POC, rework the locking system.

This commit is contained in:
NP v/d Spek 2024-10-28 19:02:40 +01:00
parent 7361247c1b
commit b67adcd202
12 changed files with 323 additions and 329 deletions

View file

@ -0,0 +1,48 @@
#include "audio.h"
namespace esphome {
namespace audio {
/* *************** AudioListener **************** */
AudioStreamer *AudioListener::start(AudioStreamInfo &info) {
if (current_streamer_ != nullptr) {
return nullptr;
}
if (this->starting(info)) {
this->current_streamer_ = new AudioStreamer();
this->current_streamer_->set_parent(this);
}
return nullptr;
}
AudioStreamer *AudioListener::start() {
AudioStreamInfo info;
this->get_default_audio_stream_info(info);
this->start(info);
}
bool AudioListener::can_stream(AudioStreamer *streamer) {
return this->current_streamer_ == streamer && this->is_running();
}
/* *************** AudioStreamer **************** */
AudioStreamer::~AudioStreamer() {
if (this->parent_ != nullptr && this->parent_->current_streamer_ == this) {
this->parent_->current_streamer_ = nullptr;
this->parent_->stopping();
this->parent_ = nullptr;
}
}
bool AudioStreamer::is_running() { return (this->parent_ == nullptr) ? false : this->parent_->can_stream(this); }
size_t AudioStreamer::stream(const uint8_t *data, const size_t size, TickType_t ticks_to_wait) {
if (!this->is_running(this))
return 0;
return this->parent_->streaming(data, size, ticks_to_wait);
}
} // namespace audio
} // namespace esphome

View file

@ -2,10 +2,22 @@
#include <cstdint> #include <cstdint>
#include <stddef.h> #include <stddef.h>
#include "esphome/core/helpers.h"
namespace esphome { namespace esphome {
namespace audio { namespace audio {
#ifndef USE_ESP32
using TickType_t = size_t;
#endif
enum State : uint8_t {
STATE_STOPPED = 0,
STATE_STARTING,
STATE_RUNNING,
STATE_STOPPING,
};
struct AudioStreamInfo { struct AudioStreamInfo {
bool operator==(const AudioStreamInfo &rhs) const { bool operator==(const AudioStreamInfo &rhs) const {
return (channels == rhs.channels) && (bits_per_sample == rhs.bits_per_sample) && (sample_rate == rhs.sample_rate); return (channels == rhs.channels) && (bits_per_sample == rhs.bits_per_sample) && (sample_rate == rhs.sample_rate);
@ -17,5 +29,55 @@ struct AudioStreamInfo {
uint32_t sample_rate = 16000; uint32_t sample_rate = 16000;
}; };
class AudioListener;
class AudioStreamer : public Parented<AudioListener> {
public:
virtual ~AudioStreamer();
/// @brief Plays the provided audio data or receive the audio from the mic.
/// @param length The length of the audio data in bytes.
/// @return The number of bytes that were actually written to the speaker's internal buffer.
size_t stream(const uint8_t *data, const size_t size, TickType_t ticks_to_wait = 0);
bool is_running();
};
class AudioListener {
public:
/// @brief Initialize the audio device
/// If the audio stream is not the default defined in "esphome/core/audio.h"
/// and the speaker component implements it,
/// then this should be called after calling ``set_audio_stream_info``.
/// @param data Audio data in the format specified by ``set_audio_stream_info`` method.
/// @return the AudioStreamer object to be used to stream to or from the device.
AudioStreamer *start(const AudioStreamInfo &audio_stream_info);
AudioStreamer *start();
void stop() {
if (this->current_streamer_ != nullptr) {
delete this->current_streamer_;
}
}
virtual bool can_stream(AudioStreamer *streamer);
bool is_running() const { return this->state_ == audio::STATE_RUNNING; }
bool is_stopped() const { return this->state_ == audio::STATE_STOPPED; }
void set_audio_stream_info(const AudioStreamInfo &audio_stream_info) { this->audio_stream_info_ = audio_stream_info; }
virtual void get_default_audio_stream_info(AudioStreamInfo &audio_stream_info) {}
protected:
virtual bool starting(const AudioStreamInfo &audio_stream_info) = 0;
virtual size_t streaming(const uint8_t *data, size_t size, TickType_t ticks_to_wait) = 0;
virtual void stopping(){};
AudioStreamer *current_streamer_{nullptr};
audio::AudioStreamInfo audio_stream_info_;
State state_{STATE_STOPPED};
bool finish_before_stop_{false};
};
} // namespace audio } // namespace audio
} // namespace esphome } // namespace esphome

View file

@ -28,23 +28,6 @@ void I2SAudioComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up I2S Audio..."); ESP_LOGCONFIG(TAG, "Setting up I2S Audio...");
} }
bool I2SAudioComponent::lock_component(I2SAudioBase *audio) {
if (!this->is_compoment_locked(audio)) {
this->audio_base_ = audio;
return true;
}
return false;
}
void I2SAudioComponent::unlock_component(I2SAudioBase *audio) {
if (!this->is_compoment_locked(audio)) {
this->audio_base_ = nullptr;
}
}
bool I2SAudioComponent::is_compoment_locked(I2SAudioBase *audio) {
return !(this->audio_base_ == nullptr || this->audio_base_ == audio);
}
} // namespace i2s_audio } // namespace i2s_audio
} // namespace esphome } // namespace esphome

