copies

* Lint

* Prevent more copies, store pointers

* Add never update_interval
This commit is contained in:
Otto Winter 2019-06-07 14:26:40 +02:00 committed by GitHub
parent 7a895adec9
commit b51cbc4207
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 273 additions and 128 deletions

View file

@ -37,6 +37,7 @@ void Application::setup() {
continue; continue;
component->call_setup(); component->call_setup();
this->scheduler.process_to_add();
if (component->can_proceed()) if (component->can_proceed())
continue; continue;
@ -45,6 +46,7 @@ void Application::setup() {
do { do {
uint32_t new_app_state = STATUS_LED_WARNING; uint32_t new_app_state = STATUS_LED_WARNING;
this->scheduler.call();
for (uint32_t j = 0; j <= i; j++) { for (uint32_t j = 0; j <= i; j++) {
if (!this->components_[j]->is_failed()) { if (!this->components_[j]->is_failed()) {
this->components_[j]->call_loop(); this->components_[j]->call_loop();
@ -63,6 +65,8 @@ void Application::setup() {
void Application::loop() { void Application::loop() {
uint32_t new_app_state = 0; uint32_t new_app_state = 0;
const uint32_t start = millis(); const uint32_t start = millis();
this->scheduler.call();
for (Component *component : this->components_) { for (Component *component : this->components_) {
if (!component->is_failed()) { if (!component->is_failed()) {
component->call_loop(); component->call_loop();
@ -72,6 +76,7 @@ void Application::loop() {
this->feed_wdt(); this->feed_wdt();
} }
this->app_state_ = new_app_state; this->app_state_ = new_app_state;
const uint32_t end = millis(); const uint32_t end = millis();
if (end - start > 200) { if (end - start > 200) {
ESP_LOGV(TAG, "A component took a long time in a loop() cycle (%.1f s).", (end - start) / 1e3f); ESP_LOGV(TAG, "A component took a long time in a loop() cycle (%.1f s).", (end - start) / 1e3f);
@ -87,6 +92,12 @@ void Application::loop() {
uint32_t delay_time = this->loop_interval_; uint32_t delay_time = this->loop_interval_;
if (now - this->last_loop_ < this->loop_interval_) if (now - this->last_loop_ < this->loop_interval_)
delay_time = this->loop_interval_ - (now - this->last_loop_); delay_time = this->loop_interval_ - (now - this->last_loop_);
uint32_t next_schedule = this->scheduler.next_schedule_in().value_or(delay_time);
// next_schedule is max 0.5*delay_time
// otherwise interval=0 schedules result in constant looping with almost no sleep
next_schedule = std::max(next_schedule, delay_time / 2);
delay_time = std::min(next_schedule, delay_time);
delay(delay_time); delay(delay_time);
} }
this->last_loop_ = now; this->last_loop_ = now;

View file

@ -6,6 +6,7 @@
#include "esphome/core/preferences.h" #include "esphome/core/preferences.h"
#include "esphome/core/component.h" #include "esphome/core/component.h"
#include "esphome/core/helpers.h" #include "esphome/core/helpers.h"
#include "esphome/core/scheduler.h"
#ifdef USE_BINARY_SENSOR #ifdef USE_BINARY_SENSOR
#include "esphome/components/binary_sensor/binary_sensor.h" #include "esphome/components/binary_sensor/binary_sensor.h"
@ -197,6 +198,8 @@ class Application {
} }
#endif #endif
Scheduler scheduler;
protected: protected:
friend Component; friend Component;

