Merge pull request #2346 from esphome/bump-2021.9.1

2021.9.1
This commit is contained in:
Jesse Hills 2021-09-20 14:56:48 +12:00 committed by GitHub
commit d26c2b1a44
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
20 changed files with 353 additions and 315 deletions

View file

@ -422,7 +422,7 @@ bool APIConnection::send_sensor_info(sensor::Sensor *sensor) {
msg.accuracy_decimals = sensor->get_accuracy_decimals();
msg.force_update = sensor->get_force_update();
msg.device_class = sensor->get_device_class();
msg.state_class = static_cast<enums::SensorStateClass>(sensor->state_class);
msg.state_class = static_cast<enums::SensorStateClass>(sensor->get_state_class());
msg.disabled_by_default = sensor->is_disabled_by_default();
return this->send_list_entities_sensor_response(msg);
@ -702,15 +702,7 @@ bool APIConnection::send_log_message(int level, const char *tag, const char *lin
// string message = 3;
buffer.encode_string(3, line, strlen(line));
// SubscribeLogsResponse - 29
bool success = this->send_buffer(buffer, 29);
if (!success) {
buffer = this->create_buffer();
// bool send_failed = 4;
buffer.encode_bool(4, true);
return this->send_buffer(buffer, 29);
} else {
return true;
}
}
HelloResponse APIConnection::hello(const HelloRequest &msg) {
@ -783,8 +775,23 @@ void APIConnection::subscribe_home_assistant_states(const SubscribeHomeAssistant
bool APIConnection::send_buffer(ProtoWriteBuffer buffer, uint32_t message_type) {
if (this->remove_)
return false;
if (!this->helper_->can_write_without_blocking())
if (!this->helper_->can_write_without_blocking()) {
delay(0);
APIError err = helper_->loop();
if (err != APIError::OK) {
on_fatal_error();
ESP_LOGW(TAG, "%s: Socket operation failed: %s errno=%d", client_info_.c_str(), api_error_to_str(err), errno);
return false;
}
if (!this->helper_->can_write_without_blocking()) {
// SubscribeLogsResponse
if (message_type != 29) {
ESP_LOGV(TAG, "Cannot send message because of TCP buffer space");
}
delay(0);
return false;
}
}
APIError err = this->helper_->write_packet(message_type, buffer.get_buffer()->data(), buffer.get_buffer()->size());
if (err == APIError::WOULD_BLOCK)

