[udp] Implement UDP sensor broadcast (#6865)
Some checks failed
CI / Create common environment (push) Has been cancelled
YAML lint / yamllint (push) Has been cancelled
CI / Check black (push) Has been cancelled
CI / Check flake8 (push) Has been cancelled
CI / Check pylint (push) Has been cancelled
CI / Check pyupgrade (push) Has been cancelled
CI / Run script/ci-custom (push) Has been cancelled
CI / Run pytest (macOS-latest, 3.11) (push) Has been cancelled
CI / Run pytest (ubuntu-latest, 3.10) (push) Has been cancelled
CI / Run pytest (ubuntu-latest, 3.11) (push) Has been cancelled
CI / Run pytest (ubuntu-latest, 3.12) (push) Has been cancelled
CI / Run pytest (ubuntu-latest, 3.9) (push) Has been cancelled
CI / Run pytest (windows-latest, 3.11) (push) Has been cancelled
CI / Check clang-format (push) Has been cancelled
CI / Run script/clang-tidy for ESP32 Arduino 1/4 (push) Has been cancelled
CI / Run script/clang-tidy for ESP32 Arduino 2/4 (push) Has been cancelled
CI / Run script/clang-tidy for ESP32 Arduino 3/4 (push) Has been cancelled
CI / Run script/clang-tidy for ESP32 Arduino 4/4 (push) Has been cancelled
CI / Run script/clang-tidy for ESP32 IDF (push) Has been cancelled
CI / Run script/clang-tidy for ESP8266 (push) Has been cancelled
CI / list-components (push) Has been cancelled
CI / Component test ${{ matrix.file }} (push) Has been cancelled
CI / Split components for testing into 20 groups maximum (push) Has been cancelled
CI / Test split components (push) Has been cancelled
CI / CI Status (push) Has been cancelled

Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
Co-authored-by: clydebarrow <366188+clydebarrow@users.noreply.github.com>
This commit is contained in:
Clyde Stubbs 2024-08-30 18:59:55 +10:00 committed by GitHub
parent 721b532d71
commit ba6963cf72
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 1033 additions and 0 deletions

View file

@ -423,6 +423,7 @@ esphome/components/tuya/switch/* @jesserockz
esphome/components/tuya/text_sensor/* @dentra
esphome/components/uart/* @esphome/core
esphome/components/uart/button/* @ssieb
esphome/components/udp/* @clydebarrow
esphome/components/ufire_ec/* @pvizeli
esphome/components/ufire_ise/* @pvizeli
esphome/components/ultrasonic/* @OttoWinter

