From cd89c38a079f4da8f21fe8e8a541fcdcf862d156 Mon Sep 17 00:00:00 2001 From: Mike La Spina Date: Mon, 11 Mar 2024 13:23:13 -0500 Subject: [PATCH] Refactor ATM90E32 to reduce blocking time and improve accuracy. (#5670) Co-authored-by: descipher <120155735+GelidusResearch@users.noreply.github.com> --- esphome/components/atm90e26/atm90e26.cpp | 18 +- esphome/components/atm90e32/atm90e32.cpp | 566 ++++++++++++--------- esphome/components/atm90e32/atm90e32.h | 88 +++- esphome/components/atm90e32/atm90e32_reg.h | 15 + esphome/components/atm90e32/sensor.py | 51 +- 5 files changed, 473 insertions(+), 265 deletions(-) diff --git a/esphome/components/atm90e26/atm90e26.cpp b/esphome/components/atm90e26/atm90e26.cpp index 42a52c4ccf..6743f1a442 100644 --- a/esphome/components/atm90e26/atm90e26.cpp +++ b/esphome/components/atm90e26/atm90e26.cpp @@ -117,7 +117,7 @@ void ATM90E26Component::setup() { this->write16_(ATM90E26_REGISTER_ADJSTART, 0x8765); // Checks correctness of 31-3A registers and starts normal measurement if ok - uint16_t sys_status = this->read16_(ATM90E26_REGISTER_SYSSTATUS); + const uint16_t sys_status = this->read16_(ATM90E26_REGISTER_SYSSTATUS); if (sys_status & 0xC000) { // Checksum 1 Error ESP_LOGW(TAG, "Could not initialize ATM90E26 IC: CS1 was incorrect, expected: 0x%04X", @@ -177,27 +177,27 @@ void ATM90E26Component::write16_(uint8_t a_register, uint16_t val) { } float ATM90E26Component::get_line_current_() { - uint16_t current = this->read16_(ATM90E26_REGISTER_IRMS); + const uint16_t current = this->read16_(ATM90E26_REGISTER_IRMS); return current / 1000.0f; } float ATM90E26Component::get_line_voltage_() { - uint16_t voltage = this->read16_(ATM90E26_REGISTER_URMS); + const uint16_t voltage = this->read16_(ATM90E26_REGISTER_URMS); return voltage / 100.0f; } float ATM90E26Component::get_active_power_() { - int16_t val = this->read16_(ATM90E26_REGISTER_PMEAN); // two's complement + const int16_t val = this->read16_(ATM90E26_REGISTER_PMEAN); // two's complement return (float) val; } float ATM90E26Component::get_reactive_power_() { - int16_t val = this->read16_(ATM90E26_REGISTER_QMEAN); // two's complement + const int16_t val = this->read16_(ATM90E26_REGISTER_QMEAN); // two's complement return (float) val; } float ATM90E26Component::get_power_factor_() { - uint16_t val = this->read16_(ATM90E26_REGISTER_POWERF); // signed + const uint16_t val = this->read16_(ATM90E26_REGISTER_POWERF); // signed if (val & 0x8000) { return -(val & 0x7FF) / 1000.0f; } else { @@ -206,7 +206,7 @@ float ATM90E26Component::get_power_factor_() { } float ATM90E26Component::get_forward_active_energy_() { - uint16_t val = this->read16_(ATM90E26_REGISTER_APENERGY); + const uint16_t val = this->read16_(ATM90E26_REGISTER_APENERGY); if ((UINT32_MAX - this->cumulative_forward_active_energy_) > val) { this->cumulative_forward_active_energy_ += val; } else { @@ -217,7 +217,7 @@ float ATM90E26Component::get_forward_active_energy_() { } float ATM90E26Component::get_reverse_active_energy_() { - uint16_t val = this->read16_(ATM90E26_REGISTER_ANENERGY); + const uint16_t val = this->read16_(ATM90E26_REGISTER_ANENERGY); if (UINT32_MAX - this->cumulative_reverse_active_energy_ > val) { this->cumulative_reverse_active_energy_ += val; } else { @@ -227,7 +227,7 @@ float ATM90E26Component::get_reverse_active_energy_() { } float ATM90E26Component::get_frequency_() { - uint16_t freq = this->read16_(ATM90E26_REGISTER_FREQ); + const uint16_t freq = this->read16_(ATM90E26_REGISTER_FREQ); return freq / 100.0f; } diff --git a/esphome/components/atm90e32/atm90e32.cpp b/esphome/components/atm90e32/atm90e32.cpp index e38fd3866a..e27459b18a 100644 --- a/esphome/components/atm90e32/atm90e32.cpp +++ b/esphome/components/atm90e32/atm90e32.cpp @@ -7,82 +7,128 @@ namespace esphome { namespace atm90e32 { static const char *const TAG = "atm90e32"; +void ATM90E32Component::loop() { + if (this->get_publish_interval_flag_()) { + this->set_publish_interval_flag_(false); + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].voltage_sensor_ != nullptr) { + this->phase_[phase].voltage_ = this->get_phase_voltage_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].current_sensor_ != nullptr) { + this->phase_[phase].current_ = this->get_phase_current_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].power_sensor_ != nullptr) { + this->phase_[phase].active_power_ = this->get_phase_active_power_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].power_factor_sensor_ != nullptr) { + this->phase_[phase].power_factor_ = this->get_phase_power_factor_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].reactive_power_sensor_ != nullptr) { + this->phase_[phase].reactive_power_ = this->get_phase_reactive_power_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].forward_active_energy_sensor_ != nullptr) { + this->phase_[phase].forward_active_energy_ = this->get_phase_forward_active_energy_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].reverse_active_energy_sensor_ != nullptr) { + this->phase_[phase].reverse_active_energy_ = this->get_phase_reverse_active_energy_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].phase_angle_sensor_ != nullptr) { + this->phase_[phase].phase_angle_ = this->get_phase_angle_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].harmonic_active_power_sensor_ != nullptr) { + this->phase_[phase].harmonic_active_power_ = this->get_phase_harmonic_active_power_(phase); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].peak_current_sensor_ != nullptr) { + this->phase_[phase].peak_current_ = this->get_phase_peak_current_(phase); + } + } + // After the local store in collected we can publish them trusting they are withing +-1 haardware sampling + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].voltage_sensor_ != nullptr) { + this->phase_[phase].voltage_sensor_->publish_state(this->get_local_phase_voltage_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].current_sensor_ != nullptr) { + this->phase_[phase].current_sensor_->publish_state(this->get_local_phase_current_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].power_sensor_ != nullptr) { + this->phase_[phase].power_sensor_->publish_state(this->get_local_phase_active_power_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].power_factor_sensor_ != nullptr) { + this->phase_[phase].power_factor_sensor_->publish_state(this->get_local_phase_power_factor_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].reactive_power_sensor_ != nullptr) { + this->phase_[phase].reactive_power_sensor_->publish_state(this->get_local_phase_reactive_power_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].forward_active_energy_sensor_ != nullptr) { + this->phase_[phase].forward_active_energy_sensor_->publish_state( + this->get_local_phase_forward_active_energy_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].reverse_active_energy_sensor_ != nullptr) { + this->phase_[phase].reverse_active_energy_sensor_->publish_state( + this->get_local_phase_reverse_active_energy_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].phase_angle_sensor_ != nullptr) { + this->phase_[phase].phase_angle_sensor_->publish_state(this->get_local_phase_angle_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].harmonic_active_power_sensor_ != nullptr) { + this->phase_[phase].harmonic_active_power_sensor_->publish_state( + this->get_local_phase_harmonic_active_power_(phase)); + } + } + for (uint8_t phase = 0; phase < 3; phase++) { + if (this->phase_[phase].peak_current_sensor_ != nullptr) { + this->phase_[phase].peak_current_sensor_->publish_state(this->get_local_phase_peak_current_(phase)); + } + } + if (this->freq_sensor_ != nullptr) { + this->freq_sensor_->publish_state(this->get_frequency_()); + } + if (this->chip_temperature_sensor_ != nullptr) { + this->chip_temperature_sensor_->publish_state(this->get_chip_temperature_()); + } + } +} void ATM90E32Component::update() { if (this->read16_(ATM90E32_REGISTER_METEREN) != 1) { this->status_set_warning(); return; } - - if (this->phase_[0].voltage_sensor_ != nullptr) { - this->phase_[0].voltage_sensor_->publish_state(this->get_line_voltage_a_()); - } - if (this->phase_[1].voltage_sensor_ != nullptr) { - this->phase_[1].voltage_sensor_->publish_state(this->get_line_voltage_b_()); - } - if (this->phase_[2].voltage_sensor_ != nullptr) { - this->phase_[2].voltage_sensor_->publish_state(this->get_line_voltage_c_()); - } - if (this->phase_[0].current_sensor_ != nullptr) { - this->phase_[0].current_sensor_->publish_state(this->get_line_current_a_()); - } - if (this->phase_[1].current_sensor_ != nullptr) { - this->phase_[1].current_sensor_->publish_state(this->get_line_current_b_()); - } - if (this->phase_[2].current_sensor_ != nullptr) { - this->phase_[2].current_sensor_->publish_state(this->get_line_current_c_()); - } - if (this->phase_[0].power_sensor_ != nullptr) { - this->phase_[0].power_sensor_->publish_state(this->get_active_power_a_()); - } - if (this->phase_[1].power_sensor_ != nullptr) { - this->phase_[1].power_sensor_->publish_state(this->get_active_power_b_()); - } - if (this->phase_[2].power_sensor_ != nullptr) { - this->phase_[2].power_sensor_->publish_state(this->get_active_power_c_()); - } - if (this->phase_[0].reactive_power_sensor_ != nullptr) { - this->phase_[0].reactive_power_sensor_->publish_state(this->get_reactive_power_a_()); - } - if (this->phase_[1].reactive_power_sensor_ != nullptr) { - this->phase_[1].reactive_power_sensor_->publish_state(this->get_reactive_power_b_()); - } - if (this->phase_[2].reactive_power_sensor_ != nullptr) { - this->phase_[2].reactive_power_sensor_->publish_state(this->get_reactive_power_c_()); - } - if (this->phase_[0].power_factor_sensor_ != nullptr) { - this->phase_[0].power_factor_sensor_->publish_state(this->get_power_factor_a_()); - } - if (this->phase_[1].power_factor_sensor_ != nullptr) { - this->phase_[1].power_factor_sensor_->publish_state(this->get_power_factor_b_()); - } - if (this->phase_[2].power_factor_sensor_ != nullptr) { - this->phase_[2].power_factor_sensor_->publish_state(this->get_power_factor_c_()); - } - if (this->phase_[0].forward_active_energy_sensor_ != nullptr) { - this->phase_[0].forward_active_energy_sensor_->publish_state(this->get_forward_active_energy_a_()); - } - if (this->phase_[1].forward_active_energy_sensor_ != nullptr) { - this->phase_[1].forward_active_energy_sensor_->publish_state(this->get_forward_active_energy_b_()); - } - if (this->phase_[2].forward_active_energy_sensor_ != nullptr) { - this->phase_[2].forward_active_energy_sensor_->publish_state(this->get_forward_active_energy_c_()); - } - if (this->phase_[0].reverse_active_energy_sensor_ != nullptr) { - this->phase_[0].reverse_active_energy_sensor_->publish_state(this->get_reverse_active_energy_a_()); - } - if (this->phase_[1].reverse_active_energy_sensor_ != nullptr) { - this->phase_[1].reverse_active_energy_sensor_->publish_state(this->get_reverse_active_energy_b_()); - } - if (this->phase_[2].reverse_active_energy_sensor_ != nullptr) { - this->phase_[2].reverse_active_energy_sensor_->publish_state(this->get_reverse_active_energy_c_()); - } - if (this->freq_sensor_ != nullptr) { - this->freq_sensor_->publish_state(this->get_frequency_()); - } - if (this->chip_temperature_sensor_ != nullptr) { - this->chip_temperature_sensor_->publish_state(this->get_chip_temperature_()); - } + this->set_publish_interval_flag_(true); this->status_clear_warning(); } @@ -101,29 +147,51 @@ void ATM90E32Component::setup() { } this->write16_(ATM90E32_REGISTER_SOFTRESET, 0x789A); // Perform soft reset + delay(6); // Wait for the minimum 5ms + 1ms this->write16_(ATM90E32_REGISTER_CFGREGACCEN, 0x55AA); // enable register config access - this->write16_(ATM90E32_REGISTER_METEREN, 0x0001); // Enable Metering - if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != 0x0001) { + if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != 0x55AA) { ESP_LOGW(TAG, "Could not initialize ATM90E32 IC, check SPI settings"); this->mark_failed(); return; } - this->write16_(ATM90E32_REGISTER_PLCONSTH, 0x0861); // PL Constant MSB (default) = 140625000 - this->write16_(ATM90E32_REGISTER_PLCONSTL, 0xC468); // PL Constant LSB (default) - this->write16_(ATM90E32_REGISTER_ZXCONFIG, 0xD654); // ZX2, ZX1, ZX0 pin config - this->write16_(ATM90E32_REGISTER_MMODE0, mmode0); // Mode Config (frequency set in main program) - this->write16_(ATM90E32_REGISTER_MMODE1, pga_gain_); // PGA Gain Configuration for Current Channels - this->write16_(ATM90E32_REGISTER_PSTARTTH, 0x1D4C); // All Active Startup Power Threshold - 0.02A/0.00032 = 7500 - this->write16_(ATM90E32_REGISTER_QSTARTTH, 0x1D4C); // All Reactive Startup Power Threshold - 50% - this->write16_(ATM90E32_REGISTER_PPHASETH, 0x02EE); // Each Phase Active Phase Threshold - 0.002A/0.00032 = 750 - this->write16_(ATM90E32_REGISTER_QPHASETH, 0x02EE); // Each phase Reactive Phase Threshold - 10% - this->write16_(ATM90E32_REGISTER_UGAINA, this->phase_[0].volt_gain_); // A Voltage rms gain - this->write16_(ATM90E32_REGISTER_IGAINA, this->phase_[0].ct_gain_); // A line current gain - this->write16_(ATM90E32_REGISTER_UGAINB, this->phase_[1].volt_gain_); // B Voltage rms gain - this->write16_(ATM90E32_REGISTER_IGAINB, this->phase_[1].ct_gain_); // B line current gain - this->write16_(ATM90E32_REGISTER_UGAINC, this->phase_[2].volt_gain_); // C Voltage rms gain - this->write16_(ATM90E32_REGISTER_IGAINC, this->phase_[2].ct_gain_); // C line current gain - this->write16_(ATM90E32_REGISTER_CFGREGACCEN, 0x0000); // end configuration + + this->write16_(ATM90E32_REGISTER_METEREN, 0x0001); // Enable Metering + this->write16_(ATM90E32_REGISTER_SAGPEAKDETCFG, 0xFF3F); // Peak Detector time ms (15:8), Sag Period ms (7:0) + this->write16_(ATM90E32_REGISTER_PLCONSTH, 0x0861); // PL Constant MSB (default) = 140625000 + this->write16_(ATM90E32_REGISTER_PLCONSTL, 0xC468); // PL Constant LSB (default) + this->write16_(ATM90E32_REGISTER_ZXCONFIG, 0xD654); // ZX2, ZX1, ZX0 pin config + this->write16_(ATM90E32_REGISTER_MMODE0, mmode0); // Mode Config (frequency set in main program) + this->write16_(ATM90E32_REGISTER_MMODE1, pga_gain_); // PGA Gain Configuration for Current Channels + this->write16_(ATM90E32_REGISTER_PSTARTTH, 0x1D4C); // All Active Startup Power Threshold - 0.02A/0.00032 = 7500 + this->write16_(ATM90E32_REGISTER_QSTARTTH, 0x1D4C); // All Reactive Startup Power Threshold - 50% + this->write16_(ATM90E32_REGISTER_SSTARTTH, 0x1D4C); // All Reactive Startup Power Threshold - 50% + this->write16_(ATM90E32_REGISTER_PPHASETH, 0x02EE); // Each Phase Active Phase Threshold - 0.002A/0.00032 = 750 + this->write16_(ATM90E32_REGISTER_QPHASETH, 0x02EE); // Each phase Reactive Phase Threshold - 10% + // Setup voltage and current calibration offsets for PHASE A + this->phase_[PHASEA].voltage_offset_ = calibrate_voltage_offset_phase(PHASEA); + this->write16_(ATM90E32_REGISTER_UOFFSETA, this->phase_[PHASEA].voltage_offset_); // A Voltage offset + this->phase_[PHASEA].current_offset_ = calibrate_current_offset_phase(PHASEA); + this->write16_(ATM90E32_REGISTER_IOFFSETA, this->phase_[PHASEA].current_offset_); // A Current offset + // Setup voltage and current gain for PHASE A + this->write16_(ATM90E32_REGISTER_UGAINA, this->phase_[PHASEA].voltage_gain_); // A Voltage rms gain + this->write16_(ATM90E32_REGISTER_IGAINA, this->phase_[PHASEA].ct_gain_); // A line current gain + // Setup voltage and current calibration offsets for PHASE B + this->phase_[PHASEB].voltage_offset_ = calibrate_voltage_offset_phase(PHASEB); + this->write16_(ATM90E32_REGISTER_UOFFSETB, this->phase_[PHASEB].voltage_offset_); // B Voltage offset + this->phase_[PHASEB].current_offset_ = calibrate_current_offset_phase(PHASEB); + this->write16_(ATM90E32_REGISTER_IOFFSETB, this->phase_[PHASEB].current_offset_); // B Current offset + // Setup voltage and current gain for PHASE B + this->write16_(ATM90E32_REGISTER_UGAINB, this->phase_[PHASEB].voltage_gain_); // B Voltage rms gain + this->write16_(ATM90E32_REGISTER_IGAINB, this->phase_[PHASEB].ct_gain_); // B line current gain + // Setup voltage and current calibration offsets for PHASE C + this->phase_[PHASEC].voltage_offset_ = calibrate_voltage_offset_phase(PHASEC); + this->write16_(ATM90E32_REGISTER_UOFFSETC, this->phase_[PHASEC].voltage_offset_); // C Voltage offset + this->phase_[PHASEC].current_offset_ = calibrate_current_offset_phase(PHASEC); + this->write16_(ATM90E32_REGISTER_IOFFSETC, this->phase_[PHASEC].current_offset_); // C Current offset + // Setup voltage and current gain for PHASE C + this->write16_(ATM90E32_REGISTER_UGAINC, this->phase_[PHASEC].voltage_gain_); // C Voltage rms gain + this->write16_(ATM90E32_REGISTER_IGAINC, this->phase_[PHASEC].ct_gain_); // C line current gain + this->write16_(ATM90E32_REGISTER_CFGREGACCEN, 0x0000); // end configuration } void ATM90E32Component::dump_config() { @@ -133,43 +201,54 @@ void ATM90E32Component::dump_config() { ESP_LOGE(TAG, "Communication with ATM90E32 failed!"); } LOG_UPDATE_INTERVAL(this); - LOG_SENSOR(" ", "Voltage A", this->phase_[0].voltage_sensor_); - LOG_SENSOR(" ", "Current A", this->phase_[0].current_sensor_); - LOG_SENSOR(" ", "Power A", this->phase_[0].power_sensor_); - LOG_SENSOR(" ", "Reactive Power A", this->phase_[0].reactive_power_sensor_); - LOG_SENSOR(" ", "PF A", this->phase_[0].power_factor_sensor_); - LOG_SENSOR(" ", "Active Forward Energy A", this->phase_[0].forward_active_energy_sensor_); - LOG_SENSOR(" ", "Active Reverse Energy A", this->phase_[0].reverse_active_energy_sensor_); - LOG_SENSOR(" ", "Voltage B", this->phase_[1].voltage_sensor_); - LOG_SENSOR(" ", "Current B", this->phase_[1].current_sensor_); - LOG_SENSOR(" ", "Power B", this->phase_[1].power_sensor_); - LOG_SENSOR(" ", "Reactive Power B", this->phase_[1].reactive_power_sensor_); - LOG_SENSOR(" ", "PF B", this->phase_[1].power_factor_sensor_); - LOG_SENSOR(" ", "Active Forward Energy B", this->phase_[1].forward_active_energy_sensor_); - LOG_SENSOR(" ", "Active Reverse Energy B", this->phase_[1].reverse_active_energy_sensor_); - LOG_SENSOR(" ", "Voltage C", this->phase_[2].voltage_sensor_); - LOG_SENSOR(" ", "Current C", this->phase_[2].current_sensor_); - LOG_SENSOR(" ", "Power C", this->phase_[2].power_sensor_); - LOG_SENSOR(" ", "Reactive Power C", this->phase_[2].reactive_power_sensor_); - LOG_SENSOR(" ", "PF C", this->phase_[2].power_factor_sensor_); - LOG_SENSOR(" ", "Active Forward Energy C", this->phase_[2].forward_active_energy_sensor_); - LOG_SENSOR(" ", "Active Reverse Energy C", this->phase_[2].reverse_active_energy_sensor_); + LOG_SENSOR(" ", "Voltage A", this->phase_[PHASEA].voltage_sensor_); + LOG_SENSOR(" ", "Current A", this->phase_[PHASEA].current_sensor_); + LOG_SENSOR(" ", "Power A", this->phase_[PHASEA].power_sensor_); + LOG_SENSOR(" ", "Reactive Power A", this->phase_[PHASEA].reactive_power_sensor_); + LOG_SENSOR(" ", "PF A", this->phase_[PHASEA].power_factor_sensor_); + LOG_SENSOR(" ", "Active Forward Energy A", this->phase_[PHASEA].forward_active_energy_sensor_); + LOG_SENSOR(" ", "Active Reverse Energy A", this->phase_[PHASEA].reverse_active_energy_sensor_); + LOG_SENSOR(" ", "Harmonic Power A", this->phase_[PHASEA].harmonic_active_power_sensor_); + LOG_SENSOR(" ", "Phase Angle A", this->phase_[PHASEA].phase_angle_sensor_); + LOG_SENSOR(" ", "Peak Current A", this->phase_[PHASEA].peak_current_sensor_); + LOG_SENSOR(" ", "Voltage B", this->phase_[PHASEB].voltage_sensor_); + LOG_SENSOR(" ", "Current B", this->phase_[PHASEB].current_sensor_); + LOG_SENSOR(" ", "Power B", this->phase_[PHASEB].power_sensor_); + LOG_SENSOR(" ", "Reactive Power B", this->phase_[PHASEB].reactive_power_sensor_); + LOG_SENSOR(" ", "PF