View file

@ -125,13 +125,6 @@ APIError APINoiseFrameHelper::init() {
HELPER_LOG("Setting nonblocking failed with errno %d", errno);
return APIError::TCP_NONBLOCKING_FAILED;
}
int enable = 1;
err = socket_->setsockopt(IPPROTO_TCP, TCP_NODELAY, &enable, sizeof(int));
if (err != 0) {
state_ = State::FAILED;
HELPER_LOG("Setting nodelay failed with errno %d", errno);
return APIError::TCP_NODELAY_FAILED;
}
// init prologue
prologue_.insert(prologue_.end(), PROLOGUE_INIT, PROLOGUE_INIT + strlen(PROLOGUE_INIT));
@ -494,12 +487,13 @@ APIError APINoiseFrameHelper::write_packet(uint16_t type, const uint8_t *payload
size_t total_len = 3 + mbuf.size;
tmpbuf[1] = (uint8_t)(mbuf.size >> 8);
tmpbuf[2] = (uint8_t) mbuf.size;
struct iovec iov;
iov.iov_base = &tmpbuf[0];
iov.iov_len = total_len;
// write raw to not have two packets sent if NAGLE disabled
aerr = write_raw_(&tmpbuf[0], total_len);
if (aerr != APIError::OK) {
return aerr;
}
return APIError::OK;
return write_raw_(&iov, 1);
}
APIError APINoiseFrameHelper::try_send_tx_buf_() {
// try send from tx_buf
@ -526,16 +520,19 @@ APIError APINoiseFrameHelper::try_send_tx_buf_() {
* @param data The data to write
* @param len The length of data
*/
APIError APINoiseFrameHelper::write_raw_(const uint8_t *data, size_t len) {
if (len == 0)
APIError APINoiseFrameHelper::write_raw_(const struct iovec *iov, int iovcnt) {
if (iovcnt == 0)
return APIError::OK;
int err;
APIError aerr;
// uncomment for even more debugging
size_t total_write_len = 0;
for (int i = 0; i < iovcnt; i++) {
#ifdef HELPER_LOG_PACKETS
ESP_LOGVV(TAG, "Sending raw: %s", hexencode(data, len).c_str());
ESP_LOGVV(TAG, "Sending raw: %s", hexencode(reinterpret_cast<uint8_t *>(iov[i].iov_base), iov[i].iov_len).c_str());
#endif
total_write_len += iov[i].iov_len;
}
if (!tx_buf_.empty()) {
// try to empty tx_buf_ first
@ -546,41 +543,56 @@ APIError APINoiseFrameHelper::write_raw_(const uint8_t *data, size_t len) {
if (!tx_buf_.empty()) {
// tx buf not empty, can't write now because then stream would be inconsistent
tx_buf_.insert(tx_buf_.end(), data, data + len);
for (int i = 0; i < iovcnt; i++) {
tx_buf_.insert(tx_buf_.end(), reinterpret_cast<uint8_t *>(iov[i].iov_base),
reinterpret_cast<uint8_t *>(iov[i].iov_base) + iov[i].iov_len);
}
return APIError::OK;
}
ssize_t sent = socket_->write(data, len);
ssize_t sent = socket_->writev(iov, iovcnt);
if (is_would_block(sent)) {
// operation would block, add buffer to tx_buf
tx_buf_.insert(tx_buf_.end(), data, data + len);
for (int i = 0; i < iovcnt; i++) {
tx_buf_.insert(tx_buf_.end(), reinterpret_cast<uint8_t *>(iov[i].iov_base),
reinterpret_cast<uint8_t *>(iov[i].iov_base) + iov[i].iov_len);
}
return APIError::OK;
} else if (sent == -1) {
// an error occured
state_ = State::FAILED;
HELPER_LOG("Socket write failed with errno %d", errno);
return APIError::SOCKET_WRITE_FAILED;
} else if (sent != len) {
} else if (sent != total_write_len) {
// partially sent, add end to tx_buf
tx_buf_.insert(tx_buf_.end(), data + sent, data + len);
size_t to_consume = sent;
for (int i = 0; i < iovcnt; i++) {
if (to_consume >= iov[i].iov_len) {
to_consume -= iov[i].iov_len;
} else {
tx_buf_.insert(tx_buf_.end(), reinterpret_cast<uint8_t *>(iov[i].iov_base) + to_consume,
reinterpret_cast<uint8_t *>(iov[i].iov_base) + iov[i].iov_len);
to_consume = 0;
}
}
return APIError::OK;
}
// fully sent
return APIError::OK;
}
APIError APINoiseFrameHelper::write_frame_(const uint8_t *data, size_t len) {
APIError aerr;
uint8_t header[3];
header[0] = 0x01; // indicator
header[1] = (uint8_t)(len >> 8);
header[2] = (uint8_t) len;
aerr = write_raw_(header, 3);
if (aerr != APIError::OK)
return aerr;
aerr = write_raw_(data, len);
return aerr;
struct iovec iov[2];
iov[0].iov_base = header;
iov[0].iov_len = 3;
iov[1].iov_base = const_cast<uint8_t *>(data);
iov[1].iov_len = len;
return write_raw_(iov, 2);
}
/** Initiate the data structures for the handshake.
@ -709,13 +721,6 @@ APIError APIPlaintextFrameHelper::init() {
HELPER_LOG("Setting nonblocking failed with errno %d", errno);
return APIError::TCP_NONBLOCKING_FAILED;
}
int enable = 1;
err = socket_->setsockopt(IPPROTO_TCP, TCP_NODELAY, &enable, sizeof(int));
if (err != 0) {
state_ = State::FAILED;
HELPER_LOG("Setting nodelay failed with errno %d", errno);
return APIError::TCP_NODELAY_FAILED;
}
state_ = State::DATA;
return APIError::OK;
@ -863,15 +868,13 @@ APIError APIPlaintextFrameHelper::write_packet(uint16_t type, const uint8_t *pay
ProtoVarInt(payload_len).encode(header);
ProtoVarInt(type).encode(header);
aerr = write_raw_(&header[0], header.size());
if (aerr != APIError::OK) {
return aerr;
}
aerr = write_raw_(payload, payload_len);
if (aerr != APIError::OK) {
return aerr;
}
return APIError::OK;
struct iovec iov[2];
iov[0].iov_base = &header[0];
iov[0].iov_len = header.size();
iov[1].iov_base = const_cast<uint8_t *>(payload);
iov[1].iov_len = payload_len;
return write_raw_(iov, 2);
}
APIError APIPlaintextFrameHelper::try_send_tx_buf_() {
// try send from tx_buf
@ -896,16 +899,19 @@ APIError APIPlaintextFrameHelper::try_send_tx_buf_() {
* @param data The data to write
* @param len The length of data
*/
APIError APIPlaintextFrameHelper::write_raw_(const uint8_t *data, size_t len) {
if (len == 0)
APIError APIPlaintextFrameHelper::write_raw_(const struct iovec *iov, int iovcnt) {
if (iovcnt == 0)
return APIError::OK;
int err;
APIError aerr;
// uncomment for even more debugging
size_t total_write_len = 0;
for (int i = 0; i < iovcnt; i++) {
#ifdef HELPER_LOG_PACKETS
ESP_LOGVV(TAG, "Sending raw: %s", hexencode(data, len).c_str());
ESP_LOGVV(TAG, "Sending raw: %s", hexencode(reinterpret_cast<uint8_t *>(iov[i].iov_base), iov[i].iov_len).c_str());
#endif
total_write_len += iov[i].iov_len;
}
if (!tx_buf_.empty()) {
// try to empty tx_buf_ first
@ -916,23 +922,38 @@ APIError APIPlaintextFrameHelper::write_raw_(const uint8_t *data, size_t len) {
if (!tx_buf_.empty()) {
// tx buf not empty, can't write now because then stream would be inconsistent
tx_buf_.insert(tx_buf_.end(), data, data + len);
for (int i = 0; i < iovcnt; i++) {
tx_buf_.insert(tx_buf_.end(), reinterpret_cast<uint8_t *>(iov[i].iov_base),
reinterpret_cast<uint8_t *>(iov[i].iov_base) + iov[i].iov_len);
}
return APIError::OK;
}
ssize_t sent = socket_->write(data, len);
ssize_t sent = socket_->writev(iov, iovcnt);
if (is_would_block(sent)) {
// operation would block, add buffer to tx_buf
tx_buf_.insert(tx_buf_.end(), data, data + len);
for (int i = 0; i < iovcnt; i++) {
tx_buf_.insert(tx_buf_.end(), reinterpret_cast<uint8_t *>(iov[i].iov_base),
reinterpret_cast<uint8_t *>(iov[i].iov_base) + iov[i].iov_len);
}
return APIError::OK;
} else if (sent == -1) {
// an error occured
state_ = State::FAILED;
HELPER_LOG("Socket write failed with errno %d", errno);
return APIError::SOCKET_WRITE_FAILED;
} else if (sent != len) {
} else if (sent != total_write_len) {
// partially sent, add end to tx_buf
tx_buf_.insert(tx_buf_.end(), data + sent, data + len);
size_t to_consume = sent;
for (int i = 0; i < iovcnt; i++) {
if (to_consume >= iov[i].iov_len) {
to_consume -= iov[i].iov_len;
} else {
tx_buf_.insert(tx_buf_.end(), reinterpret_cast<uint8_t *>(iov[i].iov_base) + to_consume,
reinterpret_cast<uint8_t *>(iov[i].iov_base) + iov[i].iov_len);
to_consume = 0;
}
}
return APIError::OK;
}
// fully sent