View file

@ -1,5 +1,3 @@
#include <algorithm>
#include "esphome/core/component.h" #include "esphome/core/component.h"
#include "esphome/core/helpers.h" #include "esphome/core/helpers.h"
#include "esphome/core/esphal.h" #include "esphome/core/esphal.h"
@ -45,51 +43,19 @@ void Component::setup() {}
void Component::loop() {} void Component::loop() {}
void Component::set_interval(const std::string &name, uint32_t interval, std::function<void()> &&f) { // NOLINT void Component::set_interval(const std::string &name, uint32_t interval, std::function<void()> &&f) { // NOLINT
const uint32_t now = millis(); App.scheduler.set_interval(this, name, interval, std::move(f));
// only put offset in lower half
uint32_t offset = 0;
if (interval != 0)
offset = (random_uint32() % interval) / 2;
ESP_LOGVV(TAG, "set_interval(name='%s', interval=%u, offset=%u)", name.c_str(), interval, offset);
if (!name.empty()) {
this->cancel_interval(name);
}
struct TimeFunction function = {
.name = name,
.type = TimeFunction::INTERVAL,
.interval = interval,
.last_execution = now - interval - offset,
.f = std::move(f),
.remove = false,
};
this->time_functions_.push_back(function);
} }
bool Component::cancel_interval(const std::string &name) { // NOLINT bool Component::cancel_interval(const std::string &name) { // NOLINT
return this->cancel_time_function_(name, TimeFunction::INTERVAL); return App.scheduler.cancel_interval(this, name);
} }
void Component::set_timeout(const std::string &name, uint32_t timeout, std::function<void()> &&f) { // NOLINT void Component::set_timeout(const std::string &name, uint32_t timeout, std::function<void()> &&f) { // NOLINT
const uint32_t now = millis(); return App.scheduler.set_timeout(this, name, timeout, std::move(f));
ESP_LOGVV(TAG, "set_timeout(name='%s', timeout=%u)", name.c_str(), timeout);
if (!name.empty()) {
this->cancel_timeout(name);
}
struct TimeFunction function = {
.name = name,
.type = TimeFunction::TIMEOUT,
.interval = timeout,
.last_execution = now,
.f = std::move(f),
.remove = false,
};
this->time_functions_.push_back(function);
} }
bool Component::cancel_timeout(const std::string &name) { // NOLINT bool Component::cancel_timeout(const std::string &name) { // NOLINT
return this->cancel_time_function_(name, TimeFunction::TIMEOUT); return App.scheduler.cancel_timeout(this, name);
} }
void Component::call_loop() { void Component::call_loop() {
@ -97,17 +63,6 @@ void Component::call_loop() {
this->loop(); this->loop();
} }
bool Component::cancel_time_function_(const std::string &name, TimeFunction::Type type) {
// NOLINTNEXTLINE
for (auto iter = this->time_functions_.begin(); iter != this->time_functions_.end(); iter++) {
if (!iter->remove && iter->name == name && iter->type == type) {
ESP_LOGVV(TAG, "Removing old time function %s.", iter->name.c_str());
iter->remove = true;
return true;
}
}
return false;
}
void Component::call_setup() { void Component::call_setup() {
this->setup_internal_(); this->setup_internal_();
this->setup(); this->setup();
@ -116,34 +71,6 @@ uint32_t Component::get_component_state() const { return this->component_state_;
void Component::loop_internal_() { void Component::loop_internal_() {
this->component_state_ &= ~COMPONENT_STATE_MASK; this->component_state_ &= ~COMPONENT_STATE_MASK;
this->component_state_ |= COMPONENT_STATE_LOOP; this->component_state_ |= COMPONENT_STATE_LOOP;
for (unsigned int i = 0; i < this->time_functions_.size(); i++) { // NOLINT
const uint32_t now = millis();
TimeFunction *tf = &this->time_functions_[i];
if (tf->should_run(now)) {
#ifdef ESPHOME_LOG_HAS_VERY_VERBOSE
const char *type =
tf->type == TimeFunction::INTERVAL ? "interval" : (tf->type == TimeFunction::TIMEOUT ? "timeout" : "defer");
ESP_LOGVV(TAG, "Running %s '%s':%u with interval=%u last_execution=%u (now=%u)", type, tf->name.c_str(), i,
tf->interval, tf->last_execution, now);
#endif
tf->f();