View file

@ -0,0 +1,158 @@
import hashlib
import esphome.codegen as cg
from esphome.components.api import CONF_ENCRYPTION
from esphome.components.binary_sensor import BinarySensor
from esphome.components.sensor import Sensor
import esphome.config_validation as cv
from esphome.const import (
CONF_BINARY_SENSORS,
CONF_ID,
CONF_INTERNAL,
CONF_KEY,
CONF_NAME,
CONF_PORT,
CONF_SENSORS,
)
from esphome.cpp_generator import MockObjClass
CODEOWNERS = ["@clydebarrow"]
DEPENDENCIES = ["network"]
AUTO_LOAD = ["socket"]
MULTI_CONF = True
udp_ns = cg.esphome_ns.namespace("udp")
UDPComponent = udp_ns.class_("UDPComponent", cg.PollingComponent)
CONF_BROADCAST = "broadcast"
CONF_BROADCAST_ID = "broadcast_id"
CONF_ADDRESSES = "addresses"
CONF_PROVIDER = "provider"
CONF_PROVIDERS = "providers"
CONF_REMOTE_ID = "remote_id"
CONF_UDP_ID = "udp_id"
CONF_PING_PONG_ENABLE = "ping_pong_enable"
CONF_PING_PONG_RECYCLE_TIME = "ping_pong_recycle_time"
CONF_ROLLING_CODE_ENABLE = "rolling_code_enable"
def sensor_validation(cls: MockObjClass):
return cv.maybe_simple_value(
cv.Schema(
{
cv.Required(CONF_ID): cv.use_id(cls),
cv.Optional(CONF_BROADCAST_ID): cv.validate_id_name,
}
),
key=CONF_ID,
)
ENCRYPTION_SCHEMA = {
cv.Optional(CONF_ENCRYPTION): cv.maybe_simple_value(
cv.Schema(
{
cv.Required(CONF_KEY): cv.string,
}
),
key=CONF_KEY,
)
}
PROVIDER_SCHEMA = cv.Schema(
{
cv.Required(CONF_NAME): cv.valid_name,
}
).extend(ENCRYPTION_SCHEMA)
def validate_(config):
if CONF_ENCRYPTION in config:
if CONF_SENSORS not in config and CONF_BINARY_SENSORS not in config:
raise cv.Invalid("No sensors or binary sensors to encrypt")
elif config[CONF_ROLLING_CODE_ENABLE]:
raise cv.Invalid("Rolling code requires an encryption key")
if config[CONF_PING_PONG_ENABLE]:
if not any(CONF_ENCRYPTION in p for p in config.get(CONF_PROVIDERS) or ()):
raise cv.Invalid("Ping-pong requires at least one encrypted provider")
return config
CONFIG_SCHEMA = cv.All(
cv.polling_component_schema("15s")
.extend(
{
cv.GenerateID(): cv.declare_id(UDPComponent),
cv.Optional(CONF_PORT, default=18511): cv.port,
cv.Optional(CONF_ADDRESSES, default=["255.255.255.255"]): cv.ensure_list(
cv.ipv4
),
cv.Optional(CONF_ROLLING_CODE_ENABLE, default=False): cv.boolean,
cv.Optional(CONF_PING_PONG_ENABLE, default=False): cv.boolean,
cv.Optional(
CONF_PING_PONG_RECYCLE_TIME, default="600s"
): cv.positive_time_period_seconds,
cv.Optional(CONF_SENSORS): cv.ensure_list(sensor_validation(Sensor)),
cv.Optional(CONF_BINARY_SENSORS): cv.ensure_list(
sensor_validation(BinarySensor)
),
cv.Optional(CONF_PROVIDERS): cv.ensure_list(PROVIDER_SCHEMA),
},
)
.extend(ENCRYPTION_SCHEMA),
validate_,
)
SENSOR_SCHEMA = cv.Schema(
{
cv.Optional(CONF_REMOTE_ID): cv.string_strict,
cv.Required(CONF_PROVIDER): cv.valid_name,
cv.GenerateID(CONF_UDP_ID): cv.use_id(UDPComponent),
}
)
def require_internal_with_name(config):
if CONF_NAME in config and CONF_INTERNAL not in config:
raise cv.Invalid("Must provide internal: config when using name:")
return config
def hash_encryption_key(config: dict):
return list(hashlib.sha256(config[CONF_KEY].encode()).digest())
async def to_code(config):
cg.add_define("USE_UDP")
cg.add_global(udp_ns.using)
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
cg.add(var.set_port(config[CONF_PORT]))
cg.add(var.set_rolling_code_enable(config[CONF_ROLLING_CODE_ENABLE]))
cg.add(var.set_ping_pong_enable(config[CONF_PING_PONG_ENABLE]))
cg.add(
var.set_ping_pong_recycle_time(
config[CONF_PING_PONG_RECYCLE_TIME].total_seconds
)
)
for sens_conf in config.get(CONF_SENSORS, ()):
sens_id = sens_conf[CONF_ID]
sensor = await cg.get_variable(sens_id)
bcst_id = sens_conf.get(CONF_BROADCAST_ID, sens_id.id)
cg.add(var.add_sensor(bcst_id, sensor))
for sens_conf in config.get(CONF_BINARY_SENSORS, ()):
sens_id = sens_conf[CONF_ID]
sensor = await cg.get_variable(sens_id)
bcst_id = sens_conf.get(CONF_BROADCAST_ID, sens_id.id)
cg.add(var.add_binary_sensor(bcst_id, sensor))
for address in config[CONF_ADDRESSES]:
cg.add(var.add_address(str(address)))
if encryption := config.get(CONF_ENCRYPTION):
cg.add(var.set_encryption_key(hash_encryption_key(encryption)))
for provider in config.get(CONF_PROVIDERS, ()):
name = provider[CONF_NAME]
cg.add(var.add_provider(name))
if encryption := provider.get(CONF_ENCRYPTION):
cg.add(var.set_provider_encryption(name, hash_encryption_key(encryption)))

View file

@ -0,0 +1,27 @@
import esphome.codegen as cg
from esphome.components import binary_sensor
from esphome.config_validation import All, has_at_least_one_key
from esphome.const import CONF_ID
from . import (
CONF_PROVIDER,
CONF_REMOTE_ID,
CONF_UDP_ID,
SENSOR_SCHEMA,
require_internal_with_name,
)
DEPENDENCIES = ["udp"]
CONFIG_SCHEMA = All(
binary_sensor.binary_sensor_schema().extend(SENSOR_SCHEMA),
has_at_least_one_key(CONF_ID, CONF_REMOTE_ID),
require_internal_with_name,
)
async def to_code(config):
var = await binary_sensor.new_binary_sensor(config)
comp = await cg.get_variable(config[CONF_UDP_ID])
remote_id = str(config.get(CONF_REMOTE_ID) or config.get(CONF_ID))
cg.add(comp.add_remote_binary_sensor(config[CONF_PROVIDER], remote_id, var))