View file

@ -58,6 +58,7 @@ const char *api_error_to_str(APIError err);
class APIFrameHelper {
public:
virtual ~APIFrameHelper() = default;
virtual APIError init() = 0;
virtual APIError loop() = 0;
virtual APIError read_packet(ReadPacketBuffer *buffer) = 0;
@ -96,7 +97,7 @@ class APINoiseFrameHelper : public APIFrameHelper {
APIError try_read_frame_(ParsedFrame *frame);
APIError try_send_tx_buf_();
APIError write_frame_(const uint8_t *data, size_t len);
APIError write_raw_(const uint8_t *data, size_t len);
APIError write_raw_(const struct iovec *iov, int iovcnt);
APIError init_handshake_();
APIError check_handshake_finished_();
void send_explicit_handshake_reject_(const std::string &reason);
@ -154,7 +155,7 @@ class APIPlaintextFrameHelper : public APIFrameHelper {
APIError try_read_frame_(ParsedFrame *frame);
APIError try_send_tx_buf_();
APIError write_raw_(const uint8_t *data, size_t len);
APIError write_raw_(const struct iovec *iov, int iovcnt);
std::unique_ptr<socket::Socket> socket_;

View file

@ -11,7 +11,7 @@ template<typename... Ts> class OpenAction : public Action<Ts...> {
public:
explicit OpenAction(Cover *cover) : cover_(cover) {}
void play(Ts... x) override { this->cover_->open(); }
void play(Ts... x) override { this->cover_->make_call().set_command_open().perform(); }
protected:
Cover *cover_;
@ -21,7 +21,7 @@ template<typename... Ts> class CloseAction : public Action<Ts...> {
public:
explicit CloseAction(Cover *cover) : cover_(cover) {}
void play(Ts... x) override { this->cover_->close(); }
void play(Ts... x) override { this->cover_->make_call().set_command_close().perform(); }
protected:
Cover *cover_;
@ -31,7 +31,7 @@ template<typename... Ts> class StopAction : public Action<Ts...> {
public:
explicit StopAction(Cover *cover) : cover_(cover) {}
void play(Ts... x) override { this->cover_->stop(); }
void play(Ts... x) override { this->cover_->make_call().set_command_stop().perform(); }
protected:
Cover *cover_;

View file

@ -11,7 +11,7 @@ class DemoSensor : public sensor::Sensor, public PollingComponent {
public:
void update() override {
float val = random_float();
bool increasing = this->state_class == sensor::STATE_CLASS_TOTAL_INCREASING;
bool increasing = this->get_state_class() == sensor::STATE_CLASS_TOTAL_INCREASING;
if (increasing) {
float base = isnan(this->state) ? 0.0f : this->state;
this->publish_state(base + val * 10);

View file

@ -27,7 +27,7 @@ std::unique_ptr<LightTransformer> AddressableLight::create_default_transition()
return make_unique<AddressableLightTransformer>(*this);
}
Color esp_color_from_light_color_values(LightColorValues val) {
Color color_from_light_color_values(LightColorValues val) {
auto r = to_uint8_scale(val.get_color_brightness() * val.get_red());
auto g = to_uint8_scale(val.get_color_brightness() * val.get_green());
auto b = to_uint8_scale(val.get_color_brightness() * val.get_blue());
@ -44,7 +44,7 @@ void AddressableLight::update_state(LightState *state) {
return;
// don't use LightState helper, gamma correction+brightness is handled by ESPColorView
this->all() = esp_color_from_light_color_values(val);
this->all() = color_from_light_color_values(val);
this->schedule_show();
}
@ -54,7 +54,7 @@ void AddressableLightTransformer::start() {
return;
auto end_values = this->target_values_;
this->target_color_ = esp_color_from_light_color_values(end_values);
this->target_color_ = color_from_light_color_values(end_values);
// our transition will handle brightness, disable brightness in correction.
this->light_.correction_.set_local_brightness(255);
@ -62,10 +62,13 @@ void AddressableLightTransformer::start() {
}
optional<LightColorValues> AddressableLightTransformer::apply() {
// Don't try to transition over running effects, instead immediately use the target values. write_state() and the
// effects pick up the change from current_values.
float smoothed_progress = LightTransitionTransformer::smoothed_progress(this->get_progress_());
// When running an output-buffer modifying effect, don't try to transition individual LEDs, but instead just fade the
// LightColorValues. write_state() then picks up the change in brightness, and the color change is picked up by the
// effects which respect it.
if (this->light_.is_effect_active())
return this->target_values_;
return LightColorValues::lerp(this->get_start_values(), this->get_target_values(), smoothed_progress);
// Use a specialized transition for addressable lights: instead of using a unified transition for
// all LEDs, we use the current state of each LED as the start.
@ -75,8 +78,6 @@ optional<LightColorValues> AddressableLightTransformer::apply() {
// Instead, we "fake" the look of the LERP by using an exponential average over time and using
// dynamically-calculated alpha values to match the look.
float smoothed_progress = LightTransitionTransformer::smoothed_progress(this->get_progress_());
float denom = (1.0f - smoothed_progress);
float alpha = denom == 0.0f ? 0.0f : (smoothed_progress - this->last_transition_progress_) / denom;

View file

@ -19,6 +19,9 @@ namespace light {
using ESPColor ESPDEPRECATED("esphome::light::ESPColor is deprecated, use esphome::Color instead.", "v1.21") = Color;
/// Convert the color information from a `LightColorValues` object to a `Color` object (does not apply brightness).
Color color_from_light_color_values(LightColorValues val);
class AddressableLight : public LightOutput, public Component {
public:
virtual int32_t size() const = 0;