View file

@ -55,17 +55,11 @@ class I2SAudioComponent : public Component {
bool try_lock() { return this->lock_.try_lock(); } bool try_lock() { return this->lock_.try_lock(); }
void unlock() { this->lock_.unlock(); } void unlock() { this->lock_.unlock(); }
virtual bool lock_component(I2SAudioBase *audio);
virtual void unlock_component(I2SAudioBase *audio);
virtual bool is_compoment_locked(I2SAudioBase *audio);
i2s_port_t get_port() const { return this->port_; } i2s_port_t get_port() const { return this->port_; }
protected: protected:
Mutex lock_; Mutex lock_;
I2SAudioBase *audio_base_{nullptr};
int mclk_pin_{I2S_PIN_NO_CHANGE}; int mclk_pin_{I2S_PIN_NO_CHANGE};
int bclk_pin_{I2S_PIN_NO_CHANGE}; int bclk_pin_{I2S_PIN_NO_CHANGE};
int lrclk_pin_; int lrclk_pin_;

View file

@ -26,7 +26,6 @@ static const char *const TAG = "i2s_audio.speaker";
enum SpeakerEventGroupBits : uint32_t { enum SpeakerEventGroupBits : uint32_t {
COMMAND_START = (1 << 0), // Starts the main task purpose COMMAND_START = (1 << 0), // Starts the main task purpose
COMMAND_STOP = (1 << 1), // stops the main task COMMAND_STOP = (1 << 1), // stops the main task
COMMAND_STOP_GRACEFULLY = (1 << 2), // Stops the task once all data has been written
MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE = (1 << 5), // Locks the ring buffer when not set MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE = (1 << 5), // Locks the ring buffer when not set
STATE_STARTING = (1 << 10), STATE_STARTING = (1 << 10),
STATE_RUNNING = (1 << 11), STATE_RUNNING = (1 << 11),
@ -107,29 +106,26 @@ void I2SAudioSpeaker::loop() {
if (event_group_bits & SpeakerEventGroupBits::STATE_STARTING) { if (event_group_bits & SpeakerEventGroupBits::STATE_STARTING) {
ESP_LOGD(TAG, "Starting Speaker"); ESP_LOGD(TAG, "Starting Speaker");
this->state_ = speaker::STATE_STARTING; this->state_ = audio::STATE_STARTING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STARTING); xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STARTING);
} }
if (event_group_bits & SpeakerEventGroupBits::STATE_RUNNING) { if (event_group_bits & SpeakerEventGroupBits::STATE_RUNNING) {
ESP_LOGD(TAG, "Started Speaker"); ESP_LOGD(TAG, "Started Speaker");
this->state_ = speaker::STATE_RUNNING; this->state_ = audio::STATE_RUNNING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_RUNNING); xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_RUNNING);
this->status_clear_warning(); this->status_clear_warning();
this->status_clear_error(); this->status_clear_error();
} }
if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPING) { if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPING) {
ESP_LOGD(TAG, "Stopping Speaker"); ESP_LOGD(TAG, "Stopping Speaker");
this->state_ = speaker::STATE_STOPPING; this->state_ = audio::STATE_STOPPING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPING); xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPING);
} }
if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPED) { if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPED) {
if (!this->task_created_) { this->stop();
ESP_LOGD(TAG, "Stopped Speaker"); ESP_LOGD(TAG, "Speaker Stopped.");
this->state_ = speaker::STATE_STOPPED; this->state_ = audio::STATE_STOPPED;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ALL_BITS); xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ALL_BITS);
this->speaker_task_handle_ = nullptr;
}
this->parent_->unlock_component(this);
} }
if (event_group_bits & SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START) { if (event_group_bits & SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START) {
@ -191,20 +187,115 @@ void I2SAudioSpeaker::set_mute_state(bool mute_state) {
} }
} }
size_t I2SAudioSpeaker::play(const uint8_t *data, size_t length, TickType_t ticks_to_wait) { bool I2SAudioSpeaker::has_buffered_data() const {
if (this->audio_ring_buffer_ != nullptr) {
return this->audio_ring_buffer_->available() > 0;
}
return false;
}
void I2SAudioSpeaker::speaker_task(void *params) {
I2SAudioSpeaker *this_speaker = (I2SAudioSpeaker *) params;
uint32_t event_group_bits = xEventGroupWaitBits(
this_speaker->event_group_,
SpeakerEventGroupBits::COMMAND_START | SpeakerEventGroupBits::COMMAND_STOP, // Bit message to read
pdTRUE, // Clear the bits on exit
pdFALSE, // Don't wait for all the bits,
portMAX_DELAY); // Block indefinitely until a bit is set
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP) {
// Received a stop signal before the task was requested to start
this_speaker->delete_task_();
}
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_RUNNING);
uint32_t last_data_received_time = millis();
size_t dma_buffers_size = this_speaker->get_dma_buffers_size();