View file

@ -0,0 +1,27 @@
import esphome.codegen as cg
from esphome.components.sensor import new_sensor, sensor_schema
from esphome.config_validation import All, has_at_least_one_key
from esphome.const import CONF_ID
from . import (
CONF_PROVIDER,
CONF_REMOTE_ID,
CONF_UDP_ID,
SENSOR_SCHEMA,
require_internal_with_name,
)
DEPENDENCIES = ["udp"]
CONFIG_SCHEMA = All(
sensor_schema().extend(SENSOR_SCHEMA),
has_at_least_one_key(CONF_ID, CONF_REMOTE_ID),
require_internal_with_name,
)
async def to_code(config):
var = await new_sensor(config)
comp = await cg.get_variable(config[CONF_UDP_ID])
remote_id = str(config.get(CONF_REMOTE_ID) or config.get(CONF_ID))
cg.add(comp.add_remote_sensor(config[CONF_PROVIDER], remote_id, var))

View file

@ -0,0 +1,616 @@
#include "esphome/core/log.h"
#include "esphome/core/application.h"
#include "esphome/components/network/util.h"
#include "udp_component.h"
namespace esphome {
namespace udp {
/**
* Structure of a data packet; everything is little-endian
*
* --- In clear text ---
* MAGIC_NUMBER: 16 bits
* host name length: 1 byte
* host name: (length) bytes
* padding: 0 or more null bytes to a 4 byte boundary
*
* --- Encrypted (if key set) ----
* DATA_KEY: 1 byte: OR ROLLING_CODE_KEY:
* Rolling code (if enabled): 8 bytes
* Ping keys: if any
* repeat:
* PING_KEY: 1 byte
* ping code: 4 bytes
* Sensors:
* repeat:
* SENSOR_KEY: 1 byte
* float value: 4 bytes
* name length: 1 byte
* name
* Binary Sensors:
* repeat:
* BINARY_SENSOR_KEY: 1 byte
* bool value: 1 bytes
* name length: 1 byte
* name
*
* Padded to a 4 byte boundary with nulls
*
* Structure of a ping request packet:
* --- In clear text ---
* MAGIC_PING: 16 bits
* host name length: 1 byte
* host name: (length) bytes
* Ping key (4 bytes)
*
*/
static const char *const TAG = "udp";
/**
* XXTEA implementation, using 256 bit key.
*/
static const uint32_t DELTA = 0x9e3779b9;
#define MX ((((z >> 5) ^ (y << 2)) + ((y >> 3) ^ (z << 4))) ^ ((sum ^ y) + (k[(p ^ e) & 7] ^ z)))
/**
* Encrypt a block of data in-place
*/
static void xxtea_encrypt(uint32_t *v, size_t n, const uint32_t *k) {
uint32_t z, y, sum, e;
size_t p;
size_t q = 6 + 52 / n;
sum = 0;
z = v[n - 1];
while (q-- != 0) {
sum += DELTA;
e = (sum >> 2);
for (p = 0; p != n - 1; p++) {
y = v[p + 1];
z = v[p] += MX;
}
y = v[0];
z = v[n - 1] += MX;
}
}
static void xxtea_decrypt(uint32_t *v, size_t n, const uint32_t *k) {
uint32_t z, y, sum, e;
size_t p;
size_t q = 6 + 52 / n;
sum = q * DELTA;
y = v[0];
while (q-- != 0) {
e = (sum >> 2);
for (p = n - 1; p != 0; p--) {
z = v[p - 1];
y = v[p] -= MX;
}
z = v[n - 1];
y = v[0] -= MX;
sum -= DELTA;
}
}
inline static size_t round4(size_t value) { return (value + 3) & ~3; }
union FuData {
uint32_t u32;
float f32;
};
static const size_t MAX_PACKET_SIZE = 508;
static const uint16_t MAGIC_NUMBER = 0x4553;
static const uint16_t MAGIC_PING = 0x5048;
static const uint32_t PREF_HASH = 0x45535043;
enum DataKey {
ZERO_FILL_KEY,
DATA_KEY,
SENSOR_KEY,
BINARY_SENSOR_KEY,
PING_KEY,
ROLLING_CODE_KEY,
};
static const size_t MAX_PING_KEYS = 4;
static inline void add(std::vector<uint8_t> &vec, uint32_t data) {
vec.push_back(data & 0xFF);
vec.push_back((data >> 8) & 0xFF);
vec.push_back((data >> 16) & 0xFF);
vec.push_back((data >> 24) & 0xFF);
}
static inline uint32_t get_uint32(uint8_t *&buf) {
uint32_t data = *buf++;
data += *buf++ << 8;
data += *buf++ << 16;
data += *buf++ << 24;
return data;
}
static inline uint16_t get_uint16(uint8_t *&buf) {
uint16_t data = *buf++;
data += *buf++ << 8;
return data;
}
static inline void add(std::vector<uint8_t> &vec, uint8_t data) { vec.push_back(data); }
