Uart improvments (#1024)

* uart: Add support for specifying the number of bits and parity.

ESP8266SwSerial doesn't really check parity but just read the parity bit
and ignore it when receiving data.

Signed-off-by: 0hax <0hax@protonmail.com>

* uart: support begin and end methods.

A component may need to reset uart buffer/status by using begin() and
end() methods. This is useful for example when a component needs to be
sure it is not reading garbage from previously received data over uart.
For end() methods with software serial, disabling interrupt is
currently impossible because of a bug in esp8266 Core:
https://github.com/esp8266/Arduino/issues/6049

Signed-off-by: 0hax <0hax@protonmail.com>

* esphal: add support for detaching an interrupt.

That's needed when a component needs to enable/disable interrupt on a
gpio.

Signed-off-by: 0hax <0hax@protonmail.com>

* uart: rename CONF_NR_BITS to CONF_DATA_BITS_NUMBER.

Signed-off-by: 0hax <0hax@protonmail.com>

* uart: use static const uint32_t instead of #define.

Signed-off-by: 0hax <0hax@protonmail.com>

* uart: use an enum to handle parity.

Signed-off-by: 0hax <0hax@protonmail.com>

* uart: split between esp32 and esp8266.

Signed-off-by: 0hax <0hax@protonmail.com>

* uart: check_uart_settings for parity and number of data bits.

Signed-off-by: 0hax <0hax@protonmail.com>

* name param data_bits

* add new params to test

Co-authored-by: Guillermo Ruffino <glm.net@gmail.com>
This commit is contained in:
0hax 2020-05-24 23:59:07 +02:00 committed by GitHub
parent 4de44a99eb
commit fb2b7ade41
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 572 additions and 343 deletions

View file

@ -28,13 +28,25 @@ def validate_rx_pin(value):
return value return value
UARTParityOptions = uart_ns.enum('UARTParityOptions')
UART_PARITY_OPTIONS = {
'NONE': UARTParityOptions.UART_CONFIG_PARITY_NONE,
'EVEN': UARTParityOptions.UART_CONFIG_PARITY_EVEN,
'ODD': UARTParityOptions.UART_CONFIG_PARITY_ODD,
}
CONF_STOP_BITS = 'stop_bits' CONF_STOP_BITS = 'stop_bits'
CONF_DATA_BITS = 'data_bits'
CONF_PARITY = 'parity'
CONFIG_SCHEMA = cv.All(cv.Schema({ CONFIG_SCHEMA = cv.All(cv.Schema({
cv.GenerateID(): cv.declare_id(UARTComponent), cv.GenerateID(): cv.declare_id(UARTComponent),
cv.Required(CONF_BAUD_RATE): cv.int_range(min=1), cv.Required(CONF_BAUD_RATE): cv.int_range(min=1),
cv.Optional(CONF_TX_PIN): pins.output_pin, cv.Optional(CONF_TX_PIN): pins.output_pin,
cv.Optional(CONF_RX_PIN): validate_rx_pin, cv.Optional(CONF_RX_PIN): validate_rx_pin,
cv.Optional(CONF_STOP_BITS, default=1): cv.one_of(1, 2, int=True), cv.Optional(CONF_STOP_BITS, default=1): cv.one_of(1, 2, int=True),
cv.Optional(CONF_DATA_BITS, default=8): cv.int_range(min=5, max=8),
cv.Optional(CONF_PARITY, default="NONE"): cv.enum(UART_PARITY_OPTIONS, upper=True)
}).extend(cv.COMPONENT_SCHEMA), cv.has_at_least_one_key(CONF_TX_PIN, CONF_RX_PIN)) }).extend(cv.COMPONENT_SCHEMA), cv.has_at_least_one_key(CONF_TX_PIN, CONF_RX_PIN))
@ -50,6 +62,8 @@ def to_code(config):
if CONF_RX_PIN in config: if CONF_RX_PIN in config:
cg.add(var.set_rx_pin(config[CONF_RX_PIN])) cg.add(var.set_rx_pin(config[CONF_RX_PIN]))
cg.add(var.set_stop_bits(config[CONF_STOP_BITS])) cg.add(var.set_stop_bits(config[CONF_STOP_BITS]))
cg.add(var.set_data_bits(config[CONF_DATA_BITS]))
cg.add(var.set_parity(config[CONF_PARITY]))
# A schema to use for all UART devices, all UART integrations must extend this! # A schema to use for all UART devices, all UART integrations must extend this!