while ((millis() - last_data_received_time) <= this_speaker->timeout_) {
event_group_bits = xEventGroupGetBits(this_speaker->event_group_);
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP) {
break;
}
size_t bytes_to_read = dma_buffers_size;
size_t bytes_read = this_speaker->audio_ring_buffer_->read((void *) this_speaker->data_buffer_, bytes_to_read,
pdMS_TO_TICKS(TASK_DELAY_MS));
if (bytes_read > 0) {
last_data_received_time = millis();
size_t bytes_written = 0;
if ((this_speaker->audio_stream_info_.bits_per_sample == 16) && (this_speaker->q15_volume_factor_ < INT16_MAX)) {
// Scale samples by the volume factor in place
q15_multiplication((int16_t *) this_speaker->data_buffer_, (int16_t *) this_speaker->data_buffer_,
bytes_read / sizeof(int16_t), this_speaker->q15_volume_factor_);
}
if (this_speaker->audio_stream_info_.bits_per_sample == (uint8_t) this_speaker->bits_per_sample_) {
i2s_write(this_speaker->parent_->get_port(), this_speaker->data_buffer_, bytes_read, &bytes_written,
portMAX_DELAY);
} else if (this_speaker->audio_stream_info_.bits_per_sample < (uint8_t) this_speaker->bits_per_sample_) {
i2s_write_expand(this_speaker->parent_->get_port(), this_speaker->data_buffer_, bytes_read,
this_speaker->audio_stream_info_.bits_per_sample, this_speaker->bits_per_sample_,
&bytes_written, portMAX_DELAY);
}
if (bytes_written != bytes_read) {
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE);
}
}
}
this_speaker->delete_task_();
}
bool I2SAudioSpeaker::starting(const audio::AudioStreamInfo &audio_stream_info) {
if (this->is_failed() || this->status_has_error())
return false;
if ((this->state_ != audio::STATE_STOPPED))
return false;
if (this->speaker_task_handle_ != nullptr)
return false;
this->audio_stream_info_ = audio_stream_info;
if (this->send_esp_err_to_event_group_(this->reconfigure_i2s_stream_info_(this->audio_stream_info_))) {
return false;
}
if (this->allocate_buffers_()) {
// Failed to allocate buffers
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
this->delete_task_();
return false;
}
if (this->send_esp_err_to_event_group_(this->start_i2s_driver_())) {
// Failed to start I2S driver
this->delete_task_();
return false;
}
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_START);
xTaskCreate(I2SAudioSpeaker::speaker_task, "speaker_task", TASK_STACK_SIZE, (void *) this, TASK_PRIORITY,
&this->speaker_task_handle_);
if (this->speaker_task_handle_ == nullptr) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START);
this->delete_task_();
}
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE);
return true;
}
size_t I2SAudioSpeaker::streaming(const uint8_t *data, size_t size, TickType_t ticks_to_wait) {
if (this->is_failed()) { if (this->is_failed()) {
ESP_LOGE(TAG, "Cannot play audio, speaker failed to setup"); ESP_LOGE(TAG, "Cannot play audio, speaker failed to setup");
return 0; return 0;
} }
// prevent adding new data until the speaker has stopped.
if (!this->parent_->lock_component(this)) {
ESP_LOGE(TAG, "Cannot play new audio, it being used by an other audio component.");
return 0;
}
if (this->state_ != speaker::STATE_RUNNING && this->state_ != speaker::STATE_STARTING) {
this->start();
}
// Wait for the ring buffer to be available // Wait for the ring buffer to be available
uint32_t event_bits = uint32_t event_bits =
@ -216,7 +307,7 @@ size_t I2SAudioSpeaker::play(const uint8_t *data, size_t length, TickType_t tick
// Lock the ring buffer, write to it, then unlock it // Lock the ring buffer, write to it, then unlock it
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE); xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE);
size_t bytes_written = this->audio_ring_buffer_->write_without_replacement((void *) data, length, ticks_to_wait); size_t bytes_written = this->audio_ring_buffer_->write_without_replacement((void *) data, size, ticks_to_wait);
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE); xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE);
return bytes_written; return bytes_written;
@ -225,164 +316,13 @@ size_t I2SAudioSpeaker::play(const uint8_t *data, size_t length, TickType_t tick
return 0; return 0;
} }
bool I2SAudioSpeaker::has_buffered_data() const { void I2SAudioSpeaker::stopping() {
if (this->audio_ring_buffer_ != nullptr) {
return this->audio_ring_buffer_->available() > 0;
}
return false;
}
void I2SAudioSpeaker::speaker_task(void *params) {
I2SAudioSpeaker *this_speaker = (I2SAudioSpeaker *) params;
uint32_t event_group_bits =
xEventGroupWaitBits(this_speaker->event_group_,
SpeakerEventGroupBits::COMMAND_START | SpeakerEventGroupBits::COMMAND_STOP |
SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY, // Bit message to read
