#include "remote_receiver.h" #include "esphome/core/hal.h" #include "esphome/core/log.h" #include "esphome/core/helpers.h" #ifdef USE_ESP8266 namespace esphome { namespace remote_receiver { static const char *const TAG = "remote_receiver.esp8266"; void IRAM_ATTR HOT RemoteReceiverComponentStore::gpio_intr(RemoteReceiverComponentStore *arg) { const uint32_t now = micros(); // If the lhs is 1 (rising edge) we should write to an uneven index and vice versa const uint32_t next = (arg->buffer_write_at + 1) % arg->buffer_size; const bool level = arg->pin.digital_read(); if (level != next % 2) return; // If next is buffer_read, we have hit an overflow if (next == arg->buffer_read_at) return; const uint32_t last_change = arg->buffer[arg->buffer_write_at]; const uint32_t time_since_change = now - last_change; if (time_since_change <= arg->filter_us) return; arg->buffer[arg->buffer_write_at = next] = now; } void RemoteReceiverComponent::setup() { ESP_LOGCONFIG(TAG, "Setting up Remote Receiver..."); this->pin_->setup(); auto &s = this->store_; s.filter_us = this->filter_us_; s.pin = this->pin_->to_isr(); s.buffer_size = this->buffer_size_; this->high_freq_.start(); if (s.buffer_size % 2 != 0) { // Make sure divisible by two. This way, we know that every 0bxxx0 index is a space and every 0bxxx1 index is a mark s.buffer_size++; } s.buffer = new uint32_t[s.buffer_size]; void *buf = (void *) s.buffer; memset(buf, 0, s.buffer_size * sizeof(uint32_t)); // First index is a space. if (this->pin_->digital_read()) { s.buffer_write_at = s.buffer_read_at = 1; } else { s.buffer_write_at = s.buffer_read_at = 0; } this->pin_->attach_interrupt(RemoteReceiverComponentStore::gpio_intr, &this->store_, gpio::INTERRUPT_ANY_EDGE); } void RemoteReceiverComponent::dump_config() { ESP_LOGCONFIG(TAG, "Remote Receiver:"); LOG_PIN(" Pin: ", this->pin_); if (this->pin_->digital_read()) { ESP_LOGW(TAG, "Remote Receiver Signal starts with a HIGH value. Usually this means you have to " "invert the signal using 'inverted: True' in the pin schema!"); } ESP_LOGCONFIG(TAG, " Buffer Size: %u", this->buffer_size_); ESP_LOGCONFIG(TAG, " Tolerance: %u%%", this->tolerance_); ESP_LOGCONFIG(TAG, " Filter out pulses shorter than: %u us", this->filter_us_); ESP_LOGCONFIG(TAG, " Signal is done after %u us of no changes", this->idle_us_); } void RemoteReceiverComponent::loop() { auto &s = this->store_; // copy write at to local variables, as it's volatile const uint32_t write_at = s.buffer_write_at; const uint32_t dist = (s.buffer_size + write_at - s.buffer_read_at) % s.buffer_size; // signals must at least one rising and one leading edge if (dist <= 1) return; const uint32_t now = micros(); if (now - s.buffer[write_at] < this->idle_us_) // The last change was fewer than the configured idle time ago. return; ESP_LOGVV(TAG, "read_at=%u write_at=%u dist=%u now=%u end=%u", s.buffer_read_at, write_at, dist, now, s.buffer[write_at]); // Skip first value, it's from the previous idle level s.buffer_read_at = (s.buffer_read_at + 1) % s.buffer_size; uint32_t prev = s.buffer_read_at; s.buffer_read_at = (s.buffer_read_at + 1) % s.buffer_size; const uint32_t reserve_size = 1 + (s.buffer_size + write_at - s.buffer_read_at) % s.buffer_size; this->temp_.clear(); this->temp_.reserve(reserve_size); int32_t multiplier = s.buffer_read_at % 2 == 0 ? 1 : -1; for (uint32_t i = 0; prev != write_at; i++) { int32_t delta = s.buffer[s.buffer_read_at] - s.buffer[prev]; if (uint32_t(delta) >= this->idle_us_) { // already found a space longer than idle. There must have been two pulses break; } ESP_LOGVV(TAG, " i=%u buffer[%u]=%u - buffer[%u]=%u -> %d", i, s.buffer_read_at, s.buffer[s.buffer_read_at], prev, s.buffer[prev], multiplier * delta); this->temp_.push_back(multiplier * delta); prev = s.buffer_read_at; s.buffer_read_at = (s.buffer_read_at + 1) % s.buffer_size; multiplier *= -1; } s.buffer_read_at = (s.buffer_size + s.buffer_read_at - 1) % s.buffer_size; this->temp_.push_back(this->idle_us_ * multiplier); this->call_listeners_dumpers_(); } } // namespace remote_receiver } // namespace esphome #endif