View file

@ -38,11 +38,8 @@ class AddressableLightEffect : public LightEffect {
void stop() override { this->get_addressable_()->set_effect_active(false); }
virtual void apply(AddressableLight &it, const Color &current_color) = 0;
void apply() override {
LightColorValues color = this->state_->remote_values;
// not using any color correction etc. that will be handled by the addressable layer
Color current_color =
Color(static_cast<uint8_t>(color.get_red() * 255), static_cast<uint8_t>(color.get_green() * 255),
static_cast<uint8_t>(color.get_blue() * 255), static_cast<uint8_t>(color.get_white() * 255));
// not using any color correction etc. that will be handled by the addressable layer through ESPColorCorrection
Color current_color = color_from_light_color_values(this->state_->remote_values);
this->apply(*this->get_addressable_(), current_color);
}

View file

@ -121,6 +121,9 @@ void LightState::loop() {
}
if (this->transformer_->is_finished()) {
// if the transition has written directly to the output, current_values is outdated, so update it
this->current_values = this->transformer_->get_target_values();
this->transformer_->stop();
this->transformer_ = nullptr;
this->target_state_reached_callback_.call();

View file

@ -12,12 +12,18 @@ namespace light {
class LightTransitionTransformer : public LightTransformer {
public:
void start() override {
// When turning light on from off state, use colors from target state.
// When turning light on from off state, use target state and only increase brightness from zero.
if (!this->start_values_.is_on() && this->target_values_.is_on()) {
this->start_values_ = LightColorValues(this->target_values_);
this->start_values_.set_brightness(0.0f);
}
// When turning light off from on state, use source state and only decrease brightness to zero.
if (this->start_values_.is_on() && !this->target_values_.is_on()) {
this->target_values_ = LightColorValues(this->start_values_);
this->target_values_.set_brightness(0.0f);
}
// When changing color mode, go through off state, as color modes are orthogonal and there can't be two active.
if (this->start_values_.get_color_mode() != this->target_values_.get_color_mode()) {
this->changing_color_mode_ = true;

View file

@ -31,17 +31,10 @@ void MQTTSensorComponent::dump_config() {
std::string MQTTSensorComponent::component_type() const { return "sensor"; }
uint32_t MQTTSensorComponent::get_expire_after() const {
if (this->expire_after_.has_value()) {
if (this->expire_after_.has_value())
return *this->expire_after_;
} else {
#ifdef USE_DEEP_SLEEP
if (deep_sleep::global_has_deep_sleep) {
return 0;
}
#endif
return this->sensor_->calculate_expected_filter_update_interval() * 5;
}
}
void MQTTSensorComponent::set_expire_after(uint32_t expire_after) { this->expire_after_ = expire_after; }
void MQTTSensorComponent::disable_expire_after() { this->expire_after_ = 0; }
std::string MQTTSensorComponent::friendly_name() const { return this->sensor_->get_name(); }
@ -61,8 +54,8 @@ void MQTTSensorComponent::send_discovery(JsonObject &root, mqtt::SendDiscoveryCo
if (this->sensor_->get_force_update())
root["force_update"] = true;
if (this->sensor_->state_class != STATE_CLASS_NONE)
root["state_class"] = state_class_to_string(this->sensor_->state_class);
if (this->sensor_->get_state_class() != STATE_CLASS_NONE)
root["state_class"] = state_class_to_string(this->sensor_->get_state_class());
config.command_topic = false;
}

View file

@ -8,7 +8,6 @@ namespace sensor {
static const char *const TAG = "sensor.filter";
// Filter
uint32_t Filter::expected_interval(uint32_t input) { return input; }
void Filter::input(float value) {
ESP_LOGVV(TAG, "Filter(%p)::input(%f)", this, value);
optional<float> out = this->new_value(value);
@ -29,15 +28,6 @@ void Filter::initialize(Sensor *parent, Filter *next) {
this->parent_ = parent;
this->next_ = next;
}
uint32_t Filter::calculate_remaining_interval(uint32_t input) {
uint32_t this_interval = this->expected_interval(input);
ESP_LOGVV(TAG, "Filter(%p)::calculate_remaining_interval(%u) -> %u", this, input, this_interval);
if (this->next_ == nullptr) {
return this_interval;
} else {
return this->next_->calculate_remaining_interval(this_interval);
}
}
// MedianFilter
MedianFilter::MedianFilter(size_t window_size, size_t send_every, size_t send_first_at)
@ -75,8 +65,6 @@ optional<float> MedianFilter::new_value(float value) {
return {};
}
uint32_t MedianFilter::expected_interval(uint32_t input) { return input * this->send_every_; }
// MinFilter
MinFilter::MinFilter(size_t window_size, size_t send_every, size_t send_first_at)
: send_every_(send_every), send_at_(send_every - send_first_at), window_size_(window_size) {}
@ -106,8 +94,6 @@ optional<float> MinFilter::new_value(float value) {
return {};
}
uint32_t MinFilter::expected_interval(uint32_t input) { return input * this->send_every_; }
// MaxFilter
MaxFilter::MaxFilter(size_t window_size, size_t send_every, size_t send_first_at)
: send_every_(send_every), send_at_(send_every - send_first_at), window_size_(window_size) {}
@ -137,8 +123,6 @@ optional<float> MaxFilter::new_value(float value) {
return {};
}
uint32_t MaxFilter::expected_interval(uint32_t input) { return input * this->send_every_; }
// SlidingWindowMovingAverageFilter
SlidingWindowMovingAverageFilter::SlidingWindowMovingAverageFilter(size_t window_size, size_t send_every,
size_t send_first_at)
@ -177,8 +161,6 @@ optional<float> SlidingWindowMovingAverageFilter::new_value(float value) {
return {};
}
uint32_t SlidingWindowMovingAverageFilter::expected_interval(uint32_t input) { return input * this->send_every_; }
// ExponentialMovingAverageFilter
ExponentialMovingAverageFilter::ExponentialMovingAverageFilter(float alpha, size_t send_every)
: send_every_(send_every), send_at_(send_every - 1), alpha_(alpha) {}
@ -203,7 +185,6 @@ optional<float> ExponentialMovingAverageFilter::new_value(float value) {
}
void ExponentialMovingAverageFilter::set_send_every(size_t send_every) { this->send_every_ = send_every; }
void ExponentialMovingAverageFilter::set_alpha(float alpha) { this->alpha_ = alpha; }
uint32_t ExponentialMovingAverageFilter::expected_interval(uint32_t input) { return input * this->send_every_; }
// LambdaFilter
LambdaFilter::LambdaFilter(lambda_filter_t lambda_filter) : lambda_filter_(std::move(lambda_filter)) {}
@ -296,14 +277,6 @@ void OrFilter::initialize(Sensor *parent, Filter *next) {
this->phi_.initialize(parent, nullptr);
}
uint32_t OrFilter::expected_interval(uint32_t input) {
uint32_t min_interval = UINT32_MAX;
for (Filter *filter : this->filters_) {
min_interval = std::min(min_interval, filter->calculate_remaining_interval(input));
}
return min_interval;
}
// DebounceFilter
optional<float> DebounceFilter::new_value(float value) {
this->set_timeout("debounce", this->time_period_, [this, value]() { this->output(value); });
@ -324,7 +297,6 @@ optional<float> HeartbeatFilter::new_value(float value) {
return {};
}
uint32_t HeartbeatFilter::expected_interval(uint32_t input) { return this->time_period_; }
void HeartbeatFilter::setup() {
this->set_interval("heartbeat", this->time_period_, [this]() {
ESP_LOGVV(TAG, "HeartbeatFilter(%p)::interval(has_value=%s, last_input=%f)", this, YESNO(this->has_value_),