pdTRUE, // Clear the bits on exit
pdFALSE, // Don't wait for all the bits,
portMAX_DELAY); // Block indefinitely until a bit is set
if (event_group_bits & (SpeakerEventGroupBits::COMMAND_STOP | SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY)) {
// Received a stop signal before the task was requested to start
this_speaker->delete_task_(0);
}
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_STARTING);
audio::AudioStreamInfo audio_stream_info = this_speaker->audio_stream_info_;
const ssize_t bytes_per_sample = audio_stream_info.get_bytes_per_sample();
const uint8_t number_of_channels = audio_stream_info.channels;
const size_t dma_buffers_size = FRAMES_IN_ALL_DMA_BUFFERS * bytes_per_sample * number_of_channels;
if (this_speaker->send_esp_err_to_event_group_(
this_speaker->allocate_buffers_(dma_buffers_size, RING_BUFFER_SAMPLES * bytes_per_sample))) {
// Failed to allocate buffers
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
this_speaker->delete_task_(dma_buffers_size);
}
if (this_speaker->send_esp_err_to_event_group_(this_speaker->start_i2s_driver_())) {
// Failed to start I2S driver
this_speaker->delete_task_(dma_buffers_size);
} else {
// Ring buffer is allocated, so indicate its can be written to
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE);
}
if (!this_speaker->send_esp_err_to_event_group_(this_speaker->reconfigure_i2s_stream_info_(audio_stream_info))) {
// Successfully set the I2S stream info, ready to write audio data to the I2S port
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_RUNNING);
bool stop_gracefully = false;
uint32_t last_data_received_time = millis();
while ((millis() - last_data_received_time) <= this_speaker->timeout_) {
event_group_bits = xEventGroupGetBits(this_speaker->event_group_);
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP) {
break;
}
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY) {
stop_gracefully = true;
}
size_t bytes_to_read = dma_buffers_size;
size_t bytes_read = this_speaker->audio_ring_buffer_->read((void *) this_speaker->data_buffer_, bytes_to_read,
pdMS_TO_TICKS(TASK_DELAY_MS));
if (bytes_read > 0) {
last_data_received_time = millis();
size_t bytes_written = 0;
if ((audio_stream_info.bits_per_sample == 16) && (this_speaker->q15_volume_factor_ < INT16_MAX)) {
// Scale samples by the volume factor in place
q15_multiplication((int16_t *) this_speaker->data_buffer_, (int16_t *) this_speaker->data_buffer_,
bytes_read / sizeof(int16_t), this_speaker->q15_volume_factor_);
}
if (audio_stream_info.bits_per_sample == (uint8_t) this_speaker->bits_per_sample_) {
i2s_write(this_speaker->parent_->get_port(), this_speaker->data_buffer_, bytes_read, &bytes_written,
portMAX_DELAY);
} else if (audio_stream_info.bits_per_sample < (uint8_t) this_speaker->bits_per_sample_) {
i2s_write_expand(this_speaker->parent_->get_port(), this_speaker->data_buffer_, bytes_read,
audio_stream_info.bits_per_sample, this_speaker->bits_per_sample_, &bytes_written,
portMAX_DELAY);
}
if (bytes_written != bytes_read) {
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE);
}
} else {
// No data received
if (stop_gracefully) {
break;
}
i2s_zero_dma_buffer(this_speaker->parent_->get_port());
}
}
} else {
// Couldn't configure the I2S port to be compatible with the incoming audio
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_INVALID_FORMAT);
}
i2s_zero_dma_buffer(this_speaker->parent_->get_port());
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_STOPPING);
i2s_stop(this_speaker->parent_->get_port());
i2s_driver_uninstall(this_speaker->parent_->get_port());
this_speaker->parent_->unlock();
this_speaker->delete_task_(dma_buffers_size);
}
void I2SAudioSpeaker::start() {
if (this->is_failed() || this->status_has_error())
return;
if ((this->state_ == speaker::STATE_STARTING) || (this->state_ == speaker::STATE_RUNNING))
return;
// prevent adding new data until the speaker has stopped.
if (!this->parent_->lock_component(this)) {
ESP_LOGE(TAG, "Cannot play audio, it being used by an other audio component.");
return;
}
if (this->speaker_task_handle_ == nullptr) {
xTaskCreate(I2SAudioSpeaker::speaker_task, "speaker_task", TASK_STACK_SIZE, (void *) this, TASK_PRIORITY,
&this->speaker_task_handle_);
}
if (this->speaker_task_handle_ != nullptr) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_START);
this->task_created_ = true;
} else {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START);
}
}
void I2SAudioSpeaker::stop() { this->stop_(false); }
void I2SAudioSpeaker::finish() { this->stop_(true); }
void I2SAudioSpeaker::stop_(bool wait_on_empty) {
if (this->is_failed()) if (this->is_failed())