View file

@ -13,345 +13,6 @@ namespace uart {
static const char *TAG = "uart"; static const char *TAG = "uart";
#ifdef ARDUINO_ARCH_ESP32
uint8_t next_uart_num = 1;
#endif
#ifdef ARDUINO_ARCH_ESP32
void UARTComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up UART...");
// Use Arduino HardwareSerial UARTs if all used pins match the ones
// preconfigured by the platform. For example if RX disabled but TX pin
// is 1 we still want to use Serial.
if (this->tx_pin_.value_or(1) == 1 && this->rx_pin_.value_or(3) == 3) {
this->hw_serial_ = &Serial;
} else {
this->hw_serial_ = new HardwareSerial(next_uart_num++);
}
int8_t tx = this->tx_pin_.has_value() ? *this->tx_pin_ : -1;
int8_t rx = this->rx_pin_.has_value() ? *this->rx_pin_ : -1;
uint32_t config = SERIAL_8N1;
if (this->stop_bits_ == 2)
config = SERIAL_8N2;
this->hw_serial_->begin(this->baud_rate_, config, rx, tx);
}
void UARTComponent::dump_config() {
ESP_LOGCONFIG(TAG, "UART Bus:");
if (this->tx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " TX Pin: GPIO%d", *this->tx_pin_);
}
if (this->rx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " RX Pin: GPIO%d", *this->rx_pin_);
}
ESP_LOGCONFIG(TAG, " Baud Rate: %u baud", this->baud_rate_);
ESP_LOGCONFIG(TAG, " Stop bits: %u", this->stop_bits_);
this->check_logger_conflict_();
}
void UARTComponent::write_byte(uint8_t data) {
this->hw_serial_->write(data);
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data), data);
}
void UARTComponent::write_array(const uint8_t *data, size_t len) {
this->hw_serial_->write(data, len);
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
}
void UARTComponent::write_str(const char *str) {
this->hw_serial_->write(str);
ESP_LOGVV(TAG, " Wrote \"%s\"", str);
}
bool UARTComponent::read_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
*data = this->hw_serial_->read();
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(*data), *data);
return true;
}
bool UARTComponent::peek_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
*data = this->hw_serial_->peek();
return true;
}
bool UARTComponent::read_array(uint8_t *data, size_t len) {
if (!this->check_read_timeout_(len))
return false;
this->hw_serial_->readBytes(data, len);
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
return true;
}
bool UARTComponent::check_read_timeout_(size_t len) {
if (this->available() >= len)
return true;
uint32_t start_time = millis();
while (this->available() < len) {
if (millis() - start_time > 1000) {
ESP_LOGE(TAG, "Reading from UART timed out at byte %u!", this->available());
return false;
}
yield();
}
return true;
}
int UARTComponent::available() { return this->hw_serial_->available(); }
void UARTComponent::flush() {
ESP_LOGVV(TAG, " Flushing...");
this->hw_serial_->flush();
}
#endif // ESP32
#ifdef ARDUINO_ARCH_ESP8266
void UARTComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up UART bus...");
// Use Arduino HardwareSerial UARTs if all used pins match the ones
// preconfigured by the platform. For example if RX disabled but TX pin
// is 1 we still want to use Serial.
uint32_t mode = UART_NB_BIT_8 | UART_PARITY_NONE;
if (this->stop_bits_ == 1)
mode |= UART_NB_STOP_BIT_1;
else
mode |= UART_NB_STOP_BIT_2;
SerialConfig config = static_cast<SerialConfig>(mode);
if (this->tx_pin_.value_or(1) == 1 && this->rx_pin_.value_or(3) == 3) {
this->hw_serial_ = &Serial;
this->hw_serial_->begin(this->baud_rate_, config);
} else if (this->tx_pin_.value_or(15) == 15 && this->rx_pin_.value_or(13) == 13) {
this->hw_serial_ = &Serial;
this->hw_serial_->begin(this->baud_rate_, config);
this->hw_serial_->swap();
} else if (this->tx_pin_.value_or(2) == 2 && this->rx_pin_.value_or(8) == 8) {
this->hw_serial_ = &Serial1;
this->hw_serial_->begin(this->baud_rate_, config);
} else {
this->sw_serial_ = new ESP8266SoftwareSerial();
int8_t tx = this->tx_pin_.has_value() ? *this->tx_pin_ : -1;
int8_t rx = this->rx_pin_.has_value() ? *this->rx_pin_ : -1;
this->sw_serial_->setup(tx, rx, this->baud_rate_, this->stop_bits_);
}
}
void UARTComponent::dump_config() {
ESP_LOGCONFIG(TAG, "UART Bus:");
if (this->tx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " TX Pin: GPIO%d", *this->tx_pin_);
}
if (this->rx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " RX Pin: GPIO%d", *this->rx_pin_);
}
ESP_LOGCONFIG(TAG, " Baud Rate: %u baud", this->baud_rate_);
ESP_LOGCONFIG(TAG, " Stop bits: %u", this->stop_bits_);
if (this->hw_serial_ != nullptr) {
ESP_LOGCONFIG(TAG, " Using hardware serial interface.");
} else {
ESP_LOGCONFIG(TAG, " Using software serial");
}
this->check_logger_conflict_();
}
void UARTComponent::write_byte(uint8_t data) {
if (this->hw_serial_ != nullptr) {
this->hw_serial_->write(data);
} else {
this->sw_serial_->write_byte(data);
}
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data), data);
}
void UARTComponent::write_array(const uint8_t *data, size_t len) {
if (this->hw_serial_ != nullptr) {
this->hw_serial_->write(data, len);
} else {
for (size_t i = 0; i < len; i++)
this->sw_serial_->write_byte(data[i]);
}
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
}
void UARTComponent::write_str(const char *str) {
if (this->hw_serial_ != nullptr) {
this->hw_serial_->write(str);
} else {
const auto *data = reinterpret_cast<const uint8_t *>(str);
for (size_t i = 0; data[i] != 0; i++)
this->sw_serial_->write_byte(data[i]);
}
ESP_LOGVV(TAG, " Wrote \"%s\"", str);
}
bool UARTComponent::read_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
if (this->hw_serial_ != nullptr) {
*data = this->hw_serial_->read();
} else {
*data = this->sw_serial_->read_byte();
}
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(*data), *data);
return true;
}
bool UARTComponent::peek_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
if (this->hw_serial_ != nullptr) {
*data = this->hw_serial_->peek();
} else {
*data = this->sw_serial_->peek_byte();
}
return true;
}
bool UARTComponent::read_array(uint8_t *data, size_t len) {
if (!this->check_read_timeout_(len))
return false;
if (this->hw_serial_ != nullptr) {