static inline void add(std::vector<uint8_t> &vec, uint16_t data) {
vec.push_back((uint8_t) data);
vec.push_back((uint8_t) (data >> 8));
}
static inline void add(std::vector<uint8_t> &vec, DataKey data) { vec.push_back(data); }
static void add(std::vector<uint8_t> &vec, const char *str) {
auto len = strlen(str);
vec.push_back(len);
for (size_t i = 0; i != len; i++) {
vec.push_back(*str++);
}
}
void UDPComponent::setup() {
this->name_ = App.get_name().c_str();
if (strlen(this->name_) > 255) {
this->mark_failed();
this->status_set_error("Device name exceeds 255 chars");
return;
}
this->resend_ping_key_ = this->ping_pong_enable_;
// restore the upper 32 bits of the rolling code, increment and save.
this->pref_ = global_preferences->make_preference<uint32_t>(PREF_HASH, true);
this->pref_.load(&this->rolling_code_[1]);
this->rolling_code_[1]++;
this->pref_.save(&this->rolling_code_[1]);
this->ping_key_ = random_uint32();
ESP_LOGV(TAG, "Rolling code incremented, upper part now %u", (unsigned) this->rolling_code_[1]);
#ifdef USE_SENSOR
for (auto &sensor : this->sensors_) {
sensor.sensor->add_on_state_callback([this, &sensor](float x) {
this->updated_ = true;
sensor.updated = true;
});
}
#endif
#ifdef USE_BINARY_SENSOR
for (auto &sensor : this->binary_sensors_) {
sensor.sensor->add_on_state_callback([this, &sensor](bool value) {
this->updated_ = true;
sensor.updated = true;
});
}
#endif
this->should_send_ = this->ping_pong_enable_;
#ifdef USE_SENSOR
this->should_send_ |= !this->sensors_.empty();
#endif
#ifdef USE_BINARY_SENSOR
this->should_send_ |= !this->binary_sensors_.empty();
#endif
this->should_listen_ = !this->providers_.empty() || this->is_encrypted_();
// initialise the header. This is invariant.
add(this->header_, MAGIC_NUMBER);
add(this->header_, this->name_);
// pad to a multiple of 4 bytes
while (this->header_.size() & 0x3)
this->header_.push_back(0);
#if defined(USE_SOCKET_IMPL_BSD_SOCKETS) || defined(USE_SOCKET_IMPL_LWIP_SOCKETS)
for (const auto &address : this->addresses_) {
struct sockaddr saddr {};
socket::set_sockaddr(&saddr, sizeof(saddr), address, this->port_);
this->sockaddrs_.push_back(saddr);
}
// set up broadcast socket
if (this->should_send_) {
this->broadcast_socket_ = socket::socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (this->broadcast_socket_ == nullptr) {
this->mark_failed();
this->status_set_error("Could not create socket");
return;
}
int enable = 1;
auto err = this->broadcast_socket_->setsockopt(SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int));
if (err != 0) {
this->status_set_warning("Socket unable to set reuseaddr");
// we can still continue
}
err = this->broadcast_socket_->setsockopt(SOL_SOCKET, SO_BROADCAST, &enable, sizeof(int));
if (err != 0) {
this->status_set_warning("Socket unable to set broadcast");
}
}
// create listening socket if we either want to subscribe to providers, or need to listen
// for ping key broadcasts.
if (this->should_listen_) {
this->listen_socket_ = socket::socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (this->listen_socket_ == nullptr) {
this->mark_failed();
this->status_set_error("Could not create socket");
return;
}
auto err = this->listen_socket_->setblocking(false);
if (err < 0) {
ESP_LOGE(TAG, "Unable to set nonblocking: errno %d", errno);
this->mark_failed();
this->status_set_error("Unable to set nonblocking");
return;
}
int enable = 1;
err = this->listen_socket_->setsockopt(SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable));
if (err != 0) {
this->status_set_warning("Socket unable to set reuseaddr");