View file

@ -33,11 +33,6 @@ class Filter {
void input(float value);
/// Return the amount of time that this filter is expected to take based on the input time interval.
virtual uint32_t expected_interval(uint32_t input);
uint32_t calculate_remaining_interval(uint32_t input);
void output(float value);
protected:
@ -68,8 +63,6 @@ class MedianFilter : public Filter {
void set_send_every(size_t send_every);
void set_window_size(size_t window_size);
uint32_t expected_interval(uint32_t input) override;
protected:
std::deque<float> queue_;
size_t send_every_;
@ -98,8 +91,6 @@ class MinFilter : public Filter {
void set_send_every(size_t send_every);
void set_window_size(size_t window_size);
uint32_t expected_interval(uint32_t input) override;
protected:
std::deque<float> queue_;
size_t send_every_;
@ -128,8 +119,6 @@ class MaxFilter : public Filter {
void set_send_every(size_t send_every);
void set_window_size(size_t window_size);
uint32_t expected_interval(uint32_t input) override;
protected:
std::deque<float> queue_;
size_t send_every_;
@ -159,8 +148,6 @@ class SlidingWindowMovingAverageFilter : public Filter {
void set_send_every(size_t send_every);
void set_window_size(size_t window_size);
uint32_t expected_interval(uint32_t input) override;
protected:
float sum_{0.0};
std::deque<float> queue_;
@ -183,8 +170,6 @@ class ExponentialMovingAverageFilter : public Filter {
void set_send_every(size_t send_every);
void set_alpha(float alpha);
uint32_t expected_interval(uint32_t input) override;
protected:
bool first_value_{true};
float accumulator_{0.0f};
@ -279,8 +264,6 @@ class HeartbeatFilter : public Filter, public Component {
optional<float> new_value(float value) override;
uint32_t expected_interval(uint32_t input) override;
float get_setup_priority() const override;
protected:
@ -306,8 +289,6 @@ class OrFilter : public Filter {
void initialize(Sensor *parent, Filter *next) override;
uint32_t expected_interval(uint32_t input) override;
optional<float> new_value(float value) override;
protected:

View file

@ -6,7 +6,7 @@ namespace sensor {
static const char *const TAG = "sensor";
const char *state_class_to_string(StateClass state_class) {
std::string state_class_to_string(StateClass state_class) {
switch (state_class) {
case STATE_CLASS_MEASUREMENT:
return "measurement";
@ -18,6 +18,51 @@ const char *state_class_to_string(StateClass state_class) {
}
}
Sensor::Sensor(const std::string &name) : Nameable(name), state(NAN), raw_state(NAN) {}
Sensor::Sensor() : Sensor("") {}
std::string Sensor::get_unit_of_measurement() {
if (this->unit_of_measurement_.has_value())
return *this->unit_of_measurement_;
return this->unit_of_measurement();
}
void Sensor::set_unit_of_measurement(const std::string &unit_of_measurement) {
this->unit_of_measurement_ = unit_of_measurement;
}
std::string Sensor::unit_of_measurement() { return ""; }
std::string Sensor::get_icon() {
if (this->icon_.has_value())
return *this->icon_;
return this->icon();
}
void Sensor::set_icon(const std::string &icon) { this->icon_ = icon; }
std::string Sensor::icon() { return ""; }
int8_t Sensor::get_accuracy_decimals() {
if (this->accuracy_decimals_.has_value())
return *this->accuracy_decimals_;
return this->accuracy_decimals();
}
void Sensor::set_accuracy_decimals(int8_t accuracy_decimals) { this->accuracy_decimals_ = accuracy_decimals; }
int8_t Sensor::accuracy_decimals() { return 0; }
std::string Sensor::get_device_class() {
if (this->device_class_.has_value())
return *this->device_class_;
return this->device_class();
}
void Sensor::set_device_class(const std::string &device_class) { this->device_class_ = device_class; }
std::string Sensor::device_class() { return ""; }
void Sensor::set_state_class(StateClass state_class) { this->state_class_ = state_class; }
StateClass Sensor::get_state_class() {
if (this->state_class_.has_value())
return *this->state_class_;
return this->state_class();
}
StateClass Sensor::state_class() { return StateClass::STATE_CLASS_NONE; }
void Sensor::publish_state(float state) {
this->raw_state = state;
this->raw_callback_.call(state);
@ -30,54 +75,12 @@ void Sensor::publish_state(float state) {
this->filter_list_->input(state);
}
}
std::string Sensor::unit_of_measurement() { return ""; }
std::string Sensor::icon() { return ""; }
uint32_t Sensor::update_interval() { return 0; }
int8_t Sensor::accuracy_decimals() { return 0; }
Sensor::Sensor(const std::string &name) : Nameable(name), state(NAN), raw_state(NAN) {}
Sensor::Sensor() : Sensor("") {}
void Sensor::set_unit_of_measurement(const std::string &unit_of_measurement) {
this->unit_of_measurement_ = unit_of_measurement;
}
void Sensor::set_icon(const std::string &icon) { this->icon_ = icon; }
void Sensor::set_accuracy_decimals(int8_t accuracy_decimals) { this->accuracy_decimals_ = accuracy_decimals; }
void Sensor::add_on_state_callback(std::function<void(float)> &&callback) { this->callback_.add(std::move(callback)); }
void Sensor::add_on_raw_state_callback(std::function<void(float)> &&callback) {
this->raw_callback_.add(std::move(callback));
}
std::string Sensor::get_icon() {
if (this->icon_.has_value())
return *this->icon_;
return this->icon();
}
void Sensor::set_device_class(const std::string &device_class) { this->device_class_ = device_class; }
std::string Sensor::get_device_class() {
if (this->device_class_.has_value())
return *this->device_class_;
return this->device_class();
}
std::string Sensor::device_class() { return ""; }
void Sensor::set_state_class(StateClass state_class) { this->state_class = state_class; }
void Sensor::set_state_class(const std::string &state_class) {
if (str_equals_case_insensitive(state_class, "measurement")) {
this->state_class = STATE_CLASS_MEASUREMENT;
} else if (str_equals_case_insensitive(state_class, "total_increasing")) {
this->state_class = STATE_CLASS_TOTAL_INCREASING;
} else {
ESP_LOGW(TAG, "'%s' - Unrecognized state class %s", this->get_name().c_str(), state_class.c_str());
}
}
std::string Sensor::get_unit_of_measurement() {
if (this->unit_of_measurement_.has_value())
return *this->unit_of_measurement_;
return this->unit_of_measurement();
}
int8_t Sensor::get_accuracy_decimals() {
if (this->accuracy_decimals_.has_value())
return *this->accuracy_decimals_;
return this->accuracy_decimals();
}
void Sensor::add_filter(Filter *filter) {
// inefficient, but only happens once on every sensor setup and nobody's going to have massive amounts of
// filters
@ -119,24 +122,7 @@ void Sensor::internal_send_state_to_frontend(float state) {
this->callback_.call(state);
}
bool Sensor::has_state() const { return this->has_state_; }
uint32_t Sensor::calculate_expected_filter_update_interval() {
uint32_t interval = this->update_interval();
if (interval == 4294967295UL)
// update_interval: never
return 0;
if (this->filter_list_ == nullptr) {
return interval;
}
return this->filter_list_->calculate_remaining_interval(interval);
}
uint32_t Sensor::hash_base() { return 2455723294UL; }
PollingSensorComponent::PollingSensorComponent(const std::string &name, uint32_t update_interval)
: PollingComponent(update_interval), Sensor(name) {}
uint32_t PollingSensorComponent::update_interval() { return this->get_update_interval(); }
} // namespace sensor
} // namespace esphome