// The vector might have reallocated due to new items
tf = &this->time_functions_[i];
if (tf->type == TimeFunction::INTERVAL && tf->interval != 0) {
const uint32_t amount = (now - tf->last_execution) / tf->interval;
tf->last_execution += (amount * tf->interval);
} else if (tf->type == TimeFunction::DEFER || tf->type == TimeFunction::TIMEOUT) {
tf->remove = true;
}
}
}
this->time_functions_.erase(std::remove_if(this->time_functions_.begin(), this->time_functions_.end(),
[](const TimeFunction &tf) -> bool { return tf.remove; }),
this->time_functions_.end());
} }
void Component::setup_internal_() { void Component::setup_internal_() {
this->component_state_ &= ~COMPONENT_STATE_MASK; this->component_state_ &= ~COMPONENT_STATE_MASK;
@ -155,29 +82,20 @@ void Component::mark_failed() {
this->component_state_ |= COMPONENT_STATE_FAILED; this->component_state_ |= COMPONENT_STATE_FAILED;
this->status_set_error(); this->status_set_error();
} }
void Component::defer(std::function<void()> &&f) { this->defer("", std::move(f)); } // NOLINT void Component::defer(std::function<void()> &&f) { // NOLINT
App.scheduler.set_timeout(this, "", 0, std::move(f));
}
bool Component::cancel_defer(const std::string &name) { // NOLINT bool Component::cancel_defer(const std::string &name) { // NOLINT
return this->cancel_time_function_(name, TimeFunction::DEFER); return App.scheduler.cancel_timeout(this, name);
} }
void Component::defer(const std::string &name, std::function<void()> &&f) { // NOLINT void Component::defer(const std::string &name, std::function<void()> &&f) { // NOLINT
if (!name.empty()) { App.scheduler.set_timeout(this, name, 0, std::move(f));
this->cancel_defer(name);
}
struct TimeFunction function = {
.name = name,
.type = TimeFunction::DEFER,
.interval = 0,
.last_execution = 0,
.f = std::move(f),
.remove = false,
};
this->time_functions_.push_back(function);
} }
void Component::set_timeout(uint32_t timeout, std::function<void()> &&f) { // NOLINT void Component::set_timeout(uint32_t timeout, std::function<void()> &&f) { // NOLINT
this->set_timeout("", timeout, std::move(f)); App.scheduler.set_timeout(this, "", timeout, std::move(f));
} }
void Component::set_interval(uint32_t interval, std::function<void()> &&f) { // NOLINT void Component::set_interval(uint32_t interval, std::function<void()> &&f) { // NOLINT
this->set_interval("", interval, std::move(f)); App.scheduler.set_timeout(this, "", interval, std::move(f));
} }
bool Component::is_failed() { return (this->component_state_ & COMPONENT_STATE_MASK) == COMPONENT_STATE_FAILED; } bool Component::is_failed() { return (this->component_state_ & COMPONENT_STATE_MASK) == COMPONENT_STATE_FAILED; }
bool Component::can_proceed() { return true; } bool Component::can_proceed() { return true; }
@ -203,7 +121,9 @@ void Component::status_momentary_error(const std::string &name, uint32_t length)
} }
void Component::dump_config() {} void Component::dump_config() {}
float Component::get_actual_setup_priority() const { float Component::get_actual_setup_priority() const {
return this->setup_priority_override_.value_or(this->get_setup_priority()); if (isnan(this->setup_priority_override_))
return this->get_setup_priority();
return this->setup_priority_override_;
} }
void Component::set_setup_priority(float priority) { this->setup_priority_override_ = priority; } void Component::set_setup_priority(float priority) { this->setup_priority_override_ = priority; }
@ -240,12 +160,4 @@ void Nameable::calc_object_id_() {
} }
uint32_t Nameable::get_object_id_hash() { return this->object_id_hash_; } uint32_t Nameable::get_object_id_hash() { return this->object_id_hash_; }
bool Component::TimeFunction::should_run(uint32_t now) const {
if (this->remove)
return false;
if (this->type == DEFER)
return true;
return this->interval != 4294967295UL && now - this->last_execution > this->interval;
}
} // namespace esphome } // namespace esphome