return; return;
if (this->state_ == speaker::STATE_STOPPED) if (this->state_ == audio::STATE_STOPPED)
return; return;
if (this->parent_->is_compoment_locked(this))
return;
if (wait_on_empty) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY);
} else {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP); xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP);
} }
}
bool I2SAudioSpeaker::send_esp_err_to_event_group_(esp_err_t err) { bool I2SAudioSpeaker::send_esp_err_to_event_group_(esp_err_t err) {
switch (err) { switch (err) {
@ -406,27 +346,38 @@ bool I2SAudioSpeaker::send_esp_err_to_event_group_(esp_err_t err) {
} }
} }
esp_err_t I2SAudioSpeaker::allocate_buffers_(size_t data_buffer_size, size_t ring_buffer_size) { size_t I2SAudioSpeaker::get_dma_buffers_size() {
if (this->data_buffer_ == nullptr) { const ssize_t bytes_per_sample = this->audio_stream_info_.get_bytes_per_sample();
const uint8_t number_of_channels = this->audio_stream_info_.channels;
return FRAMES_IN_ALL_DMA_BUFFERS * bytes_per_sample * number_of_channels;
}
size_t I2SAudioSpeaker::get_ring_buffer_size() {
const ssize_t bytes_per_sample = this->audio_stream_info_.get_bytes_per_sample();
return RING_BUFFER_SAMPLES * bytes_per_sample;
}
bool I2SAudioSpeaker::allocate_buffers_() {
size_t data_buffer_size = this->get_dma_buffers_size();
size_t ring_buffer_size = this->get_ring_buffer_size();
if ((this->data_buffer_ != nullptr) || (this->audio_ring_buffer_ != nullptr)) {
return this->send_esp_err_to_event_group_(ESP_ERR_INVALID_STATE);
}
// Allocate data buffer for temporarily storing audio from the ring buffer before writing to the I2S bus // Allocate data buffer for temporarily storing audio from the ring buffer before writing to the I2S bus
ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE); ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE);
this->data_buffer_ = allocator.allocate(data_buffer_size); this->data_buffer_ = allocator.allocate(data_buffer_size);
}
if (this->data_buffer_ == nullptr) {
return ESP_ERR_NO_MEM;
}
if (this->audio_ring_buffer_ == nullptr) {
// Allocate ring buffer // Allocate ring buffer
this->audio_ring_buffer_ = RingBuffer::create(ring_buffer_size); this->audio_ring_buffer_ = RingBuffer::create(ring_buffer_size);
if ((this->data_buffer_ == nullptr) || (this->audio_ring_buffer_ == nullptr)) {
return this->send_esp_err_to_event_group_(ESP_ERR_NO_MEM);
} }
if (this->audio_ring_buffer_ == nullptr) { return true;
return ESP_ERR_NO_MEM;
}
return ESP_OK;
} }
esp_err_t I2SAudioSpeaker::start_i2s_driver_() { esp_err_t I2SAudioSpeaker::start_i2s_driver_() {
@ -487,6 +438,8 @@ esp_err_t I2SAudioSpeaker::start_i2s_driver_() {
// Failed to set the data out pin, so uninstall the driver and unlock the I2S port // Failed to set the data out pin, so uninstall the driver and unlock the I2S port
i2s_driver_uninstall(this->parent_->get_port()); i2s_driver_uninstall(this->parent_->get_port());
this->parent_->unlock(); this->parent_->unlock();
} else {
this->stream_created_ = true;
} }
return err; return err;
@ -516,7 +469,15 @@ esp_err_t I2SAudioSpeaker::reconfigure_i2s_stream_info_(audio::AudioStreamInfo &
return ESP_ERR_INVALID_ARG; return ESP_ERR_INVALID_ARG;
} }
void I2SAudioSpeaker::delete_task_(size_t buffer_size) { void I2SAudioSpeaker::delete_task_() {
if (this->stream_created_) {
i2s_zero_dma_buffer(this->parent_->get_port());
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPING);
i2s_stop(this->parent_->get_port());
i2s_driver_uninstall(this->parent_->get_port());
}
if (this->audio_ring_buffer_ != nullptr) { if (this->audio_ring_buffer_ != nullptr) {
xEventGroupWaitBits(this->event_group_, xEventGroupWaitBits(this->event_group_,
MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE, // Bit message to read MESSAGE_RING_BUFFER_AVAILABLE_TO_WRITE, // Bit message to read
@ -530,14 +491,16 @@ void I2SAudioSpeaker::delete_task_(size_t buffer_size) {
if (this->data_buffer_ != nullptr) { if (this->data_buffer_ != nullptr) {
ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE); ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE);
allocator.deallocate(this->data_buffer_, buffer_size); allocator.deallocate(this->data_buffer_, this->get_dma_buffers_size());
this->data_buffer_ = nullptr; this->data_buffer_ = nullptr;
} }
this->parent_->unlock();
if (this->speaker_task_handle_ != nullptr) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPED); xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPED);
vTaskDelete(this->speaker_task_handle_);
this->task_created_ = false; this->speaker_task_handle_ = nullptr;
vTaskDelete(nullptr); }
} }
} // namespace i2s_audio } // namespace i2s_audio