this->hw_serial_->readBytes(data, len);
} else {
for (size_t i = 0; i < len; i++)
data[i] = this->sw_serial_->read_byte();
}
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
return true;
}
bool UARTComponent::check_read_timeout_(size_t len) {
if (this->available() >= int(len))
return true;
uint32_t start_time = millis();
while (this->available() < int(len)) {
if (millis() - start_time > 100) {
ESP_LOGE(TAG, "Reading from UART timed out at byte %u!", this->available());
return false;
}
yield();
}
return true;
}
int UARTComponent::available() {
if (this->hw_serial_ != nullptr) {
return this->hw_serial_->available();
} else {
return this->sw_serial_->available();
}
}
void UARTComponent::flush() {
ESP_LOGVV(TAG, " Flushing...");
if (this->hw_serial_ != nullptr) {
this->hw_serial_->flush();
} else {
this->sw_serial_->flush();
}
}
void ESP8266SoftwareSerial::setup(int8_t tx_pin, int8_t rx_pin, uint32_t baud_rate, uint8_t stop_bits) {
this->bit_time_ = F_CPU / baud_rate;
if (tx_pin != -1) {
auto pin = GPIOPin(tx_pin, OUTPUT);
pin.setup();
this->tx_pin_ = pin.to_isr();
this->tx_pin_->digital_write(true);
}
if (rx_pin != -1) {
auto pin = GPIOPin(rx_pin, INPUT);
pin.setup();
this->rx_pin_ = pin.to_isr();
this->rx_buffer_ = new uint8_t[this->rx_buffer_size_];
pin.attach_interrupt(ESP8266SoftwareSerial::gpio_intr, this, FALLING);
}
this->stop_bits_ = stop_bits;
}
void ICACHE_RAM_ATTR ESP8266SoftwareSerial::gpio_intr(ESP8266SoftwareSerial *arg) {
uint32_t wait = arg->bit_time_ + arg->bit_time_ / 3 - 500;
const uint32_t start = ESP.getCycleCount();
uint8_t rec = 0;
// Manually unroll the loop
rec |= arg->read_bit_(&wait, start) << 0;
rec |= arg->read_bit_(&wait, start) << 1;
rec |= arg->read_bit_(&wait, start) << 2;
rec |= arg->read_bit_(&wait, start) << 3;
rec |= arg->read_bit_(&wait, start) << 4;
rec |= arg->read_bit_(&wait, start) << 5;
rec |= arg->read_bit_(&wait, start) << 6;
rec |= arg->read_bit_(&wait, start) << 7;
// Stop bit
arg->wait_(&wait, start);
if (arg->stop_bits_ == 2)
arg->wait_(&wait, start);
arg->rx_buffer_[arg->rx_in_pos_] = rec;
arg->rx_in_pos_ = (arg->rx_in_pos_ + 1) % arg->rx_buffer_size_;
// Clear RX pin so that the interrupt doesn't re-trigger right away again.
arg->rx_pin_->clear_interrupt();
}
void ICACHE_RAM_ATTR HOT ESP8266SoftwareSerial::write_byte(uint8_t data) {
if (this->tx_pin_ == nullptr) {
ESP_LOGE(TAG, "UART doesn't have TX pins set!");
return;
}
{
InterruptLock lock;
uint32_t wait = this->bit_time_;
const uint32_t start = ESP.getCycleCount();
// Start bit
this->write_bit_(false, &wait, start);
this->write_bit_(data & (1 << 0), &wait, start);
this->write_bit_(data & (1 << 1), &wait, start);
this->write_bit_(data & (1 << 2), &wait, start);
this->write_bit_(data & (1 << 3), &wait, start);
this->write_bit_(data & (1 << 4), &wait, start);
this->write_bit_(data & (1 << 5), &wait, start);
this->write_bit_(data & (1 << 6), &wait, start);
this->write_bit_(data & (1 << 7), &wait, start);
// Stop bit
this->write_bit_(true, &wait, start);
if (this->stop_bits_ == 2)
this->wait_(&wait, start);
}
}
void ICACHE_RAM_ATTR ESP8266SoftwareSerial::wait_(uint32_t *wait, const uint32_t &start) {
while (ESP.getCycleCount() - start < *wait)
;
*wait += this->bit_time_;
}
bool ICACHE_RAM_ATTR ESP8266SoftwareSerial::read_bit_(uint32_t *wait, const uint32_t &start) {
this->wait_(wait, start);
return this->rx_pin_->digital_read();
}
void ICACHE_RAM_ATTR ESP8266SoftwareSerial::write_bit_(bool bit, uint32_t *wait, const uint32_t &start) {
this->tx_pin_->digital_write(bit);
this->wait_(wait, start);
}
uint8_t ESP8266SoftwareSerial::read_byte() {
if (this->rx_in_pos_ == this->rx_out_pos_)
return 0;
uint8_t data = this->rx_buffer_[this->rx_out_pos_];
this->rx_out_pos_ = (this->rx_out_pos_ + 1) % this->rx_buffer_size_;
return data;
}
uint8_t ESP8266SoftwareSerial::peek_byte() {
if (this->rx_in_pos_ == this->rx_out_pos_)
return 0;
return this->rx_buffer_[this->rx_out_pos_];
}
void ESP8266SoftwareSerial::flush() {
// Flush is a NO-OP with software serial, all bytes are written immediately.
}
int ESP8266SoftwareSerial::available() {
int avail = int(this->rx_in_pos_) - int(this->rx_out_pos_);
if (avail < 0)
return avail + this->rx_buffer_size_;
return avail;
}
#endif // ESP8266
size_t UARTComponent::write(uint8_t data) { size_t UARTComponent::write(uint8_t data) {
this->write_byte(data); this->write_byte(data);
return 1; return 1;
@ -382,7 +43,7 @@ void UARTComponent::check_logger_conflict_() {
#endif #endif
} }
void UARTDevice::check_uart_settings(uint32_t baud_rate, uint8_t stop_bits) { void UARTDevice::check_uart_settings(uint32_t baud_rate, uint8_t stop_bits, UARTParityOptions parity, uint8_t nr_bits) {
if (this->parent_->baud_rate_ != baud_rate) { if (this->parent_->baud_rate_ != baud_rate) {
ESP_LOGE(TAG, " Invalid baud_rate: Integration requested baud_rate %u but you have %u!", baud_rate, ESP_LOGE(TAG, " Invalid baud_rate: Integration requested baud_rate %u but you have %u!", baud_rate,
this->parent_->baud_rate_); this->parent_->baud_rate_);
@ -391,6 +52,27 @@ void UARTDevice::check_uart_settings(uint32_t baud_rate, uint8_t stop_bits) {
ESP_LOGE(TAG, " Invalid stop bits: Integration requested stop_bits %u but you have %u!", stop_bits, ESP_LOGE(TAG, " Invalid stop bits: Integration requested stop_bits %u but you have %u!", stop_bits,
this->parent_->stop_bits_); this->parent_->stop_bits_);
} }
if (this->parent_->nr_bits_ != nr_bits) {
ESP_LOGE(TAG, " Invalid number of data bits: Integration requested %u data bits but you have %u!", nr_bits,
this->parent_->nr_bits_);
}
if (this->parent_->parity_ != parity) {
ESP_LOGE(TAG, " Invalid parity: Integration requested parity %s but you have %s!", parity_to_str(parity),
parity_to_str(this->parent_->parity_));
}
}
const char *parity_to_str(UARTParityOptions parity) {
switch (parity) {
case UART_CONFIG_PARITY_NONE:
return "NONE";
case UART_CONFIG_PARITY_EVEN:
return "EVEN";
case UART_CONFIG_PARITY_ODD:
return "ODD";
default:
return "UNKNOWN";
}
} }
} // namespace uart } // namespace uart