View file

@ -2,7 +2,7 @@
#include <string> #include <string>
#include <functional> #include <functional>
#include <vector> #include "Arduino.h"
#include "esphome/core/optional.h" #include "esphome/core/optional.h"
@ -207,31 +207,8 @@ class Component {
void loop_internal_(); void loop_internal_();
void setup_internal_(); void setup_internal_();
/// Internal struct for storing timeout/interval functions.
struct TimeFunction {
std::string name; ///< The name/id of this TimeFunction.
enum Type { TIMEOUT, INTERVAL, DEFER } type; ///< The type of this TimeFunction. Either TIMEOUT, INTERVAL or DEFER.
uint32_t interval; ///< The interval/timeout of this function.
/// The last execution for interval functions and the time, SetInterval was called, for timeout functions.
uint32_t last_execution;
std::function<void()> f; ///< The function (or callback) itself.
bool remove;
bool should_run(uint32_t now) const;
};
/// Cancel an only time function. If name is empty, won't do anything.
bool cancel_time_function_(const std::string &name, TimeFunction::Type type);
/** Storage for interval/timeout functions.
*
* Intentionally a vector despite its map-like nature, because of the
* memory overhead.
*/
std::vector<TimeFunction> time_functions_;
uint32_t component_state_{0x0000}; ///< State of this component. uint32_t component_state_{0x0000}; ///< State of this component.
optional<float> setup_priority_override_; float setup_priority_override_{NAN};
}; };
/** This class simplifies creating components that periodically check a state. /** This class simplifies creating components that periodically check a state.