// we can still continue
}
struct sockaddr_in server {};
socklen_t sl = socket::set_sockaddr_any((struct sockaddr *) &server, sizeof(server), this->port_);
if (sl == 0) {
ESP_LOGE(TAG, "Socket unable to set sockaddr: errno %d", errno);
this->mark_failed();
this->status_set_error("Unable to set sockaddr");
return;
}
err = this->listen_socket_->bind((struct sockaddr *) &server, sizeof(server));
if (err != 0) {
ESP_LOGE(TAG, "Socket unable to bind: errno %d", errno);
this->mark_failed();
this->status_set_error("Unable to bind socket");
return;
}
}
#else
// 8266 and RP2040 `Duino
for (const auto &address : this->addresses_) {
auto ipaddr = IPAddress();
ipaddr.fromString(address.c_str());
this->ipaddrs_.push_back(ipaddr);
}
if (this->should_listen_)
this->udp_client_.begin(this->port_);
#endif
}
void UDPComponent::init_data_() {
this->data_.clear();
if (this->rolling_code_enable_) {
add(this->data_, ROLLING_CODE_KEY);
add(this->data_, this->rolling_code_[0]);
add(this->data_, this->rolling_code_[1]);
this->increment_code_();
} else {
add(this->data_, DATA_KEY);
}
for (auto pkey : this->ping_keys_) {
add(this->data_, PING_KEY);
add(this->data_, pkey.second);
}
}
void UDPComponent::flush_() {
if (!network::is_connected() || this->data_.empty())
return;
uint32_t buffer[MAX_PACKET_SIZE / 4];
memset(buffer, 0, sizeof buffer);
// len must be a multiple of 4
auto header_len = round4(this->header_.size()) / 4;
auto len = round4(data_.size()) / 4;
memcpy(buffer, this->header_.data(), this->header_.size());
memcpy(buffer + header_len, this->data_.data(), this->data_.size());
if (this->is_encrypted_()) {
xxtea_encrypt(buffer + header_len, len, (uint32_t *) this->encryption_key_.data());
}
auto total_len = (header_len + len) * 4;
this->send_packet_(buffer, total_len);
}
void UDPComponent::add_binary_data_(uint8_t key, const char *id, bool data) {
auto len = 1 + 1 + 1 + strlen(id);
if (len + this->header_.size() + this->data_.size() > MAX_PACKET_SIZE) {
this->flush_();
}
add(this->data_, key);
add(this->data_, (uint8_t) data);
add(this->data_, id);
}
void UDPComponent::add_data_(uint8_t key, const char *id, float data) {
FuData udata{.f32 = data};
this->add_data_(key, id, udata.u32);
}
void UDPComponent::add_data_(uint8_t key, const char *id, uint32_t data) {
auto len = 4 + 1 + 1 + strlen(id);
if (len + this->header_.size() + this->data_.size() > MAX_PACKET_SIZE) {
this->flush_();
}
add(this->data_, key);
add(this->data_, data);
add(this->data_, id);
}
void UDPComponent::send_data_(bool all) {
if (!this->should_send_ || !network::is_connected())
return;
this->init_data_();
#ifdef USE_SENSOR
for (auto &sensor : this->sensors_) {
if (all || sensor.updated) {
sensor.updated = false;
this->add_data_(SENSOR_KEY, sensor.id, sensor.sensor->get_state());
}
}
#endif
#ifdef USE_BINARY_SENSOR
for (auto &sensor : this->binary_sensors_) {
if (all || sensor.updated) {
sensor.updated = false;
this->add_binary_data_(BINARY_SENSOR_KEY, sensor.id, sensor.sensor->state);
}
}
#endif
this->flush_();
this->updated_ = false;
this->resend_data_ = false;
}
void UDPComponent::update() {
this->updated_ = true;
this->resend_data_ = this->should_send_;
auto now = millis() / 1000;
if (this->last_key_time_ + this->ping_pong_recyle_time_ < now) {
this->resend_ping_key_ = this->ping_pong_enable_;
this->last_key_time_ = now;
}
}
void UDPComponent::loop() {
uint8_t buf[MAX_PACKET_SIZE];
if (this->should_listen_) {
for (;;) {
#if defined(USE_SOCKET_IMPL_BSD_SOCKETS) || defined(USE_SOCKET_IMPL_LWIP_SOCKETS)
auto len = this->listen_socket_->read(buf, sizeof(buf));