View file

@ -7,10 +7,19 @@
namespace esphome { namespace esphome {
namespace uart { namespace uart {
enum UARTParityOptions {
UART_CONFIG_PARITY_NONE,
UART_CONFIG_PARITY_EVEN,
UART_CONFIG_PARITY_ODD,
};
const char *parity_to_str(UARTParityOptions parity);
#ifdef ARDUINO_ARCH_ESP8266 #ifdef ARDUINO_ARCH_ESP8266
class ESP8266SoftwareSerial { class ESP8266SoftwareSerial {
public: public:
void setup(int8_t tx_pin, int8_t rx_pin, uint32_t baud_rate, uint8_t stop_bits); void setup(int8_t tx_pin, int8_t rx_pin, uint32_t baud_rate, uint8_t stop_bits, uint32_t nr_bits,
UARTParityOptions parity);
uint8_t read_byte(); uint8_t read_byte();
uint8_t peek_byte(); uint8_t peek_byte();
@ -21,6 +30,11 @@ class ESP8266SoftwareSerial {
int available(); int available();
void begin();
void end();
GPIOPin *gpio_tx_pin_{nullptr};
GPIOPin *gpio_rx_pin_{nullptr};
protected: protected:
static void gpio_intr(ESP8266SoftwareSerial *arg); static void gpio_intr(ESP8266SoftwareSerial *arg);
@ -34,6 +48,8 @@ class ESP8266SoftwareSerial {
volatile size_t rx_in_pos_{0}; volatile size_t rx_in_pos_{0};
size_t rx_out_pos_{0}; size_t rx_out_pos_{0};
uint8_t stop_bits_; uint8_t stop_bits_;
uint8_t nr_bits_;
UARTParityOptions parity_;
ISRInternalGPIOPin *tx_pin_{nullptr}; ISRInternalGPIOPin *tx_pin_{nullptr};
ISRInternalGPIOPin *rx_pin_{nullptr}; ISRInternalGPIOPin *rx_pin_{nullptr};
}; };
@ -43,6 +59,8 @@ class UARTComponent : public Component, public Stream {
public: public:
void set_baud_rate(uint32_t baud_rate) { baud_rate_ = baud_rate; } void set_baud_rate(uint32_t baud_rate) { baud_rate_ = baud_rate; }
uint32_t get_config();
void setup() override; void setup() override;
void dump_config() override; void dump_config() override;
@ -53,6 +71,8 @@ class UARTComponent : public Component, public Stream {
void write_array(const std::vector<uint8_t> &data) { this->write_array(&data[0], data.size()); } void write_array(const std::vector<uint8_t> &data) { this->write_array(&data[0], data.size()); }
void write_str(const char *str); void write_str(const char *str);
void end();
void begin();
bool peek_byte(uint8_t *data); bool peek_byte(uint8_t *data);
@ -74,6 +94,8 @@ class UARTComponent : public Component, public Stream {
void set_tx_pin(uint8_t tx_pin) { this->tx_pin_ = tx_pin; } void set_tx_pin(uint8_t tx_pin) { this->tx_pin_ = tx_pin; }
void set_rx_pin(uint8_t rx_pin) { this->rx_pin_ = rx_pin; } void set_rx_pin(uint8_t rx_pin) { this->rx_pin_ = rx_pin; }
void set_stop_bits(uint8_t stop_bits) { this->stop_bits_ = stop_bits; } void set_stop_bits(uint8_t stop_bits) { this->stop_bits_ = stop_bits; }
void set_data_bits(uint8_t nr_bits) { this->nr_bits_ = nr_bits; }
void set_parity(UARTParityOptions parity) { this->parity_ = parity; }
protected: protected:
void check_logger_conflict_(); void check_logger_conflict_();
@ -88,6 +110,8 @@ class UARTComponent : public Component, public Stream {
optional<uint8_t> rx_pin_; optional<uint8_t> rx_pin_;
uint32_t baud_rate_; uint32_t baud_rate_;
uint8_t stop_bits_; uint8_t stop_bits_;
uint8_t nr_bits_;
UARTParityOptions parity_;
}; };
#ifdef ARDUINO_ARCH_ESP32 #ifdef ARDUINO_ARCH_ESP32
@ -130,9 +154,12 @@ class UARTDevice : public Stream {
size_t write(uint8_t data) override { return this->parent_->write(data); } size_t write(uint8_t data) override { return this->parent_->write(data); }
int read() override { return this->parent_->read(); } int read() override { return this->parent_->read(); }
int peek() override { return this->parent_->peek(); } int peek() override { return this->parent_->peek(); }
void end() { this->parent_->end(); }
void begin() { this->parent_->begin(); }
/// Check that the configuration of the UART bus matches the provided values and otherwise print a warning /// Check that the configuration of the UART bus matches the provided values and otherwise print a warning
void check_uart_settings(uint32_t baud_rate, uint8_t stop_bits = 1); void check_uart_settings(uint32_t baud_rate, uint8_t stop_bits = 1,
UARTParityOptions parity = UART_CONFIG_PARITY_NONE, uint8_t nr_bits = 8);
protected: protected:
UARTComponent *parent_{nullptr}; UARTComponent *parent_{nullptr};