193
esphome/core/scheduler.cpp Normal file
View file

@ -0,0 +1,193 @@
#include "scheduler.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include <algorithm>
namespace esphome {
static const char *TAG = "scheduler";
static const uint32_t SCHEDULER_DONT_RUN = 4294967295UL;
void HOT Scheduler::set_timeout(Component *component, const std::string &name, uint32_t timeout,
std::function<void()> &&func) {
const uint32_t now = millis();
if (!name.empty())
this->cancel_timeout(component, name);
if (timeout == SCHEDULER_DONT_RUN)
return;
ESP_LOGVV(TAG, "set_timeout(name='%s', timeout=%u)", name.c_str(), timeout);
auto *item = new SchedulerItem();
item->component = component;
item->name = name;
item->type = SchedulerItem::TIMEOUT;
item->timeout = timeout;
item->last_execution = now;
item->f = std::move(func);
item->remove = false;
this->push_(item);
}
bool HOT Scheduler::cancel_timeout(Component *component, const std::string &name) {
return this->cancel_item_(component, name, SchedulerItem::TIMEOUT);
}
void HOT Scheduler::set_interval(Component *component, const std::string &name, uint32_t interval,
std::function<void()> &&func) {
const uint32_t now = millis();
if (!name.empty())
this->cancel_interval(component, name);
if (interval == SCHEDULER_DONT_RUN)
return;
// only put offset in lower half
uint32_t offset = 0;
if (interval != 0)
offset = (random_uint32() % interval) / 2;
ESP_LOGVV(TAG, "set_interval(name='%s', interval=%u, offset=%u)", name.c_str(), interval, offset);
auto *item = new SchedulerItem();
item->component = component;
item->name = name;
item->type = SchedulerItem::INTERVAL;
item->interval = interval;
item->last_execution = now - offset;
item->f = std::move(func);
item->remove = false;
this->push_(item);
}
bool HOT Scheduler::cancel_interval(Component *component, const std::string &name) {
return this->cancel_item_(component, name, SchedulerItem::INTERVAL);
}
optional<uint32_t> HOT Scheduler::next_schedule_in() {
if (!this->peek_())
return {};
auto *item = this->items_[0];
const uint32_t now = millis();
uint32_t next_time = item->last_execution + item->interval;
if (next_time < now)
return 0;
return next_time - now;
}
void ICACHE_RAM_ATTR HOT Scheduler::call() {
const uint32_t now = millis();
this->process_to_add();
while (true) {
bool has_item = this->peek_();
if (!has_item)
// No more item left, done!
break;
// Don't copy-by value yet
auto *item = this->items_[0];
if ((now - item->last_execution) < item->interval)
// Not reached timeout yet, done for this call
break;
// Don't run on failed components
if (item->component != nullptr && item->component->is_failed()) {
this->pop_raw_();
delete item;
continue;
}
#ifdef ESPHOME_LOG_HAS_VERY_VERBOSE
const char *type = item->type == SchedulerItem::INTERVAL ? "interval" : "timeout";
ESP_LOGVV(TAG, "Running %s '%s' with interval=%u last_execution=%u (now=%u)", type, item->name.c_str(),
item->interval, item->last_execution, now);
#endif
// Warning: During f(), a lot of stuff can happen, including:
// - timeouts/intervals get added, potentially invalidating vector pointers
// - timeouts/intervals get cancelled
item->f();
// Only pop after function call, this ensures we were reachable
// during the function call and know if we were cancelled.
this->pop_raw_();
if (item->remove) {
// We were removed/cancelled in the function call, stop
delete item;
continue;
}
if (item->type == SchedulerItem::INTERVAL) {
if (item->interval != 0) {
const uint32_t amount = (now - item->last_execution) / item->interval;
item->last_execution += amount * item->interval;
}
this->push_(item);
} else {
delete item;
}
}
this->process_to_add();
}
void HOT Scheduler::process_to_add() {
for (auto &it : this->to_add_) {
if (it->remove) {
delete it;
continue;
}
this->items_.push_back(it);
std::push_heap(this->items_.begin(), this->items_.end());
}
this->to_add_.clear();
}
void HOT Scheduler::cleanup_() {
while (!this->items_.empty()) {
auto item = this->items_[0];
if (!item->remove)
return;
delete item;
this->pop_raw_();
}
}
bool HOT Scheduler::peek_() {
this->cleanup_();
return !this->items_.empty();
}
void HOT Scheduler::pop_raw_() {
std::pop_heap(this->items_.begin(), this->items_.end());
this->items_.pop_back();
}
void HOT Scheduler::push_(Scheduler::SchedulerItem *item) { this->to_add_.push_back(item); }
bool HOT Scheduler::cancel_item_(Component *component, const std::string &name, Scheduler::SchedulerItem::Type type) {
bool ret = false;
for (auto *it : this->items_)
if (it->component == component && it->name == name && it->type == type) {
it->remove = true;
ret = true;
}
for (auto &it : this->to_add_)
if (it->component == component && it->name == name && it->type == type) {
it->remove = true;
ret = true;
}
return ret;
}
bool HOT Scheduler::SchedulerItem::operator<(const Scheduler::SchedulerItem &other) const {
// min-heap
uint32_t this_next_exec = this->last_execution + this->timeout;
bool this_overflow = this_next_exec < this->last_execution;
uint32_t other_next_exec = other.last_execution + other.timeout;
bool other_overflow = other_next_exec < other.last_execution;
if (this_overflow == other_overflow)
return this_next_exec > other_next_exec;
return this_overflow;
}
} // namespace esphome

49
esphome/core/scheduler.h Normal file
View file

@ -0,0 +1,49 @@
#pragma once
#include "esphome/core/component.h"
#include <vector>
namespace esphome {
class Component;
class Scheduler {
public:
void set_timeout(Component *component, const std::string &name, uint32_t timeout, std::function<void()> &&func);
bool cancel_timeout(Component *component, const std::string &name);
void set_interval(Component *component, const std::string &name, uint32_t interval, std::function<void()> &&func);
bool cancel_interval(Component *component, const std::string &name);
optional<uint32_t> next_schedule_in();
void call();
void process_to_add();
protected:
struct SchedulerItem {
Component *component;
std::string name;
enum Type { TIMEOUT, INTERVAL } type;
union {
uint32_t interval;
uint32_t timeout;
};
uint32_t last_execution;
std::function<void()> f;
bool remove;
bool operator<(const SchedulerItem &other) const;
};
void cleanup_();
bool peek_();
void pop_raw_();
void push_(SchedulerItem *item);
bool cancel_item_(Component *component, const std::string &name, SchedulerItem::Type type);
std::vector<SchedulerItem *> items_;
std::vector<SchedulerItem *> to_add_;
};
} // namespace esphome