#else
auto len = this->udp_client_.parsePacket();
if (len > 0)
len = this->udp_client_.read(buf, sizeof(buf));
#endif
if (len > 0) {
this->process_(buf, len);
continue;
}
break;
}
}
if (this->resend_ping_key_)
this->send_ping_pong_request_();
if (this->updated_) {
this->send_data_(this->resend_data_);
}
}
void UDPComponent::add_key_(const char *name, uint32_t key) {
if (!this->is_encrypted_())
return;
if (this->ping_keys_.count(name) == 0 && this->ping_keys_.size() == MAX_PING_KEYS) {
ESP_LOGW(TAG, "Ping key from %s discarded", name);
return;
}
this->ping_keys_[name] = key;
this->resend_data_ = true;
ESP_LOGV(TAG, "Ping key from %s now %X", name, (unsigned) key);
}
void UDPComponent::process_ping_request_(const char *name, uint8_t *ptr, size_t len) {
if (len != 4) {
ESP_LOGW(TAG, "Bad ping request");
return;
}
auto key = get_uint32(ptr);
this->add_key_(name, key);
ESP_LOGV(TAG, "Updated ping key for %s to %08X", name, (unsigned) key);
}
static bool process_rolling_code(Provider &provider, uint8_t *&buf, const uint8_t *end) {
if (end - buf < 8)
return false;
auto code0 = get_uint32(buf);
auto code1 = get_uint32(buf);
if (code1 < provider.last_code[1] || (code1 == provider.last_code[1] && code0 <= provider.last_code[0])) {
ESP_LOGW(TAG, "Rolling code for %s %08lX:%08lX is old", provider.name, (unsigned long) code1,
(unsigned long) code0);
return false;
}
provider.last_code[0] = code0;
provider.last_code[1] = code1;
return true;
}
/**
* Process a received packet
*/
void UDPComponent::process_(uint8_t *buf, const size_t len) {
auto ping_key_seen = !this->ping_pong_enable_;
if (len < 8) {
return ESP_LOGV(TAG, "Bad length %zu", len);
}
char namebuf[256]{};
uint8_t byte;
uint8_t *start_ptr = buf;
const uint8_t *end = buf + len;
FuData rdata{};
auto magic = get_uint16(buf);
if (magic != MAGIC_NUMBER && magic != MAGIC_PING)
return ESP_LOGV(TAG, "Bad magic %X", magic);
auto hlen = *buf++;
if (hlen > len - 3) {
return ESP_LOGV(TAG, "Bad hostname length %u > %zu", hlen, len - 3);
}
memcpy(namebuf, buf, hlen);
if (strcmp(this->name_, namebuf) == 0) {
return ESP_LOGV(TAG, "Ignoring our own data");
}
buf += hlen;
if (magic == MAGIC_PING)
return this->process_ping_request_(namebuf, buf, end - buf);
if (round4(len) != len) {
return ESP_LOGW(TAG, "Bad length %zu", len);
}
hlen = round4(hlen + 3);
buf = start_ptr + hlen;
if (buf == end) {
return ESP_LOGV(TAG, "No data after header");
}
if (this->providers_.count(namebuf) == 0) {
return ESP_LOGVV(TAG, "Unknown hostname %s", namebuf);
}
auto &provider = this->providers_[namebuf];
// if encryption not used with this host, ping check is pointless since it would be easily spoofed.
if (provider.encryption_key.empty())
ping_key_seen = true;
ESP_LOGV(TAG, "Found hostname %s", namebuf);
#ifdef USE_SENSOR
auto &sensors = this->remote_sensors_[namebuf];
#endif
#ifdef USE_BINARY_SENSOR
auto &binary_sensors = this->remote_binary_sensors_[namebuf];
#endif
if (!provider.encryption_key.empty()) {
xxtea_decrypt((uint32_t *) buf, (end - buf) / 4, (uint32_t *) provider.encryption_key.data());
}
byte = *buf++;
if (byte == ROLLING_CODE_KEY) {
if (!process_rolling_code(provider, buf, end))
return;
} else if (byte != DATA_KEY) {
return ESP_LOGV(TAG, "Expected rolling_key or data_key, got %X", byte);
}
while (buf < end) {
byte = *buf++;
if (byte == ZERO_FILL_KEY)
continue;
if (byte == PING_KEY) {
if (end - buf < 4) {
return ESP_LOGV(TAG, "PING_KEY requires 4 more bytes");
}
auto key = get_uint32(buf);
if (key == this->ping_key_) {
ping_key_seen = true;
ESP_LOGV(TAG, "Found good ping key %X", (unsigned) key);