B", this->phase_[PHASEB].power_factor_sensor_); + LOG_SENSOR(" ", "Active Forward Energy B", this->phase_[PHASEB].forward_active_energy_sensor_); + LOG_SENSOR(" ", "Active Reverse Energy B", this->phase_[PHASEB].reverse_active_energy_sensor_); + LOG_SENSOR(" ", "Harmonic Power A", this->phase_[PHASEB].harmonic_active_power_sensor_); + LOG_SENSOR(" ", "Phase Angle A", this->phase_[PHASEB].phase_angle_sensor_); + LOG_SENSOR(" ", "Peak Current A", this->phase_[PHASEB].peak_current_sensor_); + LOG_SENSOR(" ", "Voltage C", this->phase_[PHASEC].voltage_sensor_); + LOG_SENSOR(" ", "Current C", this->phase_[PHASEC].current_sensor_); + LOG_SENSOR(" ", "Power C", this->phase_[PHASEC].power_sensor_); + LOG_SENSOR(" ", "Reactive Power C", this->phase_[PHASEC].reactive_power_sensor_); + LOG_SENSOR(" ", "PF C", this->phase_[PHASEC].power_factor_sensor_); + LOG_SENSOR(" ", "Active Forward Energy C", this->phase_[PHASEC].forward_active_energy_sensor_); + LOG_SENSOR(" ", "Active Reverse Energy C", this->phase_[PHASEC].reverse_active_energy_sensor_); + LOG_SENSOR(" ", "Harmonic Power A", this->phase_[PHASEC].harmonic_active_power_sensor_); + LOG_SENSOR(" ", "Phase Angle A", this->phase_[PHASEC].phase_angle_sensor_); + LOG_SENSOR(" ", "Peak Current A", this->phase_[PHASEC].peak_current_sensor_); LOG_SENSOR(" ", "Frequency", this->freq_sensor_); LOG_SENSOR(" ", "Chip Temp", this->chip_temperature_sensor_); } -float ATM90E32Component::get_setup_priority() const { return setup_priority::DATA; } +float ATM90E32Component::get_setup_priority() const { return setup_priority::IO; } + +// R/C registers can conly be cleared after the LastSPIData register is updated (register 78H) +// Peakdetect period: 05H. Bit 15:8 are PeakDet_period in ms. 7:0 are Sag_period +// Default is 143FH (20ms, 63ms) uint16_t ATM90E32Component::read16_(uint16_t a_register) { uint8_t addrh = (1 << 7) | ((a_register >> 8) & 0x03); uint8_t addrl = (a_register & 0xFF); uint8_t data[2]; uint16_t output; - this->enable(); - delayMicroseconds(10); + delay_microseconds_safe(10); this->write_byte(addrh); this->write_byte(addrl); - delayMicroseconds(4); this->read_array(data, 2); this->disable(); @@ -179,9 +258,9 @@ uint16_t ATM90E32Component::read16_(uint16_t a_register) { } int ATM90E32Component::read32_(uint16_t addr_h, uint16_t addr_l) { - uint16_t val_h = this->read16_(addr_h); - uint16_t val_l = this->read16_(addr_l); - int32_t val = (val_h << 16) | val_l; + const uint16_t val_h = this->read16_(addr_h); + const uint16_t val_l = this->read16_(addr_l); + const int32_t val = (val_h << 16) | val_l; ESP_LOGVV(TAG, "read32_ addr_h 0x%04" PRIX16 " val_h 0x%04" PRIX16 " addr_l 0x%04" PRIX16 " val_l 0x%04" PRIX16 @@ -192,141 +271,174 @@ int ATM90E32Component::read32_(uint16_t addr_h, uint16_t addr_l) { } void ATM90E32Component::write16_(uint16_t a_register, uint16_t val) { - uint8_t addrh = (a_register >> 8) & 0x03; - uint8_t addrl = (a_register & 0xFF); - ESP_LOGVV(TAG, "write16_ 0x%04" PRIX16 " val 0x%04" PRIX16, a_register, val); this->enable(); - delayMicroseconds(10); - this->write_byte(addrh); - this->write_byte(addrl); - delayMicroseconds(4); - this->write_byte((val >> 8) & 0xff); - this->write_byte(val & 0xFF); + this->write_byte16(a_register); + this->write_byte16(val); this->disable(); + if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != val) + ESP_LOGW(TAG, "SPI write error 0x%04X val 0x%04X", a_register, val); } -float ATM90E32Component::get_line_voltage_a_() { - uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMSA); +float ATM90E32Component::get_local_phase_voltage_(uint8_t phase) { return this->phase_[phase].voltage_; } + +float ATM90E32Component::get_local_phase_current_(uint8_t phase) { return this->phase_[phase].current_; } + +float ATM90E32Component::get_local_phase_active_power_(uint8_t phase) { return this->phase_[phase].active_power_; } + +float ATM90E32Component::get_local_phase_reactive_power_(uint8_t phase) { return this->phase_[phase].reactive_power_; } + +float ATM90E32Component::get_local_phase_power_factor_(uint8_t phase) { return this->phase_[phase].power_factor_; } + +float ATM90E32Component::get_local_phase_forward_active_energy_(uint8_t phase) { + return this->phase_[phase].forward_active_energy_; +} + +float ATM90E32Component::get_local_phase_reverse_active_energy_(uint8_t phase) { + return this->phase_[phase].reverse_active_energy_; +} + +float ATM90E32Component::get_local_phase_angle_(uint8_t phase) { return this->phase_[phase].phase_angle_; } + +float ATM90E32Component::get_local_phase_harmonic_active_power_(uint8_t phase) { + return this->phase_[phase].harmonic_active_power_; +} + +float ATM90E32Component::get_local_phase_peak_current_(uint8_t phase) { return this->phase_[phase].peak_current_; } + +float ATM90E32Component::get_phase_voltage_(uint8_t phase) { + const uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMS + phase); + if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != voltage) + ESP_LOGW(TAG, "SPI URMS voltage register read error."); return (float) voltage / 100; } -float ATM90E32Component::get_line_voltage_b_() { - uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMSB); - return (float) voltage / 100; + +float ATM90E32Component::get_phase_voltage_avg_(uint8_t phase) { + const uint8_t reads = 10; + uint32_t accumulation = 0; + uint16_t voltage = 0; + for (uint8_t i = 0; i < reads; i++) { + voltage = this->read16_(ATM90E32_REGISTER_URMS + phase); + if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != voltage) + ESP_LOGW(TAG, "SPI URMS voltage register read error."); + accumulation += voltage; + } + voltage = accumulation / reads; + this->phase_[phase].voltage_ = (float) voltage / 100; + return this->phase_[phase].voltage_; } -float ATM90E32Component::get_line_voltage_c_() { - uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMSC); - return (float) voltage / 100; + +float ATM90E32Component::get_phase_current_avg_(uint8_t phase) { + const uint8_t reads = 10; + uint32_t accumulation = 0; + uint16_t current = 0; + for (uint8_t i = 0; i < reads; i++) { + current = this->read16_(ATM90E32_REGISTER_IRMS + phase); + if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != current) + ESP_LOGW(TAG, "SPI IRMS current register read error."); + accumulation += current; + } + current = accumulation / reads; + this->phase_[phase].current_ = (float) current / 1000; + return this->phase_[phase].current_; } -float ATM90E32Component::get_line_current_a_() { - uint16_t current = this->read16_(ATM90E32_REGISTER_IRMSA); + +float ATM90E32Component::get_phase_current_(uint8_t phase) { + const uint16_t current = this->read16_(ATM90E32_REGISTER_IRMS + phase); + if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != current) + ESP_LOGW(TAG, "SPI IRMS current register read error."); return (float) current / 1000; } -float ATM90E32Component::get_line_current_b_() { - uint16_t current = this->read16_(ATM90E32_REGISTER_IRMSB); - return (float) current / 1000; -} -float ATM90E32Component::get_line_current_c_() { - uint16_t current = this->read16_(ATM90E32_REGISTER_IRMSC); - return (float) current / 1000; -} -float ATM90E32Component::get_active_power_a_() { - int val = this->read32_(ATM90E32_REGISTER_PMEANA, ATM90E32_REGISTER_PMEANALSB); + +float ATM90E32Component::get_phase_active_power_(uint8_t phase) { + const int val = this->read32_(ATM90E32_REGISTER_PMEAN + phase, ATM90E32_REGISTER_PMEANLSB + phase); return val * 0.00032f; } -float ATM90E32Component::get_active_power_b_() { - int val = this->read32_(ATM90E32_REGISTER_PMEANB, ATM90E32_REGISTER_PMEANBLSB); + +float ATM90E32Component::get_phase_reactive_power_(uint8_t phase) { + const int val = this->read32_(ATM90E32_REGISTER_QMEAN + phase, ATM90E32_REGISTER_QMEANLSB + phase); return val * 0.00032f; } -float ATM90E32Component::get_active_power_c_() { - int val = this->read32_(ATM90E32_REGISTER_PMEANC, ATM90E32_REGISTER_PMEANCLSB); + +float ATM90E32Component::get_phase_power_factor_(uint8_t phase) { + const int16_t powerfactor = this->read16_(ATM90E32_REGISTER_PFMEAN + phase); + if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != powerfactor) + ESP_LOGW(TAG, "SPI power factor read error."); + return (float) powerfactor / 1000; +} + +float ATM90E32Component::get_phase_forward_active_energy_(uint8_t phase) { + const uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGY + phase); + if ((UINT32_MAX - this->phase_[phase].cumulative_forward_active_energy_) > val) { + this->phase_[phase].cumulative_forward_active_energy_ += val; + } else { + this->phase_[phase].cumulative_forward_active_energy_ = val; + } + return ((float) this->phase_[phase].cumulative_forward_active_energy_ * 10 / 3200); +} + +float ATM90E32Component::get_phase_reverse_active_energy_(uint8_t phase) { + const uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGY); + if (UINT32_MAX - this->phase_[phase].cumulative_reverse_active_energy_ > val) { + this->phase_[phase].cumulative_reverse_active_energy_ += val; + } else { + this->phase_[phase].cumulative_reverse_active_energy_ = val; + } + return ((float) this->phase_[phase].cumulative_reverse_active_energy_ * 10 / 3200); +} + +float ATM90E32Component::get_phase_harmonic_active_power_(uint8_t phase) { + int val = this->read32_(ATM90E32_REGISTER_PMEANH + phase, ATM90E32_REGISTER_PMEANHLSB + phase); return val * 0.00032f; } -float ATM90E32Component::get_reactive_power_a_() { - int val = this->read32_(ATM90E32_REGISTER_QMEANA, ATM90E32_REGISTER_QMEANALSB); - return val * 0.00032f; + +float ATM90E32Component::get_phase_angle_(uint8_t phase) { + uint16_t val = this->read16_(ATM90E32_REGISTER_PANGLE + phase) / 10.0; + return (float) (val > 180) ? val - 360.0 : val; } -float ATM90E32Component::get_reactive_power_b_() { - int val = this->read32_(ATM90E32_REGISTER_QMEANB, ATM90E32_REGISTER_QMEANBLSB); - return val * 0.00032f; -} -float ATM90E32Component::get_reactive_power_c_() { - int val = this->read32_(ATM90E32_REGISTER_QMEANC, ATM90E32_REGISTER_QMEANCLSB); - return val * 0.00032f; -} -float ATM90E32Component::get_power_factor_a_() { - int16_t pf = this->read16_(ATM90E32_REGISTER_PFMEANA); - return (float) pf / 1000; -} -float ATM90E32Component::get_power_factor_b_() { - int16_t pf = this->read16_(ATM90E32_REGISTER_PFMEANB); - return (float) pf / 1000; -} -float ATM90E32Component::get_power_factor_c_() { - int16_t pf = this->read16_(ATM90E32_REGISTER_PFMEANC); - return (float) pf / 1000; -} -float ATM90E32Component::get_forward_active_energy_a_() { - uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGYA); - if ((UINT32_MAX - this->phase_[0].cumulative_forward_active_energy_) > val) { - this->phase_[0].cumulative_forward_active_energy_ += val; - } else { - this->phase_[0].cumulative_forward_active_energy_ = val; - } - return ((float) this->phase_[0].cumulative_forward_active_energy_ * 10 / 3200); -} -float ATM90E32Component::get_forward_active_energy_b_() { - uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGYB); - if (UINT32_MAX - this->phase_[1].cumulative_forward_active_energy_ > val) { - this->phase_[1].cumulative_forward_active_energy_ += val; - } else { - this->phase_[1].cumulative_forward_active_energy_ = val; - } - return ((float) this->phase_[1].cumulative_forward_active_energy_ * 10 / 3200); -} -float ATM90E32Component::get_forward_active_energy_c_() { - uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGYC); - if (UINT32_MAX - this->phase_[2].cumulative_forward_active_energy_ > val) { - this->phase_[2].cumulative_forward_active_energy_ += val; - } else { - this->phase_[2].cumulative_forward_active_energy_ = val; - } - return ((float) this->phase_[2].cumulative_forward_active_energy_ * 10 / 3200); -} -float ATM90E32Component::get_reverse_active_energy_a_() { - uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGYA); - if (UINT32_MAX - this->phase_[0].cumulative_reverse_active_energy_ > val) { - this->phase_[0].cumulative_reverse_active_energy_ += val; - } else { - this->phase_[0].cumulative_reverse_active_energy_ = val; - } - return ((float) this->phase_[0].cumulative_reverse_active_energy_ * 10 / 3200); -} -float ATM90E32Component::get_reverse_active_energy_b_() { - uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGYB); - if (UINT32_MAX - this->phase_[1].cumulative_reverse_active_energy_ > val) { - this->phase_[1].cumulative_reverse_active_energy_ += val; - } else { - this->phase_[1].cumulative_reverse_active_energy_ = val; - } - return ((float) this->phase_[1].cumulative_reverse_active_energy_ * 10 / 3200); -} -float ATM90E32Component::get_reverse_active_energy_c_() { - uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGYC); - if (UINT32_MAX - this->phase_[2].cumulative_reverse_active_energy_ > val) { - this->phase_[2].cumulative_reverse_active_energy_ += val; - } else { - this->phase_[2].cumulative_reverse_active_energy_ = val; - } - return ((float) this->phase_[2].cumulative_reverse_active_energy_ * 10 / 3200); + +float ATM90E32Component::get_phase_peak_current_(uint8_t phase) { + int16_t val = (float) this->read16_(ATM90E32_REGISTER_IPEAK + phase); + if (!this->peak_current_signed_) + val = abs(val); + // phase register * phase current gain value / 1000 * 2^13 + return (float) (val * this->phase_[phase].ct_gain_ / 8192000.0); } + float ATM90E32Component::get_frequency_() { - uint16_t freq = this->read16_(ATM90E32_REGISTER_FREQ); + const uint16_t freq = this->read16_(ATM90E32_REGISTER_FREQ); return (float) freq / 100; } + float ATM90E32Component::get_chip_temperature_() { - uint16_t ctemp = this->read16_(ATM90E32_REGISTER_TEMP); + const uint16_t ctemp = this->read16_(ATM90E32_REGISTER_TEMP); return (float) ctemp; } + +uint16_t ATM90E32Component::calibrate_voltage_offset_phase(uint8_t phase) { + const uint8_t num_reads = 5; + uint64_t total_value = 0; + for (int i = 0; i < num_reads; ++i) { + const uint32_t measurement_value = read32_(ATM90E32_REGISTER_URMS + phase, ATM90E32_REGISTER_URMSLSB + phase); + total_value += measurement_value; + } + const uint32_t average_value = total_value / num_reads; + const uint32_t shifted_value = average_value >> 7; + const uint32_t voltage_offset = ~shifted_value + 1; + return voltage_offset & 0xFFFF; // Take the lower 16 bits +} + +uint16_t ATM90E32Component::calibrate_current_offset_phase(uint8_t phase) { + const uint8_t num_reads = 5; + uint64_t total_value = 0; + for (int i = 0; i < num_reads; ++i) { + const uint32_t measurement_value = read32_(ATM90E32_REGISTER_IRMS + phase, ATM90E32_REGISTER_IRMSLSB + phase); + total_value += measurement_value; + } + const uint32_t average_value = total_value / num_reads; + const uint32_t current_offset = ~average_value + 1; + return current_offset & 0xFFFF; // Take the lower 16 bits +} + } // namespace atm90e32 } // namespace esphome diff --git a/esphome/components/atm90e32/atm90e32.h b/esphome/components/atm90e32/atm90e32.h index c9662df26e..0a334dbe8b 100644 --- a/esphome/components/atm90e32/atm90e32.h +++ b/esphome/components/atm90e32/atm90e32.h @@ -3,14 +3,19 @@ #include "esphome/core/component.h" #include "esphome/components/sensor/sensor.h" #include "esphome/components/spi/spi.h" +#include "atm90e32_reg.h" namespace esphome { namespace atm90e32 { class ATM90E32Component : public PollingComponent, public spi::SPIDevice { + spi::CLOCK_PHASE_TRAILING, spi::DATA_RATE_1MHZ> { public: + static const uint8_t PHASEA = 0; + static const uint8_t PHASEB = 1; + static const uint8_t PHASEC = 2; + void loop() override; void setup() override; void dump_config() override; float get_setup_priority() const override; @@ -20,6 +25,7 @@ class ATM90E32Component : public PollingComponent, void set_current_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].current_sensor_ = obj; } void set_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_sensor_ = obj; } void set_reactive_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].reactive_power_sensor_ = obj; } + void set_apparent_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].apparent_power_sensor_ = obj; } void set_forward_active_energy_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].forward_active_energy_sensor_ = obj; } @@ -27,64 +33,94 @@ class ATM90E32Component : public PollingComponent, this->phase_[phase].reverse_active_energy_sensor_ = obj; } void set_power_factor_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_factor_sensor_ = obj; } - void set_volt_gain(int phase, uint16_t gain) { this->phase_[phase].volt_gain_ = gain; } + void set_phase_angle_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].phase_angle_sensor_ = obj; } + void set_harmonic_active_power_sensor(int phase, sensor::Sensor *obj) { + this->phase_[phase].harmonic_active_power_sensor_ = obj; + } + void set_peak_current_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].peak_current_sensor_ = obj; } + void set_volt_gain(int phase, uint16_t gain) { this->phase_[phase].voltage_gain_ = gain; } void set_ct_gain(int phase, uint16_t gain) { this->phase_[phase].ct_gain_ = gain; } - void set_freq_sensor(sensor::Sensor *freq_sensor) { freq_sensor_ = freq_sensor; } + void set_peak_current_signed(bool flag) { peak_current_signed_ = flag; } void set_chip_temperature_sensor(sensor::Sensor *chip_temperature_sensor) { chip_temperature_sensor_ = chip_temperature_sensor; } void set_line_freq(int freq) { line_freq_ = freq; } void set_current_phases(int phases) { current_phases_ = phases; } void set_pga_gain(uint16_t gain) { pga_gain_ = gain; } + uint16_t calibrate_voltage_offset_phase(uint8_t /*phase*/); + uint16_t calibrate_current_offset_phase(uint8_t /*phase*/); + + int32_t last_periodic_millis = millis(); protected: uint16_t read16_(uint16_t a_register); int read32_(uint16_t addr_h, uint16_t addr_l); void write16_(uint16_t a_register, uint16_t val); - - float get_line_voltage_a_(); - float get_line_voltage_b_(); - float get_line_voltage_c_(); - float get_line_current_a_(); - float get_line_current_b_(); - float get_line_current_c_(); - float get_active_power_a_(); - float get_active_power_b_(); - float get_active_power_c_(); - float get_reactive_power_a_(); - float get_reactive_power_b_(); - float get_reactive_power_c_(); - float get_power_factor_a_(); - float get_power_factor_b_(); - float get_power_factor_c_(); - float get_forward_active_energy_a_(); - float get_forward_active_energy_b_(); - float get_forward_active_energy_c_(); - float get_reverse_active_energy_a_(); - float get_reverse_active_energy_b_(); - float get_reverse_active_energy_c_(); + float get_local_phase_voltage_(uint8_t /*phase*/); + float get_local_phase_current_(uint8_t /*phase*/); + float get_local_phase_active_power_(uint8_t /*phase*/); + float get_local_phase_reactive_power_(uint8_t /*phase*/); + float get_local_phase_power_factor_(uint8_t /*phase*/); + float get_local_phase_forward_active_energy_(uint8_t /*phase*/); + float get_local_phase_reverse_active_energy_(uint8_t /*phase*/); + float get_local_phase_angle_(uint8_t /*phase*/); + float get_local_phase_harmonic_active_power_(uint8_t /*phase*/); + float get_local_phase_peak_current_(uint8_t /*phase*/); + float get_phase_voltage_(uint8_t /*phase*/); + float get_phase_voltage_avg_(uint8_t /*phase*/); + float get_phase_current_(uint8_t /*phase*/); + float get_phase_current_avg_(uint8_t /*phase*/); + float get_phase_active_power_(uint8_t /*phase*/); + float get_phase_reactive_power_(uint8_t /*phase*/); + float get_phase_power_factor_(uint8_t /*phase*/); + float get_phase_forward_active_energy_(uint8_t /*phase*/); + float get_phase_reverse_active_energy_(uint8_t /*phase*/); + float get_phase_angle_(uint8_t /*phase*/); + float get_phase_harmonic_active_power_(uint8_t /*phase*/); + float get_phase_peak_current_(uint8_t /*phase*/); float get_frequency_(); float get_chip_temperature_(); + bool get_publish_interval_flag_() { return publish_interval_flag_; }; + void set_publish_interval_flag_(bool flag) { publish_interval_flag_ = flag; }; struct ATM90E32Phase { - uint16_t volt_gain_{7305}; + uint16_t voltage_gain_{7305}; uint16_t ct_gain_{27961}; + uint16_t voltage_offset_{0}; + uint16_t current_offset_{0}; + float voltage_{0}; + float current_{0}; + float active_power_{0}; + float reactive_power_{0}; + float power_factor_{0}; + float forward_active_energy_{0}; + float reverse_active_energy_{0}; + float phase_angle_{0}; + float harmonic_active_power_{0}; + float peak_current_{0}; sensor::Sensor *voltage_sensor_{nullptr}; sensor::Sensor *current_sensor_{nullptr}; sensor::Sensor *power_sensor_{nullptr}; sensor::Sensor *reactive_power_sensor_{nullptr}; + sensor::Sensor *apparent_power_sensor_{nullptr}; sensor::Sensor *power_factor_sensor_{nullptr}; sensor::Sensor *forward_active_energy_sensor_{nullptr}; sensor::Sensor *reverse_active_energy_sensor_{nullptr}; + sensor::Sensor *phase_angle_sensor_{nullptr}; + sensor::Sensor *harmonic_active_power_sensor_{nullptr}; + sensor::Sensor *peak_current_sensor_{nullptr}; uint32_t cumulative_forward_active_energy_{0}; uint32_t cumulative_reverse_active_energy_{0}; } phase_[3]; + sensor::Sensor *freq_sensor_{nullptr}; sensor::Sensor *chip_temperature_sensor_{nullptr}; uint16_t pga_gain_{0x15}; int line_freq_{60}; int current_phases_{3}; + bool publish_interval_flag_{true}; + bool peak_current_signed_{false}; }; } // namespace atm90e32 diff --git a/esphome/components/atm90e32/atm90e32_reg.h b/esphome/components/atm90e32/atm90e32_reg.h index 7927a7fdfb..dac62aa6b4 100644 --- a/esphome/components/atm90e32/atm90e32_reg.h +++ b/esphome/components/atm90e32/atm90e32_reg.h @@ -131,10 +131,12 @@ static const uint16_t ATM90E32_REGISTER_IOFFSETN = 0x6E; // N Current Offset /* ENERGY REGISTERS */ static const uint16_t ATM90E32_REGISTER_APENERGYT = 0x80; // Total Forward Active +static const uint16_t ATM90E32_REGISTER_APENERGY = 0x81; // Forward Active Reg Base static const uint16_t ATM90E32_REGISTER_APENERGYA = 0x81; // A Forward Active static const uint16_t ATM90E32_REGISTER_APENERGYB = 0x82; // B Forward Active static const uint16_t ATM90E32_REGISTER_APENERGYC = 0x83; // C Forward Active static const uint16_t ATM90E32_REGISTER_ANENERGYT = 0x84; // Total Reverse Active +static const uint16_t ATM90E32_REGISTER_ANENERGY = 0x85; // Reverse Active Reg Base static const uint16_t ATM90E32_REGISTER_ANENERGYA = 0x85; // A Reverse Active static const uint16_t ATM90E32_REGISTER_ANENERGYB = 0x86; // B Reverse Active static const uint16_t ATM90E32_REGISTER_ANENERGYC = 0x87; // C Reverse Active @@ -172,10 +174,12 @@ static const uint16_t ATM90E32_REGISTER_ANENERGYCH = 0xAF; // C Reverse Harm. E /* POWER & P.F. REGISTERS */ static const uint16_t ATM90E32_REGISTER_PMEANT = 0xB0; // Total Mean Power (P) +static const uint16_t ATM90E32_REGISTER_PMEAN = 0xB1; // Mean Power Reg Base (P) static const uint16_t ATM90E32_REGISTER_PMEANA = 0xB1; // A Mean Power (P) static const uint16_t ATM90E32_REGISTER_PMEANB = 0xB2; // B Mean Power (P) static const uint16_t ATM90E32_REGISTER_PMEANC = 0xB3; // C Mean Power (P) static const uint16_t ATM90E32_REGISTER_QMEANT = 0xB4; // Total Mean Power (Q) +static const uint16_t ATM90E32_REGISTER_QMEAN = 0xB5; // Mean Power Reg Base (Q) static const uint16_t ATM90E32_REGISTER_QMEANA = 0xB5; // A Mean Power (Q) static const uint16_t ATM90E32_REGISTER_QMEANB = 0xB6; // B Mean Power (Q) static const uint16_t ATM90E32_REGISTER_QMEANC = 0xB7; // C Mean Power (Q) @@ -184,15 +188,18 @@ static const uint16_t ATM90E32_REGISTER_SMEANA = 0xB9; // A Mean Power (S) static const uint16_t ATM90E32_REGISTER_SMEANB = 0xBA; // B Mean Power (S) static const uint16_t ATM90E32_REGISTER_SMEANC = 0xBB; // C Mean Power (S) static const uint16_t ATM90E32_REGISTER_PFMEANT = 0xBC; // Mean Power Factor +static const uint16_t ATM90E32_REGISTER_PFMEAN = 0xBD; // Power Factor Reg Base static const uint16_t ATM90E32_REGISTER_PFMEANA = 0xBD; // A Power Factor static const uint16_t ATM90E32_REGISTER_PFMEANB = 0xBE; // B Power Factor static const uint16_t ATM90E32_REGISTER_PFMEANC = 0xBF; // C Power Factor static const uint16_t ATM90E32_REGISTER_PMEANTLSB = 0xC0; // Lower Word (Tot. Act. Power) +static const uint16_t ATM90E32_REGISTER_PMEANLSB = 0xC1; // Lower Word Reg Base (Active Power) static const uint16_t ATM90E32_REGISTER_PMEANALSB = 0xC1; // Lower Word (A Act. Power) static const uint16_t ATM90E32_REGISTER_PMEANBLSB = 0xC2; // Lower Word (B Act. Power) static const uint16_t ATM90E32_REGISTER_PMEANCLSB = 0xC3; // Lower Word (C Act. Power) static const uint16_t ATM90E32_REGISTER_QMEANTLSB = 0xC4; // Lower Word (Tot. React. Power) +static const uint16_t ATM90E32_REGISTER_QMEANLSB = 0xC5; // Lower Word Reg Base (Reactive Power) static const uint16_t ATM90E32_REGISTER_QMEANALSB = 0xC5; // Lower Word (A React. Power) static const uint16_t ATM90E32_REGISTER_QMEANBLSB = 0xC6; // Lower Word (B React. Power) static const uint16_t ATM90E32_REGISTER_QMEANCLSB = 0xC7; // Lower Word (C React. Power) @@ -207,12 +214,15 @@ static const uint16_t ATM90E32_REGISTER_PMEANAF = 0xD1; // A Active Fund. Power static const uint16_t ATM90E32_REGISTER_PMEANBF = 0xD2; // B Active Fund. Power static const uint16_t ATM90E32_REGISTER_PMEANCF = 0xD3; // C Active Fund. Power static const uint16_t ATM90E32_REGISTER_PMEANTH = 0xD4; // Total Active Harm. Power +static const uint16_t ATM90E32_REGISTER_PMEANH = 0xD5; // Active Harm. Power Reg Base static const uint16_t ATM90E32_REGISTER_PMEANAH = 0xD5; // A Active Harm. Power static const uint16_t ATM90E32_REGISTER_PMEANBH = 0xD6; // B Active Harm. Power static const uint16_t ATM90E32_REGISTER_PMEANCH = 0xD7; // C Active Harm. Power +static const uint16_t ATM90E32_REGISTER_URMS = 0xD9; // RMS Voltage Reg Base static const uint16_t ATM90E32_REGISTER_URMSA = 0xD9; // A RMS Voltage static const uint16_t ATM90E32_REGISTER_URMSB = 0xDA; // B RMS Voltage static const uint16_t ATM90E32_REGISTER_URMSC = 0xDB; // C RMS Voltage +static const uint16_t ATM90E32_REGISTER_IRMS = 0xDD; // RMS Current Reg Base static const uint16_t ATM90E32_REGISTER_IRMSA = 0xDD; // A RMS Current static const uint16_t ATM90E32_REGISTER_IRMSB = 0xDE; // B RMS Current static const uint16_t ATM90E32_REGISTER_IRMSC = 0xDF; // C RMS Current @@ -223,12 +233,15 @@ static const uint16_t ATM90E32_REGISTER_PMEANAFLSB = 0xE1; // Lower Word (A Act static const uint16_t