View file

@ -0,0 +1,162 @@
#ifdef ARDUINO_ARCH_ESP32
#include "uart.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include "esphome/core/application.h"
#include "esphome/core/defines.h"
namespace esphome {
namespace uart {
static const char *TAG = "uart_esp32";
uint8_t next_uart_num = 1;
static const uint32_t UART_PARITY_EVEN = 0 << 0;
static const uint32_t UART_PARITY_ODD = 1 << 0;
static const uint32_t UART_PARITY_EN = 1 << 1;
static const uint32_t UART_NB_BIT_5 = 0 << 2;
static const uint32_t UART_NB_BIT_6 = 1 << 2;
static const uint32_t UART_NB_BIT_7 = 2 << 2;
static const uint32_t UART_NB_BIT_8 = 3 << 2;
static const uint32_t UART_NB_STOP_BIT_1 = 1 << 4;
static const uint32_t UART_NB_STOP_BIT_2 = 3 << 4;
static const uint32_t UART_TICK_APB_CLOCK = 1 << 27;
uint32_t UARTComponent::get_config() {
uint32_t config = 0;
/*
* All bits numbers below come from
* framework-arduinoespressif32/cores/esp32/esp32-hal-uart.h
* And more specifically conf0 union in uart_dev_t.
*
* Below is bit used from conf0 union.
* <name>:<bits position> <values>
* parity:0 0:even 1:odd
* parity_en:1 Set this bit to enable uart parity check.
* bit_num:2-4 0:5bits 1:6bits 2:7bits 3:8bits
* stop_bit_num:4-6 stop bit. 1:1bit 2:1.5bits 3:2bits
* tick_ref_always_on:27 select the clock.1apb clockref_tick
*/
if (this->parity_ == UART_CONFIG_PARITY_EVEN)
config |= UART_PARITY_EVEN | UART_PARITY_EN;
else if (this->parity_ == UART_CONFIG_PARITY_ODD)
config |= UART_PARITY_ODD | UART_PARITY_EN;
switch (this->nr_bits_) {
case 5:
config |= UART_NB_BIT_5;
break;
case 6:
config |= UART_NB_BIT_6;
break;
case 7:
config |= UART_NB_BIT_7;
break;
case 8:
config |= UART_NB_BIT_8;
break;
}
if (this->stop_bits_ == 1)
config |= UART_NB_STOP_BIT_1;
else
config |= UART_NB_STOP_BIT_2;
config |= UART_TICK_APB_CLOCK;
return config;
}
void UARTComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up UART...");
// Use Arduino HardwareSerial UARTs if all used pins match the ones
// preconfigured by the platform. For example if RX disabled but TX pin
// is 1 we still want to use Serial.
if (this->tx_pin_.value_or(1) == 1 && this->rx_pin_.value_or(3) == 3) {
this->hw_serial_ = &Serial;
} else {
this->hw_serial_ = new HardwareSerial(next_uart_num++);
}
int8_t tx = this->tx_pin_.has_value() ? *this->tx_pin_ : -1;
int8_t rx = this->rx_pin_.has_value() ? *this->rx_pin_ : -1;
this->hw_serial_->begin(this->baud_rate_, get_config(), rx, tx);
}
void UARTComponent::dump_config() {
ESP_LOGCONFIG(TAG, "UART Bus:");
if (this->tx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " TX Pin: GPIO%d", *this->tx_pin_);
}
if (this->rx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " RX Pin: GPIO%d", *this->rx_pin_);
}
ESP_LOGCONFIG(TAG, " Baud Rate: %u baud", this->baud_rate_);
ESP_LOGCONFIG(TAG, " Bits: %u", this->nr_bits_);
ESP_LOGCONFIG(TAG, " Parity: %s", parity_to_str(this->parity_));
ESP_LOGCONFIG(TAG, " Stop bits: %u", this->stop_bits_);
this->check_logger_conflict_();
}
void UARTComponent::write_byte(uint8_t data) {
this->hw_serial_->write(data);
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data), data);
}
void UARTComponent::write_array(const uint8_t *data, size_t len) {
this->hw_serial_->write(data, len);
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
}
void UARTComponent::write_str(const char *str) {
this->hw_serial_->write(str);
ESP_LOGVV(TAG, " Wrote \"%s\"", str);
}
void UARTComponent::end() { this->hw_serial_->end(); }
void UARTComponent::begin() { this->hw_serial_->begin(this->baud_rate_, get_config()); }
bool UARTComponent::read_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
*data = this->hw_serial_->read();
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(*data), *data);
return true;
}
bool UARTComponent::peek_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
*data = this->hw_serial_->peek();
return true;
}
bool UARTComponent::read_array(uint8_t *data, size_t len) {
if (!this->check_read_timeout_(len))
return false;
this->hw_serial_->readBytes(data, len);
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
return true;
}
bool UARTComponent::check_read_timeout_(size_t len) {
if (this->available() >= len)
return true;
uint32_t start_time = millis();
while (this->available() < len) {
if (millis() - start_time > 1000) {
ESP_LOGE(TAG, "Reading from UART timed out at byte %u!", this->available());
return false;
}
yield();
}
return true;
}
int UARTComponent::available() { return this->hw_serial_->available(); }
void UARTComponent::flush() {
ESP_LOGVV(TAG, " Flushing...");
this->hw_serial_->flush();
}
} // namespace uart
} // namespace esphome
#endif // ESP32