View file

@ -34,19 +34,6 @@ class I2SAudioSpeaker : public I2SAudioOut, public speaker::Speaker, public Comp
#endif #endif
void set_i2s_comm_fmt(i2s_comm_format_t mode) { this->i2s_comm_fmt_ = mode; } void set_i2s_comm_fmt(i2s_comm_format_t mode) { this->i2s_comm_fmt_ = mode; }
void start() override;
void stop() override;
void finish() override;
/// @brief Plays the provided audio data.
/// Starts the speaker task, if necessary. Writes the audio data to the ring buffer.
/// @param data Audio data in the format set by the parent speaker classes ``set_audio_stream_info`` method.
/// @param length The length of the audio data in bytes.
/// @param ticks_to_wait The FreeRTOS ticks to wait before writing as much data as possible to the ring buffer.
/// @return The number of bytes that were actually written to the ring buffer.
size_t play(const uint8_t *data, size_t length, TickType_t ticks_to_wait) override;
size_t play(const uint8_t *data, size_t length) override { return play(data, length, 0); }
bool has_buffered_data() const override; bool has_buffered_data() const override;
/// @brief Sets the volume of the speaker. Uses the speaker's configured audio dac component. If unavailble, it is /// @brief Sets the volume of the speaker. Uses the speaker's configured audio dac component. If unavailble, it is
@ -61,7 +48,26 @@ class I2SAudioSpeaker : public I2SAudioOut, public speaker::Speaker, public Comp
/// @param mute_state true for muting, false for unmuting /// @param mute_state true for muting, false for unmuting
void set_mute_state(bool mute_state) override; void set_mute_state(bool mute_state) override;
void get_default_audio_stream_info(audio::AudioStreamInfo &audio_stream_info) override;
size_t get_dma_buffers_size();
size_t get_ring_buffer_size();
protected: protected:
/// @brief Try to start the speaker .
/// @return The true when every thing was setup correctly.
bool starting(const audio::AudioStreamInfo &audio_stream_info) override;
/// @brief Sends a stop command to the speaker task via event_group_.
void stopping() override;
/// @brief Plays the provided audio data.
/// Starts the speaker task, if necessary. Writes the audio data to the ring buffer.
/// @param data Audio data in the format set by the parent speaker classes ``set_audio_stream_info`` method.
/// @param length The length of the audio data in bytes.
/// @param ticks_to_wait The FreeRTOS ticks to wait before writing as much data as possible to the ring buffer.
/// @return The number of bytes that were actually written to the ring buffer.
size_t streaming(const uint8_t *data, size_t size, TickType_t ticks_to_wait) override;
/// @brief Function for the FreeRTOS task handling audio output. /// @brief Function for the FreeRTOS task handling audio output.
/// After receiving the COMMAND_START signal, allocates space for the buffers, starts the I2S driver, and reads /// After receiving the COMMAND_START signal, allocates space for the buffers, starts the I2S driver, and reads
/// audio from the ring buffer and writes audio to the I2S port. Stops immmiately after receiving the COMMAND_STOP /// audio from the ring buffer and writes audio to the I2S port. Stops immmiately after receiving the COMMAND_STOP
@ -72,10 +78,6 @@ class I2SAudioSpeaker : public I2SAudioOut, public speaker::Speaker, public Comp
/// @param params I2SAudioSpeaker component /// @param params I2SAudioSpeaker component
static void speaker_task(void *params); static void speaker_task(void *params);
/// @brief Sends a stop command to the speaker task via event_group_.
/// @param wait_on_empty If false, sends the COMMAND_STOP signal. If true, sends the COMMAND_STOP_GRACEFULLY signal.
void stop_(bool wait_on_empty);
/// @brief Sets the corresponding ERR_ESP event group bits. /// @brief Sets the corresponding ERR_ESP event group bits.
/// @param err esp_err_t error code. /// @param err esp_err_t error code.
/// @return True if an ERR_ESP bit is set and false if err == ESP_OK /// @return True if an ERR_ESP bit is set and false if err == ESP_OK
@ -86,7 +88,7 @@ class I2SAudioSpeaker : public I2SAudioOut, public speaker::Speaker, public Comp
/// @param ring_buffer_size Number of bytes to allocate for the ring buffer. /// @param ring_buffer_size Number of bytes to allocate for the ring buffer.
/// @return ESP_ERR_NO_MEM if either buffer fails to allocate /// @return ESP_ERR_NO_MEM if either buffer fails to allocate
/// ESP_OK if successful /// ESP_OK if successful
esp_err_t allocate_buffers_(size_t data_buffer_size, size_t ring_buffer_size); bool allocate_buffers_();
/// @brief Starts the ESP32 I2S driver. /// @brief Starts the ESP32 I2S driver.
/// Attempts to lock the I2S port, starts the I2S driver, and sets the data out pin. If it fails, it will unlock /// Attempts to lock the I2S port, starts the I2S driver, and sets the data out pin. If it fails, it will unlock
@ -112,7 +114,7 @@ class I2SAudioSpeaker : public I2SAudioOut, public speaker::Speaker, public Comp
/// Deallocates the data_buffer_ and audio_ring_buffer_, if necessary, and deletes the task. Should only be called by /// Deallocates the data_buffer_ and audio_ring_buffer_, if necessary, and deletes the task. Should only be called by
/// the speaker_task itself. /// the speaker_task itself.
/// @param buffer_size The allocated size of the data_buffer_. /// @param buffer_size The allocated size of the data_buffer_.
void delete_task_(size_t buffer_size); void delete_task_();
TaskHandle_t speaker_task_handle_{nullptr}; TaskHandle_t speaker_task_handle_{nullptr};
EventGroupHandle_t event_group_{nullptr}; EventGroupHandle_t event_group_{nullptr};
@ -123,7 +125,7 @@ class I2SAudioSpeaker : public I2SAudioOut, public speaker::Speaker, public Comp
uint32_t timeout_; uint32_t timeout_;
uint8_t dout_pin_; uint8_t dout_pin_;
bool task_created_{false}; bool stream_created_{false};
int16_t q15_volume_factor_{INT16_MAX}; int16_t q15_volume_factor_{INT16_MAX};

View file

@ -191,6 +191,8 @@ void MicroWakeWord::stop() {
} }
void MicroWakeWord::set_state_(State state) { void MicroWakeWord::set_state_(State state) {
if (this->state_ == state)
return;
ESP_LOGD(TAG, "State changed from %s to %s", LOG_STR_ARG(micro_wake_word_state_to_string(this->state_)), ESP_LOGD(TAG, "State changed from %s to %s", LOG_STR_ARG(micro_wake_word_state_to_string(this->state_)),
LOG_STR_ARG(micro_wake_word_state_to_string(state))); LOG_STR_ARG(micro_wake_word_state_to_string(state)));
this->state_ = state; this->state_ = state;