View file

@ -1,8 +1,8 @@
#pragma once
#include "esphome/components/sensor/filter.h"
#include "esphome/core/component.h"
#include "esphome/core/helpers.h"
#include "esphome/components/sensor/filter.h"
namespace esphome {
namespace sensor {
@ -13,7 +13,7 @@ namespace sensor {
if (!(obj)->get_device_class().empty()) { \
ESP_LOGCONFIG(TAG, "%s Device Class: '%s'", prefix, (obj)->get_device_class().c_str()); \
} \
ESP_LOGCONFIG(TAG, "%s State Class: '%s'", prefix, state_class_to_string((obj)->state_class)); \
ESP_LOGCONFIG(TAG, "%s State Class: '%s'", prefix, state_class_to_string((obj)->get_state_class()).c_str()); \
ESP_LOGCONFIG(TAG, "%s Unit of Measurement: '%s'", prefix, (obj)->get_unit_of_measurement().c_str()); \
ESP_LOGCONFIG(TAG, "%s Accuracy Decimals: %d", prefix, (obj)->get_accuracy_decimals()); \
if (!(obj)->get_icon().empty()) { \
@ -36,7 +36,7 @@ enum StateClass : uint8_t {
STATE_CLASS_TOTAL_INCREASING = 2,
};
const char *state_class_to_string(StateClass state_class);
std::string state_class_to_string(StateClass state_class);
/** Base-class for all sensors.
*
@ -47,26 +47,42 @@ class Sensor : public Nameable {
explicit Sensor();
explicit Sensor(const std::string &name);
/** Manually set the unit of measurement of this sensor. By default the sensor's default defined by
* unit_of_measurement() is used.
*
* @param unit_of_measurement The unit of measurement, "" to disable.
*/
/// Get the unit of measurement, using the manual override if set.
std::string get_unit_of_measurement();
/// Manually set the unit of measurement.
void set_unit_of_measurement(const std::string &unit_of_measurement);
/** Manually set the icon of this sensor. By default the sensor's default defined by icon() is used.
*
* @param icon The icon, for example "mdi:flash". "" to disable.
*/
/// Get the icon. Uses the manual override if specified or the default value instead.
std::string get_icon();
/// Manually set the icon, for example "mdi:flash".
void set_icon(const std::string &icon);
/** Manually set the accuracy in decimals for this sensor. By default, the sensor's default defined by
* accuracy_decimals() is used.
*
* @param accuracy_decimals The accuracy decimal that should be used.
*/
/// Get the accuracy in decimals, using the manual override if set.
int8_t get_accuracy_decimals();
/// Manually set the accuracy in decimals.
void set_accuracy_decimals(int8_t accuracy_decimals);
/// Get the device class, using the manual override if set.
std::string get_device_class();
/// Manually set the device class.
void set_device_class(const std::string &device_class);
/// Get the state class, using the manual override if set.
StateClass get_state_class();
/// Manually set the state class.
void set_state_class(StateClass state_class);
/**
* Get whether force update mode is enabled.
*
* If the sensor is in force_update mode, the frontend is required to save all
* state changes to the database when they are published, even if the state is the
* same as before.
*/
bool get_force_update() const { return force_update_; }
/// Set force update mode.
void set_force_update(bool force_update) { force_update_ = force_update; }
/// Add a filter to the filter chain. Will be appended to the back.
void add_filter(Filter *filter);
@ -93,15 +109,6 @@ class Sensor : public Nameable {
/// Getter-syntax for .raw_state
float get_raw_state() const;
/// Get the accuracy in decimals. Uses the manual override if specified or the default value instead.
int8_t get_accuracy_decimals();
/// Get the unit of measurement. Uses the manual override if specified or the default value instead.
std::string get_unit_of_measurement();
/// Get the Home Assistant Icon. Uses the manual override if specified or the default value instead.
std::string get_icon();
/** Publish a new state to the front-end.
*
* First, the new state will be assigned to the raw_value. Then it's passed through all filters
@ -127,35 +134,15 @@ class Sensor : public Nameable {
*/
float state;
/// Manually set the Home Assistant device class (see sensor::device_class)
void set_device_class(const std::string &device_class);
/// Get the device class for this sensor, using the manual override if specified.
std::string get_device_class();
/** This member variable stores the current raw state of the sensor. Unlike .state,
* this will be updated immediately when publish_state is called.
/** This member variable stores the current raw state of the sensor, without any filters applied.
*
* Unlike .state,this will be updated immediately when publish_state is called.
*/
float raw_state;
/// Return whether this sensor has gotten a full state (that passed through all filters) yet.
bool has_state() const;
// The state class of this sensor state
StateClass state_class{STATE_CLASS_NONE};
/// Manually set the Home Assistant state class (see sensor::state_class)
void set_state_class(StateClass state_class);
void set_state_class(const std::string &state_class);
/** Override this to set the Home Assistant device class for this sensor.
*
* Return "" to disable this feature.
*
* @return The device class of this sensor, for example "temperature".
*/
virtual std::string device_class();
/** A unique ID for this sensor, empty for no unique id. See unique ID requirements:
* https://developers.home-assistant.io/docs/en/entity_registry_index.html#unique-id-requirements
*
@ -163,65 +150,38 @@ class Sensor : public Nameable {
*/
virtual std::string unique_id();
/// Return with which interval the sensor is polled. Return 0 for non-polling mode.
virtual uint32_t update_interval();
/// Calculate the expected update interval for values that pass through all filters.
uint32_t calculate_expected_filter_update_interval();
void internal_send_state_to_frontend(float state);
bool get_force_update() const { return force_update_; }
/** Set this sensor's force_update mode.
*
* If the sensor is in force_update mode, the frontend is required to save all
* state changes to the database when they are published, even if the state is the
* same as before.
*/
void set_force_update(bool force_update) { force_update_ = force_update; }
protected:
/** Override this to set the Home Assistant unit of measurement for this sensor.
*
* Return "" to disable this feature.
*
* @return The icon of this sensor, for example "°C".
*/
/// Override this to set the default unit of measurement.
virtual std::string unit_of_measurement(); // NOLINT
/** Override this to set the Home Assistant icon for this sensor.
*
* Return "" to disable this feature.
*
* @return The icon of this sensor, for example "mdi:battery".
*/
/// Override this to set the default icon.
virtual std::string icon(); // NOLINT
/// Return the accuracy in decimals for this sensor.
/// Override this to set the default accuracy in decimals.
virtual int8_t accuracy_decimals(); // NOLINT
optional<std::string> device_class_{}; ///< Stores the override of the device class
/// Override this to set the default device class.
virtual std::string device_class(); // NOLINT
/// Override this to set the default state class.
virtual StateClass state_class(); // NOLINT
uint32_t hash_base() override;
CallbackManager<void(float)> raw_callback_; ///< Storage for raw state callbacks.
CallbackManager<void(float)> callback_; ///< Storage for filtered state callbacks.
/// Override the unit of measurement
optional<std::string> unit_of_measurement_;
/// Override the icon advertised to Home Assistant, otherwise sensor's icon will be used.
optional<std::string> icon_;
/// Override the accuracy in decimals, otherwise the sensor's values will be used.
optional<int8_t> accuracy_decimals_;
Filter *filter_list_{nullptr}; ///< Store all active filters.
bool has_state_{false};
bool force_update_{false};
};
Filter *filter_list_{nullptr}; ///< Store all active filters.
class PollingSensorComponent : public PollingComponent, public Sensor {
public:
explicit PollingSensorComponent(const std::string &name, uint32_t update_interval);
uint32_t update_interval() override;
optional<std::string> unit_of_measurement_; ///< Unit of measurement override
optional<std::string> icon_; ///< Icon override
optional<int8_t> accuracy_decimals_; ///< Accuracy in decimals override
optional<std::string> device_class_; ///< Device class override
optional<StateClass> state_class_{STATE_CLASS_NONE}; ///< State class override
bool force_update_{false}; ///< Force update mode
};
} // namespace sensor

