#include "sgp30.h" #include "esphome/core/log.h" namespace esphome { namespace sgp30 { static const char *TAG = "sgp30"; static const uint16_t SGP30_CMD_GET_SERIAL_ID = 0x3682; static const uint16_t SGP30_CMD_GET_FEATURESET = 0x202f; static const uint16_t SGP30_CMD_IAQ_INIT = 0x2003; static const uint16_t SGP30_CMD_MEASURE_IAQ = 0x2008; static const uint16_t SGP30_CMD_SET_ABSOLUTE_HUMIDITY = 0x2061; static const uint16_t SGP30_CMD_GET_IAQ_BASELINE = 0x2015; static const uint16_t SGP30_CMD_SET_IAQ_BASELINE = 0x201E; // Sensor baseline should first be relied on after 1H of operation, // if the sensor starts with a baseline value provided const long IAQ_BASELINE_WARM_UP_SECONDS_WITH_BASELINE_PROVIDED = 3600; // Sensor baseline could first be relied on after 12H of operation, // if the sensor starts without any prior baseline value provided const long IAQ_BASELINE_WARM_UP_SECONDS_WITHOUT_BASELINE = 43200; void SGP30Component::setup() { ESP_LOGCONFIG(TAG, "Setting up SGP30..."); // Serial Number identification if (!this->write_command_(SGP30_CMD_GET_SERIAL_ID)) { this->error_code_ = COMMUNICATION_FAILED; this->mark_failed(); return; } uint16_t raw_serial_number[3]; if (!this->read_data_(raw_serial_number, 3)) { this->mark_failed(); return; } this->serial_number_ = (uint64_t(raw_serial_number[0]) << 24) | (uint64_t(raw_serial_number[1]) << 16) | (uint64_t(raw_serial_number[2])); ESP_LOGD(TAG, "Serial Number: %llu", this->serial_number_); // Featureset identification for future use if (!this->write_command_(SGP30_CMD_GET_FEATURESET)) { this->mark_failed(); return; } uint16_t raw_featureset[1]; if (!this->read_data_(raw_featureset, 1)) { this->mark_failed(); return; } this->featureset_ = raw_featureset[0]; if (uint16_t(this->featureset_ >> 12) != 0x0) { if (uint16_t(this->featureset_ >> 12) == 0x1) { // ID matching a different sensor: SGPC3 this->error_code_ = UNSUPPORTED_ID; } else { // Unknown ID this->error_code_ = INVALID_ID; } this->mark_failed(); return; } ESP_LOGD(TAG, "Product version: 0x%0X", uint16_t(this->featureset_ & 0x1FF)); // Sensor initialization if (!this->write_command_(SGP30_CMD_IAQ_INIT)) { ESP_LOGE(TAG, "Sensor sgp30_iaq_init failed."); this->error_code_ = MEASUREMENT_INIT_FAILED; this->mark_failed(); return; } // Sensor baseline reliability timer if (this->eco2_baseline_ > 0 && this->tvoc_baseline_ > 0) { this->required_warm_up_time_ = IAQ_BASELINE_WARM_UP_SECONDS_WITH_BASELINE_PROVIDED; this->write_iaq_baseline_(this->eco2_baseline_, this->tvoc_baseline_); } else { this->required_warm_up_time_ = IAQ_BASELINE_WARM_UP_SECONDS_WITHOUT_BASELINE; } } bool SGP30Component::is_sensor_baseline_reliable_() { if ((this->required_warm_up_time_ == 0) || (std::floor(millis() / 1000) >= this->required_warm_up_time_)) { // requirement for warm up is removed once the millis uptime surpasses the required warm_up_time // this avoids the repetitive warm up when the millis uptime is rolled over every ~40 days this->required_warm_up_time_ = 0; return true; } return false; } void SGP30Component::read_iaq_baseline_() { if (this->is_sensor_baseline_reliable_()) { if (!this->write_command_(SGP30_CMD_GET_IAQ_BASELINE)) { ESP_LOGD(TAG, "Error getting baseline"); this->status_set_warning(); return; } this->set_timeout(50, [this]() { uint16_t raw_data[2]; if (!this->read_data_(raw_data, 2)) { this->status_set_warning(); return; } uint16_t eco2baseline = (raw_data[0]); uint16_t tvocbaseline = (raw_data[1]); ESP_LOGI(TAG, "Current eCO2 baseline: 0x%04X, TVOC baseline: 0x%04X", eco2baseline, tvocbaseline); this->status_clear_warning(); }); } else { ESP_LOGD(TAG, "Baseline reading not available for: %.0fs", (this->required_warm_up_time_ - std::floor(millis() / 1000))); } } void SGP30Component::send_env_data_() { if (this->humidity_sensor_ == nullptr && this->temperature_sensor_ == nullptr) return; float humidity = NAN; if (this->humidity_sensor_ != nullptr) humidity = this->humidity_sensor_->state; if (isnan(humidity) || humidity < 0.0f || humidity > 100.0f) { ESP_LOGW(TAG, "Compensation not possible yet: bad humidity data."); return; } else { ESP_LOGD(TAG, "External compensation data received: Humidity %0.2f%%", humidity); } float temperature = NAN; if (this->temperature_sensor_ != nullptr) { temperature = float(this->temperature_sensor_->state); } if (isnan(temperature) || temperature < -40.0f || temperature > 85.0f) { ESP_LOGW(TAG, "Compensation not possible yet: bad temperature value data."); return; } else { ESP_LOGD(TAG, "External compensation data received: Temperature %0.2f°C", temperature); } float absolute_humidity = 216.7f * (((humidity / 100) * 6.112f * std::exp((17.62f * temperature) / (243.12f + temperature))) / (273.15f + temperature)); uint8_t humidity_full = uint8_t(std::floor(absolute_humidity)); uint8_t humidity_dec = uint8_t(std::floor((absolute_humidity - std::floor(absolute_humidity)) * 256)); ESP_LOGD(TAG, "Calculated Absolute humidity: %0.3f g/m³ (0x%04X)", absolute_humidity, uint16_t(uint16_t(humidity_full) << 8 | uint16_t(humidity_dec))); uint8_t crc = sht_crc_(humidity_full, humidity_dec); uint8_t data[4]; data[0] = SGP30_CMD_SET_ABSOLUTE_HUMIDITY & 0xFF; data[1] = humidity_full; data[2] = humidity_dec; data[3] = crc; if (!this->write_bytes(SGP30_CMD_SET_ABSOLUTE_HUMIDITY >> 8, data, 4)) { ESP_LOGE(TAG, "Error sending compensation data."); } } void SGP30Component::write_iaq_baseline_(uint16_t eco2_baseline, uint16_t tvoc_baseline) { uint8_t data[7]; data[0] = SGP30_CMD_SET_IAQ_BASELINE & 0xFF; data[1] = eco2_baseline >> 8; data[2] = eco2_baseline & 0xFF; data[3] = sht_crc_(data[1], data[2]); data[4] = tvoc_baseline >> 8; data[5] = tvoc_baseline & 0xFF; data[6] = sht_crc_(data[4], data[5]); if (!this->write_bytes(SGP30_CMD_SET_IAQ_BASELINE >> 8, data, 7)) { ESP_LOGE(TAG, "Error applying eCO2 baseline: 0x%04X, TVOC baseline: 0x%04X", eco2_baseline, tvoc_baseline); } else ESP_LOGI(TAG, "Initial eCO2 and TVOC baselines applied successfully!"); } void SGP30Component::dump_config() { ESP_LOGCONFIG(TAG, "SGP30:"); LOG_I2C_DEVICE(this); if (this->is_failed()) { switch (this->error_code_) { case