View file

@ -16,8 +16,6 @@ static const uint16_t NOTES[] = {0, 262, 277, 294, 311, 330, 349, 370,
1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 1760, 1865, 1976, 2093, 2217, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 1760, 1865, 1976, 2093, 2217,
2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951}; 2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951};
static const uint16_t I2S_SPEED = 1000;
#undef HALF_PI #undef HALF_PI
static const double HALF_PI = 1.5707963267948966192313216916398; static const double HALF_PI = 1.5707963267948966192313216916398;
@ -145,23 +143,18 @@ void Rtttl::loop() {
#ifdef USE_SPEAKER #ifdef USE_SPEAKER
if (this->speaker_ != nullptr) { if (this->speaker_ != nullptr) {
if (this->state_ == State::STATE_STOPPING) { if (this->state_ == State::STATE_INIT) {
if (this->speaker_->is_stopped()) { if (this->speaker_->is_stopped()) {
this->set_state_(State::STATE_STOPPED); this->streamer_ = this->speaker_->start();
} if (this->streamer_ != nullptr)
} else if (this->state_ == State::STATE_INIT) {
if (this->speaker_->is_stopped()) {
this->speaker_->start();
this->set_state_(State::STATE_STARTING); this->set_state_(State::STATE_STARTING);
} }
} else if (this->state_ == State::STATE_STARTING) {
if (this->speaker_->is_running()) {
this->set_state_(State::STATE_RUNNING);
}
}
if (!this->speaker_->is_running()) {
return; return;
} }
if (!this->streamer_->is_running()) {
return;
}
this->set_state_(State::STATE_RUNNING);
if (this->samples_sent_ != this->samples_count_) { if (this->samples_sent_ != this->samples_count_) {
SpeakerSample sample[SAMPLE_BUFFER_SIZE + 2]; SpeakerSample sample[SAMPLE_BUFFER_SIZE + 2];
int x = 0; int x = 0;
@ -190,7 +183,7 @@ void Rtttl::loop() {
x++; x++;
} }
if (x > 0) { if (x > 0) {
int send = this->speaker_->play((uint8_t *) (&sample), x * 2); int send = this->streamer_->stream((uint8_t *) (&sample), x * 2);
if (send != x * 4) { if (send != x * 4) {
this->samples_sent_ -= (x - (send / 2)); this->samples_sent_ -= (x - (send / 2));
} }
@ -318,9 +311,9 @@ void Rtttl::loop() {
this->samples_sent_ = 0; this->samples_sent_ = 0;
this->samples_gap_ = 0; this->samples_gap_ = 0;
this->samples_per_wave_ = 0; this->samples_per_wave_ = 0;
this->samples_count_ = (this->sample_rate_ * this->note_duration_) / 1600; //(ms); this->samples_count_ = (this->sample_rate_ * this->note_duration_) / 1000; //(ms);
if (need_note_gap) { if (need_note_gap) {
this->samples_gap_ = (this->sample_rate_ * DOUBLE_NOTE_GAP_MS) / 1600; //(ms); this->samples_gap_ = (this->sample_rate_ * DOUBLE_NOTE_GAP_MS) / 1000; //(ms);
} }
if (this->output_freq_ != 0) { if (this->output_freq_ != 0) {
// make sure there is enough samples to add a full last sinus. // make sure there is enough samples to add a full last sinus.
@ -346,22 +339,15 @@ void Rtttl::finish_() {
#ifdef USE_OUTPUT #ifdef USE_OUTPUT
if (this->output_ != nullptr) { if (this->output_ != nullptr) {
this->output_->set_level(0.0); this->output_->set_level(0.0);
this->set_state_(State::STATE_STOPPED);
} }
#endif #endif
#ifdef USE_SPEAKER #ifdef USE_SPEAKER
if (this->speaker_ != nullptr) { if (this->speaker_ != nullptr && this->streamer_ != nullptr) {
SpeakerSample sample[2]; delete this->streamer_;
sample[0].left = 0; this->streamer_ = nullptr;
sample[0].right = 0;
sample[1].left = 0;
sample[1].right = 0;
this->speaker_->play((uint8_t *) (&sample), 8);
this->speaker_->finish();
this->set_state_(State::STATE_STOPPING);
} }
#endif #endif
this->set_state_(State::STATE_STOPPED);
this->note_duration_ = 0; this->note_duration_ = 0;
this->on_finished_playback_callback_.call(); this->on_finished_playback_callback_.call();
ESP_LOGD(TAG, "Playback finished"); ESP_LOGD(TAG, "Playback finished");

View file

@ -8,6 +8,7 @@
#endif #endif
#ifdef USE_SPEAKER #ifdef USE_SPEAKER
#include "esphome/components/audio/audio.h"
#include "esphome/components/speaker/speaker.h" #include "esphome/components/speaker/speaker.h"
#endif #endif
@ -87,6 +88,7 @@ class Rtttl : public Component {
#ifdef USE_SPEAKER #ifdef USE_SPEAKER
speaker::Speaker *speaker_{nullptr}; speaker::Speaker *speaker_{nullptr};
audio::AudioStreamer *streamer_{nullptr};
int sample_rate_{16000}; int sample_rate_{16000};
int samples_per_wave_{0}; int samples_per_wave_{0};
int samples_sent_{0}; int samples_sent_{0};