View file

@ -0,0 +1,330 @@
#ifdef ARDUINO_ARCH_ESP8266
#include "uart.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include "esphome/core/application.h"
#include "esphome/core/defines.h"
#
namespace esphome {
namespace uart {
static const char *TAG = "uart_esp8266";
uint32_t UARTComponent::get_config() {
uint32_t config = 0;
if (this->parity_ == UART_CONFIG_PARITY_NONE)
config |= UART_PARITY_NONE;
else if (this->parity_ == UART_CONFIG_PARITY_EVEN)
config |= UART_PARITY_EVEN;
else if (this->parity_ == UART_CONFIG_PARITY_ODD)
config |= UART_PARITY_ODD;
switch (this->nr_bits_) {
case 5:
config |= UART_NB_BIT_5;
break;
case 6:
config |= UART_NB_BIT_6;
break;
case 7:
config |= UART_NB_BIT_7;
break;
case 8:
config |= UART_NB_BIT_8;
break;
}
if (this->stop_bits_ == 1)
config |= UART_NB_STOP_BIT_1;
else
config |= UART_NB_STOP_BIT_2;
return config;
}
void UARTComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up UART bus...");
// Use Arduino HardwareSerial UARTs if all used pins match the ones
// preconfigured by the platform. For example if RX disabled but TX pin
// is 1 we still want to use Serial.
SerialConfig config = static_cast<SerialConfig>(get_config());
if (this->tx_pin_.value_or(1) == 1 && this->rx_pin_.value_or(3) == 3) {
this->hw_serial_ = &Serial;
this->hw_serial_->begin(this->baud_rate_, config);
} else if (this->tx_pin_.value_or(15) == 15 && this->rx_pin_.value_or(13) == 13) {
this->hw_serial_ = &Serial;
this->hw_serial_->begin(this->baud_rate_, config);
this->hw_serial_->swap();
} else if (this->tx_pin_.value_or(2) == 2 && this->rx_pin_.value_or(8) == 8) {
this->hw_serial_ = &Serial1;
this->hw_serial_->begin(this->baud_rate_, config);
} else {
this->sw_serial_ = new ESP8266SoftwareSerial();
int8_t tx = this->tx_pin_.has_value() ? *this->tx_pin_ : -1;
int8_t rx = this->rx_pin_.has_value() ? *this->rx_pin_ : -1;
this->sw_serial_->setup(tx, rx, this->baud_rate_, this->stop_bits_, this->nr_bits_, this->parity_);
}
}
void UARTComponent::dump_config() {
ESP_LOGCONFIG(TAG, "UART Bus:");
if (this->tx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " TX Pin: GPIO%d", *this->tx_pin_);
}
if (this->rx_pin_.has_value()) {
ESP_LOGCONFIG(TAG, " RX Pin: GPIO%d", *this->rx_pin_);
}
ESP_LOGCONFIG(TAG, " Baud Rate: %u baud", this->baud_rate_);
ESP_LOGCONFIG(TAG, " Bits: %u", this->nr_bits_);
ESP_LOGCONFIG(TAG, " Parity: %s", parity_to_str(this->parity_));
ESP_LOGCONFIG(TAG, " Stop bits: %u", this->stop_bits_);
if (this->hw_serial_ != nullptr) {
ESP_LOGCONFIG(TAG, " Using hardware serial interface.");
} else {
ESP_LOGCONFIG(TAG, " Using software serial");
}
this->check_logger_conflict_();
}
void UARTComponent::write_byte(uint8_t data) {
if (this->hw_serial_ != nullptr) {
this->hw_serial_->write(data);
} else {
this->sw_serial_->write_byte(data);
}
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data), data);
}
void UARTComponent::write_array(const uint8_t *data, size_t len) {
if (this->hw_serial_ != nullptr) {
this->hw_serial_->write(data, len);
} else {
for (size_t i = 0; i < len; i++)
this->sw_serial_->write_byte(data[i]);
}
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Wrote 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
}
void UARTComponent::write_str(const char *str) {
if (this->hw_serial_ != nullptr) {
this->hw_serial_->write(str);
} else {
const auto *data = reinterpret_cast<const uint8_t *>(str);
for (size_t i = 0; data[i] != 0; i++)
this->sw_serial_->write_byte(data[i]);
}
ESP_LOGVV(TAG, " Wrote \"%s\"", str);
}
void UARTComponent::end() {
if (this->hw_serial_ != nullptr)
this->hw_serial_->end();
else if (this->sw_serial_ != nullptr)
this->sw_serial_->end();
}
void UARTComponent::begin() {
if (this->hw_serial_ != nullptr)
this->hw_serial_->begin(this->baud_rate_, static_cast<SerialConfig>(get_config()));
else if (this->sw_serial_ != nullptr)
this->sw_serial_->begin();
}
bool UARTComponent::read_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
if (this->hw_serial_ != nullptr) {
*data = this->hw_serial_->read();
} else {
*data = this->sw_serial_->read_byte();
}
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(*data), *data);
return true;
}
bool UARTComponent::peek_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
if (this->hw_serial_ != nullptr) {
*data = this->hw_serial_->peek();
} else {
*data = this->sw_serial_->peek_byte();
}
return true;
}
bool UARTComponent::read_array(uint8_t *data, size_t len) {
if (!this->check_read_timeout_(len))
return false;
if (this->hw_serial_ != nullptr) {
this->hw_serial_->readBytes(data, len);
} else {
for (size_t i = 0; i < len; i++)
data[i] = this->sw_serial_->read_byte();
}
for (size_t i = 0; i < len; i++) {
ESP_LOGVV(TAG, " Read 0b" BYTE_TO_BINARY_PATTERN " (0x%02X)", BYTE_TO_BINARY(data[i]), data[i]);
}
return true;
}
bool UARTComponent::check_read_timeout_(size_t len) {