View file

@ -5,6 +5,10 @@
#include <string.h>
#ifdef ARDUINO_ARCH_ESP32
#include <esp_idf_version.h>
#endif
namespace esphome {
namespace socket {
@ -75,7 +79,51 @@ class BSDSocketImpl : public Socket {
}
int listen(int backlog) override { return ::listen(fd_, backlog); }
ssize_t read(void *buf, size_t len) override { return ::read(fd_, buf, len); }
ssize_t readv(const struct iovec *iov, int iovcnt) override {
#if defined(ARDUINO_ARCH_ESP32) && ESP_IDF_VERSION_MAJOR < 4
// esp-idf v3 doesn't have readv, emulate it
ssize_t ret = 0;
for (int i = 0; i < iovcnt; i++) {
ssize_t err = this->read(reinterpret_cast<uint8_t *>(iov[i].iov_base), iov[i].iov_len);
if (err == -1) {
if (ret != 0)
// if we already read some don't return an error
break;
return err;
}
ret += err;
if (err != iov[i].iov_len)
break;
}
return ret;
#else
return ::readv(fd_, iov, iovcnt);
#endif
}
ssize_t write(const void *buf, size_t len) override { return ::write(fd_, buf, len); }
ssize_t send(void *buf, size_t len, int flags) { return ::send(fd_, buf, len, flags); }
ssize_t writev(const struct iovec *iov, int iovcnt) override {
#if defined(ARDUINO_ARCH_ESP32) && ESP_IDF_VERSION_MAJOR < 4
// esp-idf v3 doesn't have writev, emulate it
ssize_t ret = 0;
for (int i = 0; i < iovcnt; i++) {
ssize_t err =
this->send(reinterpret_cast<uint8_t *>(iov[i].iov_base), iov[i].iov_len, i == iovcnt - 1 ? 0 : MSG_MORE);
if (err == -1) {
if (ret != 0)
// if we already wrote some don't return an error
break;
return err;
}
ret += err;
if (err != iov[i].iov_len)
break;
}
return ret;
#else
return ::writev(fd_, iov, iovcnt);
#endif
}
int setblocking(bool blocking) override {
int fl = ::fcntl(fd_, F_GETFL, 0);
if (blocking) {

View file

@ -81,6 +81,11 @@ struct sockaddr_storage {
};
typedef uint32_t socklen_t;
struct iovec {
void *iov_base;
size_t iov_len;
};
#ifdef ARDUINO_ARCH_ESP8266
// arduino-esp8266 declares a global vars called INADDR_NONE/ANY which are invalid with the define
#ifdef INADDR_ANY
@ -104,6 +109,7 @@ typedef uint32_t socklen_t;
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdint.h>

View file

@ -371,7 +371,23 @@ class LWIPRawImpl : public Socket {
return read;
}
ssize_t write(const void *buf, size_t len) override {
ssize_t readv(const struct iovec *iov, int iovcnt) override {
ssize_t ret = 0;
for (int i = 0; i < iovcnt; i++) {
ssize_t err = read(reinterpret_cast<uint8_t *>(iov[i].iov_base), iov[i].iov_len);
if (err == -1) {
if (ret != 0)
// if we already read some don't return an error
break;
return err;
}
ret += err;
if (err != iov[i].iov_len)
break;
}
return ret;
}
ssize_t internal_write(const void *buf, size_t len) {
if (pcb_ == nullptr) {
errno = ECONNRESET;
return -1;
@ -400,24 +416,59 @@ class LWIPRawImpl : public Socket {
errno = ECONNRESET;
return -1;
}
if (tcp_nagle_disabled(pcb_)) {
return to_send;
}
int internal_output() {
LWIP_LOG("tcp_output(%p)", pcb_);
err = tcp_output(pcb_);
err_t err = tcp_output(pcb_);
if (err == ERR_ABRT) {
LWIP_LOG(" -> err ERR_ABRT");
// sometimes lwip returns ERR_ABRT for no apparent reason
// the connection works fine afterwards, and back with ESPAsyncTCP we
// indirectly also ignored this error
// FIXME: figure out where this is returned and what it means in this context
return to_send;
return 0;
}
if (err != ERR_OK) {
LWIP_LOG(" -> err %d", err);
errno = ECONNRESET;
return -1;
}
return 0;
}
return to_send;
ssize_t write(const void *buf, size_t len) override {
ssize_t written = internal_write(buf, len);
if (written == -1)
return -1;
if (written == 0)
// no need to output if nothing written
return 0;
int err = internal_output();
if (err == -1)
return -1;
return written;
}
ssize_t writev(const struct iovec *iov, int iovcnt) override {
ssize_t written = 0;
for (int i = 0; i < iovcnt; i++) {
ssize_t err = internal_write(reinterpret_cast<uint8_t *>(iov[i].iov_base), iov[i].iov_len);
if (err == -1) {
if (written != 0)
// if we already read some don't return an error
break;
return err;
}
written += err;
if (err != iov[i].iov_len)
break;
}
if (written == 0)
// no need to output if nothing written
return 0;
int err = internal_output();
if (err == -1)
return -1;
return written;
}
int setblocking(bool blocking) override {
if (pcb_ == nullptr) {

View file

@ -31,7 +31,9 @@ class Socket {
virtual int setsockopt(int level, int optname, const void *optval, socklen_t optlen) = 0;
virtual int listen(int backlog) = 0;
virtual ssize_t read(void *buf, size_t len) = 0;
virtual ssize_t readv(const struct iovec *iov, int iovcnt) = 0;
virtual ssize_t write(const void *buf, size_t len) = 0;
virtual ssize_t writev(const struct iovec *iov, int iovcnt) = 0;
virtual int setblocking(bool blocking) = 0;
virtual int loop() { return 0; };
};

View file

@ -1,6 +1,6 @@
"""Constants used by esphome."""
__version__ = "2021.9.0"
__version__ = "2021.9.1"
ESP_PLATFORM_ESP32 = "ESP32"
ESP_PLATFORM_ESP8266 = "ESP8266"