} else {
ESP_LOGV(TAG, "Unknown ping key %X", (unsigned) key);
}
continue;
}
if (!ping_key_seen) {
ESP_LOGW(TAG, "Ping key not seen");
this->resend_ping_key_ = true;
break;
}
if (byte == BINARY_SENSOR_KEY) {
if (end - buf < 3) {
return ESP_LOGV(TAG, "Binary sensor key requires at least 3 more bytes");
}
rdata.u32 = *buf++;
} else if (byte == SENSOR_KEY) {
if (end - buf < 6) {
return ESP_LOGV(TAG, "Sensor key requires at least 6 more bytes");
}
rdata.u32 = get_uint32(buf);
} else {
return ESP_LOGW(TAG, "Unknown key byte %X", byte);
}
hlen = *buf++;
if (end - buf < hlen) {
return ESP_LOGV(TAG, "Name length of %u not available", hlen);
}
memset(namebuf, 0, sizeof namebuf);
memcpy(namebuf, buf, hlen);
ESP_LOGV(TAG, "Found sensor key %d, id %s, data %lX", byte, namebuf, (unsigned long) rdata.u32);
buf += hlen;
#ifdef USE_SENSOR
if (byte == SENSOR_KEY && sensors.count(namebuf) != 0)
sensors[namebuf]->publish_state(rdata.f32);
#endif
#ifdef USE_BINARY_SENSOR
if (byte == BINARY_SENSOR_KEY && binary_sensors.count(namebuf) != 0)
binary_sensors[namebuf]->publish_state(rdata.u32 != 0);
#endif
}
}
void UDPComponent::dump_config() {
ESP_LOGCONFIG(TAG, "UDP:");
ESP_LOGCONFIG(TAG, " Port: %u", this->port_);
ESP_LOGCONFIG(TAG, " Encrypted: %s", YESNO(this->is_encrypted_()));
ESP_LOGCONFIG(TAG, " Ping-pong: %s", YESNO(this->ping_pong_enable_));
for (const auto &address : this->addresses_)
ESP_LOGCONFIG(TAG, " Address: %s", address.c_str());
#ifdef USE_SENSOR
for (auto sensor : this->sensors_)
ESP_LOGCONFIG(TAG, " Sensor: %s", sensor.id);
#endif
#ifdef USE_BINARY_SENSOR
for (auto sensor : this->binary_sensors_)
ESP_LOGCONFIG(TAG, " Binary Sensor: %s", sensor.id);
#endif
for (const auto &host : this->providers_) {
ESP_LOGCONFIG(TAG, " Remote host: %s", host.first.c_str());
ESP_LOGCONFIG(TAG, " Encrypted: %s", YESNO(!host.second.encryption_key.empty()));
#ifdef USE_SENSOR
for (const auto &sensor : this->remote_sensors_[host.first.c_str()])
ESP_LOGCONFIG(TAG, " Sensor: %s", sensor.first.c_str());
#endif
#ifdef USE_BINARY_SENSOR
for (const auto &sensor : this->remote_binary_sensors_[host.first.c_str()])
ESP_LOGCONFIG(TAG, " Binary Sensor: %s", sensor.first.c_str());
#endif
}
}
void UDPComponent::increment_code_() {
if (this->rolling_code_enable_) {
if (++this->rolling_code_[0] == 0) {
this->rolling_code_[1]++;
this->pref_.save(&this->rolling_code_[1]);
}
}
}
void UDPComponent::send_packet_(void *data, size_t len) {
#if defined(USE_SOCKET_IMPL_BSD_SOCKETS) || defined(USE_SOCKET_IMPL_LWIP_SOCKETS)
for (const auto &saddr : this->sockaddrs_) {
auto result = this->broadcast_socket_->sendto(data, len, 0, &saddr, sizeof(saddr));
if (result < 0)
ESP_LOGW(TAG, "sendto() error %d", errno);
}
#else
auto iface = IPAddress(0, 0, 0, 0);
for (const auto &saddr : this->ipaddrs_) {
if (this->udp_client_.beginPacketMulticast(saddr, this->port_, iface, 128) != 0) {
this->udp_client_.write((const uint8_t *) data, len);
auto result = this->udp_client_.endPacket();
if (result == 0)
ESP_LOGW(TAG, "udp.write() error");
}
}
#endif
}
void UDPComponent::send_ping_pong_request_() {
if (!this->ping_pong_enable_ || !network::is_connected())
return;
this->ping_key_ = random_uint32();
this->ping_header_.clear();
add(this->ping_header_, MAGIC_PING);
add(this->ping_header_, this->name_);
add(this->ping_header_, this->ping_key_);
this->send_packet_(this->ping_header_.data(), this->ping_header_.size());
this->resend_ping_key_ = false;
ESP_LOGV(TAG, "Sent new ping request %08X", (unsigned) this->ping_key_);
}
} // namespace udp
} // namespace esphome