ATM90E32_REGISTER_PMEANBFLSB = 0xE2; // Lower Word (B Act. Fund. Power) static const uint16_t ATM90E32_REGISTER_PMEANCFLSB = 0xE3; // Lower Word (C Act. Fund. Power) static const uint16_t ATM90E32_REGISTER_PMEANTHLSB = 0xE4; // Lower Word (Tot. Act. Harm. Power) +static const uint16_t ATM90E32_REGISTER_PMEANHLSB = 0xE5; // Lower Word (A Act. Harm. Power) Reg Base static const uint16_t ATM90E32_REGISTER_PMEANAHLSB = 0xE5; // Lower Word (A Act. Harm. Power) static const uint16_t ATM90E32_REGISTER_PMEANBHLSB = 0xE6; // Lower Word (B Act. Harm. Power) static const uint16_t ATM90E32_REGISTER_PMEANCHLSB = 0xE7; // Lower Word (C Act. Harm. Power) +static const uint16_t ATM90E32_REGISTER_URMSLSB = 0xE9; // Lower Word RMS Voltage Reg Base static const uint16_t ATM90E32_REGISTER_URMSALSB = 0xE9; // Lower Word (A RMS Voltage) static const uint16_t ATM90E32_REGISTER_URMSBLSB = 0xEA; // Lower Word (B RMS Voltage) static const uint16_t ATM90E32_REGISTER_URMSCLSB = 0xEB; // Lower Word (C RMS Voltage) +static const uint16_t ATM90E32_REGISTER_IRMSLSB = 0xED; // Lower Word RMS Current Reg Base static const uint16_t ATM90E32_REGISTER_IRMSALSB = 0xED; // Lower Word (A RMS Current) static const uint16_t ATM90E32_REGISTER_IRMSBLSB = 0xEE; // Lower Word (B RMS Current) static const uint16_t ATM90E32_REGISTER_IRMSCLSB = 0xEF; // Lower Word (C RMS Current) @@ -237,10 +250,12 @@ static const uint16_t ATM90E32_REGISTER_IRMSCLSB = 0xEF; // Lower Word (C RMS static const uint16_t ATM90E32_REGISTER_UPEAKA = 0xF1; // A Voltage Peak static const uint16_t ATM90E32_REGISTER_UPEAKB = 0xF2; // B Voltage Peak static const uint16_t ATM90E32_REGISTER_UPEAKC = 0xF3; // C Voltage Peak +static const uint16_t ATM90E32_REGISTER_IPEAK = 0xF5; // Peak Current Reg Base static const uint16_t ATM90E32_REGISTER_IPEAKA = 0xF5; // A Current Peak static const uint16_t ATM90E32_REGISTER_IPEAKB = 0xF6; // B Current Peak static const uint16_t ATM90E32_REGISTER_IPEAKC = 0xF7; // C Current Peak static const uint16_t ATM90E32_REGISTER_FREQ = 0xF8; // Frequency +static const uint16_t ATM90E32_REGISTER_PANGLE = 0xF9; // Mean Phase Angle Reg Base static const uint16_t ATM90E32_REGISTER_PANGLEA = 0xF9; // A Mean Phase Angle static const uint16_t ATM90E32_REGISTER_PANGLEB = 0xFA; // B Mean Phase Angle static const uint16_t ATM90E32_REGISTER_PANGLEC = 0xFB; // C Mean Phase Angle diff --git a/esphome/components/atm90e32/sensor.py b/esphome/components/atm90e32/sensor.py index af4d2ef412..2bc7f0498d 100644 --- a/esphome/components/atm90e32/sensor.py +++ b/esphome/components/atm90e32/sensor.py @@ -9,8 +9,10 @@ from esphome.const import ( CONF_PHASE_A, CONF_PHASE_B, CONF_PHASE_C, + CONF_PHASE_ANGLE, CONF_POWER, CONF_POWER_FACTOR, + CONF_APPARENT_POWER, CONF_FREQUENCY, CONF_FORWARD_ACTIVE_ENERGY, CONF_REVERSE_ACTIVE_ENERGY, @@ -25,12 +27,13 @@ from esphome.const import ( ICON_CURRENT_AC, STATE_CLASS_MEASUREMENT, STATE_CLASS_TOTAL_INCREASING, + UNIT_AMPERE, + UNIT_DEGREES, + UNIT_CELSIUS, UNIT_HERTZ, UNIT_VOLT, - UNIT_AMPERE, - UNIT_WATT, - UNIT_CELSIUS, UNIT_VOLT_AMPS_REACTIVE, + UNIT_WATT, UNIT_WATT_HOURS, ) @@ -40,6 +43,10 @@ CONF_GAIN_PGA = "gain_pga" CONF_CURRENT_PHASES = "current_phases" CONF_GAIN_VOLTAGE = "gain_voltage" CONF_GAIN_CT = "gain_ct" +CONF_HARMONIC_POWER = "harmonic_power" +CONF_PEAK_CURRENT = "peak_current" +CONF_PEAK_CURRENT_SIGNED = "peak_current_signed" +UNIT_DEG = "degrees" LINE_FREQS = { "50HZ": 50, "60HZ": 60, @@ -85,6 +92,12 @@ ATM90E32_PHASE_SCHEMA = cv.Schema( accuracy_decimals=2, state_class=STATE_CLASS_MEASUREMENT, ), + cv.Optional(CONF_APPARENT_POWER): sensor.sensor_schema( + unit_of_measurement=UNIT_WATT, + accuracy_decimals=2, + device_class=DEVICE_CLASS_POWER, + state_class=STATE_CLASS_MEASUREMENT, + ), cv.Optional(CONF_POWER_FACTOR): sensor.sensor_schema( accuracy_decimals=2, device_class=DEVICE_CLASS_POWER_FACTOR, @@ -102,6 +115,24 @@ ATM90E32_PHASE_SCHEMA = cv.Schema( device_class=DEVICE_CLASS_ENERGY, state_class=STATE_CLASS_TOTAL_INCREASING, ), + cv.Optional(CONF_PHASE_ANGLE): sensor.sensor_schema( + unit_of_measurement=UNIT_DEGREES, + accuracy_decimals=2, + device_class=DEVICE_CLASS_POWER, + state_class=STATE_CLASS_MEASUREMENT, + ), + cv.Optional(CONF_HARMONIC_POWER): sensor.sensor_schema( + unit_of_measurement=UNIT_WATT, + accuracy_decimals=2, + device_class=DEVICE_CLASS_POWER, + state_class=STATE_CLASS_MEASUREMENT, + ), + cv.Optional(CONF_PEAK_CURRENT): sensor.sensor_schema( + unit_of_measurement=UNIT_AMPERE, + accuracy_decimals=2, + device_class=DEVICE_CLASS_CURRENT, + state_class=STATE_CLASS_MEASUREMENT, + ), cv.Optional(CONF_GAIN_VOLTAGE, default=7305): cv.uint16_t, cv.Optional(CONF_GAIN_CT, default=27961): cv.uint16_t, } @@ -132,6 +163,7 @@ CONFIG_SCHEMA = ( CURRENT_PHASES, upper=True ), cv.Optional(CONF_GAIN_PGA, default="2X"): cv.enum(PGA_GAINS, upper=True), + cv.Optional(CONF_PEAK_CURRENT_SIGNED, default=False): cv.boolean, } ) .extend(cv.polling_component_schema("60s")) @@ -162,6 +194,9 @@ async def to_code(config): if reactive_power_config := conf.get(CONF_REACTIVE_POWER): sens = await sensor.new_sensor(reactive_power_config) cg.add(var.set_reactive_power_sensor(i, sens)) + if apparent_power_config := conf.get(CONF_APPARENT_POWER): + sens = await sensor.new_sensor(apparent_power_config) + cg.add(var.set_apparent_power_sensor(i, sens)) if power_factor_config := conf.get(CONF_POWER_FACTOR): sens = await sensor.new_sensor(power_factor_config) cg.add(var.set_power_factor_sensor(i, sens)) @@ -171,6 +206,15 @@ async def to_code(config): if reverse_active_energy_config := conf.get(CONF_REVERSE_ACTIVE_ENERGY): sens = await sensor.new_sensor(reverse_active_energy_config) cg.add(var.set_reverse_active_energy_sensor(i, sens)) + if phase_angle_config := conf.get(CONF_PHASE_ANGLE): + sens = await sensor.new_sensor(phase_angle_config) + cg.add(var.set_phase_angle_sensor(i, sens)) + if harmonic_active_power_config := conf.get(CONF_HARMONIC_POWER): + sens = await sensor.new_sensor(harmonic_active_power_config) + cg.add(var.set_harmonic_active_power_sensor(i, sens)) + if peak_current_config := conf.get(CONF_PEAK_CURRENT): + sens = await sensor.new_sensor(peak_current_config) + cg.add(var.set_peak_current_sensor(i, sens)) if frequency_config := config.get(CONF_FREQUENCY): sens = await sensor.new_sensor(frequency_config) @@ -182,3 +226,4 @@ async def to_code(config): cg.add(var.set_line_freq(config[CONF_LINE_FREQUENCY])) cg.add(var.set_current_phases(config[CONF_CURRENT_PHASES])) cg.add(var.set_pga_gain(config[CONF_GAIN_PGA])) + cg.add(var.set_peak_current_signed(config[CONF_PEAK_CURRENT_SIGNED]))