if (this->available() >= int(len))
return true;
uint32_t start_time = millis();
while (this->available() < int(len)) {
if (millis() - start_time > 100) {
ESP_LOGE(TAG, "Reading from UART timed out at byte %u!", this->available());
return false;
}
yield();
}
return true;
}
int UARTComponent::available() {
if (this->hw_serial_ != nullptr) {
return this->hw_serial_->available();
} else {
return this->sw_serial_->available();
}
}
void UARTComponent::flush() {
ESP_LOGVV(TAG, " Flushing...");
if (this->hw_serial_ != nullptr) {
this->hw_serial_->flush();
} else {
this->sw_serial_->flush();
}
}
void ESP8266SoftwareSerial::end() {
/* Because of this bug: https://github.com/esp8266/Arduino/issues/6049
* detach_interrupt can't called.
* So simply reset rx_in_pos and rx_out_pos even if it's totally racy with
* the interrupt.
*/
// this->gpio_rx_pin_->detach_interrupt();
this->rx_in_pos_ = 0;
this->rx_out_pos_ = 0;
}
void ESP8266SoftwareSerial::begin() {
/* attach_interrupt() is also not safe because gpio_intr() may
* endup with arg == nullptr.
*/
// this->gpio_rx_pin_->attach_interrupt(ESP8266SoftwareSerial::gpio_intr, this, FALLING);
}
void ESP8266SoftwareSerial::setup(int8_t tx_pin, int8_t rx_pin, uint32_t baud_rate, uint8_t stop_bits, uint32_t nr_bits,
UARTParityOptions parity) {
this->bit_time_ = F_CPU / baud_rate;
this->stop_bits_ = stop_bits;
this->nr_bits_ = nr_bits;
this->parity_ = parity;
if (tx_pin != -1) {
auto pin = GPIOPin(tx_pin, OUTPUT);
this->gpio_tx_pin_ = &pin;
pin.setup();
this->tx_pin_ = pin.to_isr();
this->tx_pin_->digital_write(true);
}
if (rx_pin != -1) {
auto pin = GPIOPin(rx_pin, INPUT);
pin.setup();
this->gpio_rx_pin_ = &pin;
this->rx_pin_ = pin.to_isr();
this->rx_buffer_ = new uint8_t[this->rx_buffer_size_];
pin.attach_interrupt(ESP8266SoftwareSerial::gpio_intr, this, FALLING);
}
}
void ICACHE_RAM_ATTR ESP8266SoftwareSerial::gpio_intr(ESP8266SoftwareSerial *arg) {
uint32_t wait = arg->bit_time_ + arg->bit_time_ / 3 - 500;
const uint32_t start = ESP.getCycleCount();
uint8_t rec = 0;
// Manually unroll the loop
for (int i = 0; i < arg->nr_bits_; i++)
rec |= arg->read_bit_(&wait, start) << i;
/* If parity is enabled, just read it and ignore it. */
/* TODO: Should we check parity? Or is it too slow for nothing added..*/
if (arg->parity_ == UART_CONFIG_PARITY_EVEN)
arg->read_bit_(&wait, start);
else if (arg->parity_ == UART_CONFIG_PARITY_ODD)
arg->read_bit_(&wait, start);
// Stop bit
arg->wait_(&wait, start);
if (arg->stop_bits_ == 2)
arg->wait_(&wait, start);
arg->rx_buffer_[arg->rx_in_pos_] = rec;
arg->rx_in_pos_ = (arg->rx_in_pos_ + 1) % arg->rx_buffer_size_;
// Clear RX pin so that the interrupt doesn't re-trigger right away again.
arg->rx_pin_->clear_interrupt();
}
void ICACHE_RAM_ATTR HOT ESP8266SoftwareSerial::write_byte(uint8_t data) {
if (this->tx_pin_ == nullptr) {
ESP_LOGE(TAG, "UART doesn't have TX pins set!");
return;
}
bool parity_bit = false;
bool need_parity_bit = true;
if (this->parity_ == UART_CONFIG_PARITY_EVEN)
parity_bit = true;
else if (this->parity_ == UART_CONFIG_PARITY_ODD)
parity_bit = false;
else
need_parity_bit = false;
{
InterruptLock lock;
uint32_t wait = this->bit_time_;
const uint32_t start = ESP.getCycleCount();
// Start bit
this->write_bit_(false, &wait, start);
for (int i = 0; i < this->nr_bits_; i++) {
bool bit = data & (1 << i);
this->write_bit_(bit, &wait, start);
if (need_parity_bit)
parity_bit ^= bit;
}
if (need_parity_bit)
this->write_bit_(parity_bit, &wait, start);
// Stop bit
this->write_bit_(true, &wait, start);
if (this->stop_bits_ == 2)
this->wait_(&wait, start);
}
}
void ICACHE_RAM_ATTR ESP8266SoftwareSerial::wait_(uint32_t *wait, const uint32_t &start) {
while (ESP.getCycleCount() - start < *wait)
;
*wait += this->bit_time_;
}
bool ICACHE_RAM_ATTR ESP8266SoftwareSerial::read_bit_(uint32_t *wait, const uint32_t &start) {
this->wait_(wait, start);
return this->rx_pin_->digital_read();
}
void ICACHE_RAM_ATTR ESP8266SoftwareSerial::write_bit_(bool bit, uint32_t *wait, const uint32_t &start) {
this->tx_pin_->digital_write(bit);
this->wait_(wait, start);
}
uint8_t ESP8266SoftwareSerial::read_byte() {
if (this->rx_in_pos_ == this->rx_out_pos_)
return 0;
uint8_t data = this->rx_buffer_[this->rx_out_pos_];
this->rx_out_pos_ = (this->rx_out_pos_ + 1) % this->rx_buffer_size_;
return data;
}
uint8_t ESP8266SoftwareSerial::peek_byte() {
if (this->rx_in_pos_ == this->rx_out_pos_)
return 0;
return this->rx_buffer_[this->rx_out_pos_];
}
void ESP8266SoftwareSerial::flush() {
// Flush is a NO-OP with software serial, all bytes are written immediately.
}
int ESP8266SoftwareSerial::available() {
int avail = int(this->rx_in_pos_) - int(this->rx_out_pos_);
if (avail < 0)
return avail + this->rx_buffer_size_;
return avail;
}
} // namespace uart
} // namespace esphome
#endif // ESP8266