View file

@ -95,9 +95,6 @@ async def speaker_play_action(config, action_id, template_arg, args):
automation.register_action("speaker.stop", StopAction, SPEAKER_AUTOMATION_SCHEMA)( automation.register_action("speaker.stop", StopAction, SPEAKER_AUTOMATION_SCHEMA)(
speaker_action speaker_action
) )
automation.register_action("speaker.finish", FinishAction, SPEAKER_AUTOMATION_SCHEMA)(
speaker_action
)
automation.register_condition( automation.register_condition(
"speaker.is_playing", IsPlayingCondition, SPEAKER_AUTOMATION_SCHEMA "speaker.is_playing", IsPlayingCondition, SPEAKER_AUTOMATION_SCHEMA

View file

@ -20,12 +20,14 @@ template<typename... Ts> class PlayAction : public Action<Ts...>, public Parente
} }
void play(Ts... x) override { void play(Ts... x) override {
if (this->static_) {
this->parent_->play(this->data_static_);
} else {
auto val = this->data_func_(x...); auto val = this->data_func_(x...);
this->parent_->play(val);
if (!this->static_) {
val = this->data_func_(x...);
} }
auto streamer = this->parent_->start();
streamer->stream(val);
delete streamer;
} }
protected: protected:
@ -64,11 +66,6 @@ template<typename... Ts> class StopAction : public Action<Ts...>, public Parente
void play(Ts... x) override { this->parent_->stop(); } void play(Ts... x) override { this->parent_->stop(); }
}; };
template<typename... Ts> class FinishAction : public Action<Ts...>, public Parented<Speaker> {
public:
void play(Ts... x) override { this->parent_->finish(); }
};
template<typename... Ts> class IsPlayingCondition : public Condition<Ts...>, public Parented<Speaker> { template<typename... Ts> class IsPlayingCondition : public Condition<Ts...>, public Parented<Speaker> {
public: public:
bool check(Ts... x) override { return this->parent_->is_running(); } bool check(Ts... x) override { return this->parent_->is_running(); }

View file

@ -18,49 +18,13 @@
namespace esphome { namespace esphome {
namespace speaker { namespace speaker {
enum State : uint8_t { using AudioStreamer = audio::AudioStreamer;
STATE_STOPPED = 0, using State = audio::State;
STATE_STARTING,
STATE_RUNNING,
STATE_STOPPING,
};
class Speaker { class Speaker : public audio::AudioListener {
public: public:
#ifdef USE_ESP32
/// @brief Plays the provided audio data.
/// If the speaker component doesn't implement this method, it falls back to the play method without this parameter.
/// @param data Audio data in the format specified by ``set_audio_stream_info`` method.
/// @param length The length of the audio data in bytes.
/// @param ticks_to_wait The FreeRTOS ticks to wait before writing as much data as possible to the ring buffer.
/// @return The number of bytes that were actually written to the speaker's internal buffer.
virtual size_t play(const uint8_t *data, size_t length, TickType_t ticks_to_wait) {
return this->play(data, length);
};
#endif
/// @brief Plays the provided audio data.
/// If the audio stream is not the default defined in "esphome/core/audio.h" and the speaker component implements it,
/// then this should be called after calling ``set_audio_stream_info``.
/// @param data Audio data in the format specified by ``set_audio_stream_info`` method.
/// @param length The length of the audio data in bytes.
/// @return The number of bytes that were actually written to the speaker's internal buffer.
virtual size_t play(const uint8_t *data, size_t length) = 0;
size_t play(const std::vector<uint8_t> &data) { return this->play(data.data(), data.size()); }
virtual void start() = 0;
virtual void stop() = 0;
// In compare between *STOP()* and *FINISH()*; *FINISH()* will stop after emptying the play buffer,
// while *STOP()* will break directly.
// When finish() is not implemented on the platform component it should just do a normal stop.
virtual void finish() { this->stop(); }
virtual bool has_buffered_data() const = 0; virtual bool has_buffered_data() const = 0;
bool is_running() const { return this->state_ == STATE_RUNNING; }
bool is_stopped() const { return this->state_ == STATE_STOPPED; }
// Volume control is handled by a configured audio dac component. Individual speaker components can // Volume control is handled by a configured audio dac component. Individual speaker components can
// override and implement in software if an audio dac isn't available. // override and implement in software if an audio dac isn't available.
virtual void set_volume(float volume) { virtual void set_volume(float volume) {
@ -91,13 +55,7 @@ class Speaker {
void set_audio_dac(audio_dac::AudioDac *audio_dac) { this->audio_dac_ = audio_dac; } void set_audio_dac(audio_dac::AudioDac *audio_dac) { this->audio_dac_ = audio_dac; }
#endif #endif
void set_audio_stream_info(const audio::AudioStreamInfo &audio_stream_info) {
this->audio_stream_info_ = audio_stream_info;
}
protected: protected:
State state_{STATE_STOPPED};
audio::AudioStreamInfo audio_stream_info_;
float volume_{1.0f}; float volume_{1.0f};
bool mute_state_{false}; bool mute_state_{false};