View file

@ -0,0 +1,158 @@
#pragma once
#include "esphome/core/component.h"
#ifdef USE_SENSOR
#include "esphome/components/sensor/sensor.h"
#endif
#ifdef USE_BINARY_SENSOR
#include "esphome/components/binary_sensor/binary_sensor.h"
#endif
#if defined(USE_SOCKET_IMPL_BSD_SOCKETS) || defined(USE_SOCKET_IMPL_LWIP_SOCKETS)
#include "esphome/components/socket/socket.h"
#else
#include <WiFiUdp.h>
#endif
#include <vector>
#include <map>
namespace esphome {
namespace udp {
struct Provider {
std::vector<uint8_t> encryption_key;
const char *name;
uint32_t last_code[2];
};
#ifdef USE_SENSOR
struct Sensor {
sensor::Sensor *sensor;
const char *id;
bool updated;
};
#endif
#ifdef USE_BINARY_SENSOR
struct BinarySensor {
binary_sensor::BinarySensor *sensor;
const char *id;
bool updated;
};
#endif
class UDPComponent : public PollingComponent {
public:
void setup() override;
void loop() override;
void update() override;
void dump_config() override;
#ifdef USE_SENSOR
void add_sensor(const char *id, sensor::Sensor *sensor) {
Sensor st{sensor, id, true};
this->sensors_.push_back(st);
}
void add_remote_sensor(const char *hostname, const char *remote_id, sensor::Sensor *sensor) {
this->add_provider(hostname);
this->remote_sensors_[hostname][remote_id] = sensor;
}
#endif
#ifdef USE_BINARY_SENSOR
void add_binary_sensor(const char *id, binary_sensor::BinarySensor *sensor) {
BinarySensor st{sensor, id, true};
this->binary_sensors_.push_back(st);
}
void add_remote_binary_sensor(const char *hostname, const char *remote_id, binary_sensor::BinarySensor *sensor) {
this->add_provider(hostname);
this->remote_binary_sensors_[hostname][remote_id] = sensor;
}
#endif
void add_address(const char *addr) { this->addresses_.emplace_back(addr); }
void set_port(uint16_t port) { this->port_ = port; }
float get_setup_priority() const override { return setup_priority::AFTER_WIFI; }
void add_provider(const char *hostname) {
if (this->providers_.count(hostname) == 0) {
Provider provider;
provider.encryption_key = std::vector<uint8_t>{};
provider.last_code[0] = 0;
provider.last_code[1] = 0;
provider.name = hostname;
this->providers_[hostname] = provider;
#ifdef USE_SENSOR
this->remote_sensors_[hostname] = std::map<std::string, sensor::Sensor *>();
#endif
#ifdef USE_BINARY_SENSOR
this->remote_binary_sensors_[hostname] = std::map<std::string, binary_sensor::BinarySensor *>();
#endif
}
}
void set_encryption_key(std::vector<uint8_t> key) { this->encryption_key_ = std::move(key); }
void set_rolling_code_enable(bool enable) { this->rolling_code_enable_ = enable; }
void set_ping_pong_enable(bool enable) { this->ping_pong_enable_ = enable; }
void set_ping_pong_recycle_time(uint32_t recycle_time) { this->ping_pong_recyle_time_ = recycle_time; }
void set_provider_encryption(const char *name, std::vector<uint8_t> key) {
this->providers_[name].encryption_key = std::move(key);
}
protected:
void send_data_(bool all);
void process_(uint8_t *buf, size_t len);
void flush_();
void add_data_(uint8_t key, const char *id, float data);
void add_data_(uint8_t key, const char *id, uint32_t data);
void increment_code_();
void add_binary_data_(uint8_t key, const char *id, bool data);
void init_data_();
bool updated_{};
uint16_t port_{18511};
uint32_t ping_key_{};
uint32_t rolling_code_[2]{};
bool rolling_code_enable_{};
bool ping_pong_enable_{};
uint32_t ping_pong_recyle_time_{};
uint32_t last_key_time_{};
bool resend_ping_key_{};
bool resend_data_{};
bool should_send_{};
const char *name_{};
bool should_listen_{};
ESPPreferenceObject pref_;
#if defined(USE_SOCKET_IMPL_BSD_SOCKETS) || defined(USE_SOCKET_IMPL_LWIP_SOCKETS)
std::unique_ptr<socket::Socket> broadcast_socket_ = nullptr;
std::unique_ptr<socket::Socket> listen_socket_ = nullptr;
std::vector<struct sockaddr> sockaddrs_{};
#else
std::vector<IPAddress> ipaddrs_{};
WiFiUDP udp_client_{};
#endif
std::vector<uint8_t> encryption_key_{};
std::vector<std::string> addresses_{};
#ifdef USE_SENSOR
std::vector<Sensor> sensors_{};
std::map<std::string, std::map<std::string, sensor::Sensor *>> remote_sensors_{};
#endif
#ifdef USE_BINARY_SENSOR
std::vector<BinarySensor> binary_sensors_{};
std::map<std::string, std::map<std::string, binary_sensor::BinarySensor *>> remote_binary_sensors_{};
#endif
std::map<std::string, Provider> providers_{};
std::vector<uint8_t> ping_header_{};
std::vector<uint8_t> header_{};
std::vector<uint8_t> data_{};
std::map<const char *, uint32_t> ping_keys_{};
void add_key_(const char *name, uint32_t key);
void send_ping_pong_request_();
void send_packet_(void *data, size_t len);
void process_ping_request_(const char *name, uint8_t *ptr, size_t len);
inline bool is_encrypted_() { return !this->encryption_key_.empty(); }
};
} // namespace udp
} // namespace esphome

View file

@ -0,0 +1,35 @@
wifi:
ssid: MySSID
password: password1
udp:
update_interval: 5s
encryption: "our key goes here"
rolling_code_enable: true
ping_pong_enable: true
binary_sensors:
- binary_sensor_id1
- id: binary_sensor_id1
broadcast_id: other_id
sensors:
- sensor_id1
- id: sensor_id1
broadcast_id: other_id
providers:
- name: some-device-name
encryption: "their key goes here"
sensor:
- platform: template
id: sensor_id1
- platform: udp
provider: some-device-name
id: our_id
remote_id: some_sensor_id
binary_sensor:
- platform: udp
provider: unencrypted-device
id: other_binary_sensor_id
- platform: template
id: binary_sensor_id1

View file

@ -0,0 +1 @@
<<: !include common.yaml

View file

@ -0,0 +1 @@
<<: !include common.yaml

View file

@ -0,0 +1 @@
<<: !include common.yaml

View file

@ -0,0 +1 @@
<<: !include common.yaml

View file

@ -0,0 +1 @@
<<: !include common.yaml

View file

@ -0,0 +1 @@
<<: !include common.yaml

View file

@ -0,0 +1,4 @@
packages:
common: !include common.yaml
wifi: !remove

View file

@ -0,0 +1 @@
<<: !include common.yaml