COMMUNICATION_FAILED: ESP_LOGW(TAG, "Communication failed! Is the sensor connected?"); break; case MEASUREMENT_INIT_FAILED: ESP_LOGW(TAG, "Measurement Initialization failed!"); break; case INVALID_ID: ESP_LOGW(TAG, "Sensor reported an invalid ID. Is this an SGP30?"); break; case UNSUPPORTED_ID: ESP_LOGW(TAG, "Sensor reported an unsupported ID (SGPC3)."); break; default: ESP_LOGW(TAG, "Unknown setup error!"); break; } } else { ESP_LOGCONFIG(TAG, " Serial number: %llu", this->serial_number_); if (this->eco2_baseline_ != 0x0000 && this->tvoc_baseline_ != 0x0000) { ESP_LOGCONFIG(TAG, " Baseline:"); ESP_LOGCONFIG(TAG, " eCO2 Baseline: 0x%04X", this->eco2_baseline_); ESP_LOGCONFIG(TAG, " TVOC Baseline: 0x%04X", this->tvoc_baseline_); } else { ESP_LOGCONFIG(TAG, " Baseline: No baseline configured"); } ESP_LOGCONFIG(TAG, " Warm up time: %lds", this->required_warm_up_time_); } LOG_UPDATE_INTERVAL(this); LOG_SENSOR(" ", "eCO2", this->eco2_sensor_); LOG_SENSOR(" ", "TVOC", this->tvoc_sensor_); if (this->humidity_sensor_ != nullptr && this->temperature_sensor_ != nullptr) { ESP_LOGCONFIG(TAG, " Compensation:"); LOG_SENSOR(" ", "Temperature Source:", this->temperature_sensor_); LOG_SENSOR(" ", "Humidity Source:", this->humidity_sensor_); } else { ESP_LOGCONFIG(TAG, " Compensation: No source configured"); } } void SGP30Component::update() { if (!this->write_command_(SGP30_CMD_MEASURE_IAQ)) { this->status_set_warning(); return; } this->set_timeout(50, [this]() { uint16_t raw_data[2]; if (!this->read_data_(raw_data, 2)) { this->status_set_warning(); return; } float eco2 = (raw_data[0]); float tvoc = (raw_data[1]); ESP_LOGD(TAG, "Got eCO2=%.1fppm TVOC=%.1fppb", eco2, tvoc); if (this->eco2_sensor_ != nullptr) this->eco2_sensor_->publish_state(eco2); if (this->tvoc_sensor_ != nullptr) this->tvoc_sensor_->publish_state(tvoc); this->status_clear_warning(); this->send_env_data_(); this->read_iaq_baseline_(); }); } bool SGP30Component::write_command_(uint16_t command) { // Warning ugly, trick the I2Ccomponent base by setting register to the first 8 bit. return this->write_byte(command >> 8, command & 0xFF); } uint8_t SGP30Component::sht_crc_(uint8_t data1, uint8_t data2) { uint8_t bit; uint8_t crc = 0xFF; crc ^= data1; for (bit = 8; bit > 0; --bit) { if (crc & 0x80) crc = (crc << 1) ^ 0x131; else crc = (crc << 1); } crc ^= data2; for (bit = 8; bit > 0; --bit) { if (crc & 0x80) crc = (crc << 1) ^ 0x131; else crc = (crc << 1); } return crc; } bool SGP30Component::read_data_(uint16_t *data, uint8_t len) { const uint8_t num_bytes = len * 3; auto *buf = new uint8_t[num_bytes]; if (!this->parent_->raw_receive(this->address_, buf, num_bytes)) { delete[](buf); return false; } for (uint8_t i = 0; i < len; i++) { const uint8_t j = 3 * i; uint8_t crc = sht_crc_(buf[j], buf[j + 1]); if (crc != buf[j + 2]) { ESP_LOGE(TAG, "CRC8 Checksum invalid! 0x%02X != 0x%02X", buf[j + 2], crc); delete[](buf); return false; } data[i] = (buf[j] << 8) | buf[j + 1]; } delete[](buf); return true; } } // namespace sgp30 } // namespace esphome