View file

@ -12,6 +12,7 @@ typedef struct { // NOLINT
void ICACHE_RAM_ATTR __attachInterruptArg(uint8_t pin, void (*)(void *), void *fp, // NOLINT void ICACHE_RAM_ATTR __attachInterruptArg(uint8_t pin, void (*)(void *), void *fp, // NOLINT
int mode); int mode);
void ICACHE_RAM_ATTR __detachInterrupt(uint8_t pin); // NOLINT
}; };
#endif #endif
@ -226,6 +227,15 @@ void ICACHE_RAM_ATTR interrupt_handler(void *arg) {
} }
#endif #endif
void GPIOPin::detach_interrupt() const { this->detach_interrupt_(); }
void GPIOPin::detach_interrupt_() const {
#ifdef ARDUINO_ARCH_ESP8266
__detachInterrupt(get_pin());
#endif
#ifdef ARDUINO_ARCH_ESP32
detachInterrupt(get_pin());
#endif
}
void GPIOPin::attach_interrupt_(void (*func)(void *), void *arg, int mode) const { void GPIOPin::attach_interrupt_(void (*func)(void *), void *arg, int mode) const {
if (this->inverted_) { if (this->inverted_) {
if (mode == RISING) { if (mode == RISING) {

View file

@ -94,11 +94,13 @@ class GPIOPin {
bool is_inverted() const; bool is_inverted() const;
template<typename T> void attach_interrupt(void (*func)(T *), T *arg, int mode) const; template<typename T> void attach_interrupt(void (*func)(T *), T *arg, int mode) const;
void detach_interrupt() const;
ISRInternalGPIOPin *to_isr() const; ISRInternalGPIOPin *to_isr() const;
protected: protected:
void attach_interrupt_(void (*func)(void *), void *arg, int mode) const; void attach_interrupt_(void (*func)(void *), void *arg, int mode) const;
void detach_interrupt_() const;
const uint8_t pin_; const uint8_t pin_;
const uint8_t mode_; const uint8_t mode_;
@ -114,5 +116,4 @@ class GPIOPin {
template<typename T> void GPIOPin::attach_interrupt(void (*func)(T *), T *arg, int mode) const { template<typename T> void GPIOPin::attach_interrupt(void (*func)(T *), T *arg, int mode) const {
this->attach_interrupt_(reinterpret_cast<void (*)(void *)>(func), arg, mode); this->attach_interrupt_(reinterpret_cast<void (*)(void *)>(func), arg, mode);
} }
} // namespace esphome } // namespace esphome

View file

@ -132,6 +132,9 @@ uart:
rx_pin: GPIO23 rx_pin: GPIO23
baud_rate: 115200 baud_rate: 115200
id: uart0 id: uart0
parity: NONE
data_bits: 8
stop_bits: 1
ota: ota:
safe_mode: True safe_mode: True