#include "ina219.h" #include "esphome/core/log.h" #include "esphome/core/hal.h" namespace esphome { namespace ina219 { static const char *const TAG = "ina219"; // | A0 | A1 | Address | // | GND | GND | 0x40 | // | GND | V_S+ | 0x41 | // | GND | SDA | 0x42 | // | GND | SCL | 0x43 | // | V_S+ | GND | 0x44 | // | V_S+ | V_S+ | 0x45 | // | V_S+ | SDA | 0x46 | // | V_S+ | SCL | 0x47 | // | SDA | GND | 0x48 | // | SDA | V_S+ | 0x49 | // | SDA | SDA | 0x4A | // | SDA | SCL | 0x4B | // | SCL | GND | 0x4C | // | SCL | V_S+ | 0x4D | // | SCL | SDA | 0x4E | // | SCL | SCL | 0x4F | static const uint8_t INA219_READ = 0x01; static const uint8_t INA219_REGISTER_CONFIG = 0x00; static const uint8_t INA219_REGISTER_SHUNT_VOLTAGE = 0x01; static const uint8_t INA219_REGISTER_BUS_VOLTAGE = 0x02; static const uint8_t INA219_REGISTER_POWER = 0x03; static const uint8_t INA219_REGISTER_CURRENT = 0x04; static const uint8_t INA219_REGISTER_CALIBRATION = 0x05; void INA219Component::setup() { ESP_LOGCONFIG(TAG, "Setting up INA219..."); // Config Register // 0bx000000000000000 << 15 RESET Bit (1 -> trigger reset) if (!this->write_byte_16(INA219_REGISTER_CONFIG, 0x8000)) { this->mark_failed(); return; } delay(1); // 0b00000xxxx0000000 << 7 Bus ADC Resolution/Averaging // 0b000000000xxxx000 << 3 Shunt ADC Resolution/Averaging // Value Resolution, Averaging, Conversion // 0b0X00 -> 9 bit, 1 sample, 84 µs // 0b0X01 -> 10 bit, 1 sample, 148 µs // 0b0X10 -> 11 bit, 1 sample, 276 µs // 0b0X11 -> 12 bit, 1 sample, 532 µs // 0b1001 -> 12 bit, 2 samples, 1.06 ms // 0b1010 -> 12 bit, 4 samples, 2.13 ms // 0b1011 -> 12 bit, 8 samples, 4.26 ms // 0b1100 -> 12 bit, 16 samples, 8.51 ms // 0b1101 -> 12 bit, 32 samples, 17.02 ms // 0b1110 -> 12 bit, 64 samples, 34.05 ms // 0b1111 -> 12 bit, 128 samples, 68.10 ms <-- // 0b0000000000000xxx << 0 Mode (Bus and Shunt continuous -> 0b111) // Bus ADC and Shunt ADC 12 bit+128 samples uint16_t config = 0x0000; // Continuous operation of Bus and Shunt ADCs config |= 0b0000000000000111; // Bus ADC and Shunt ADC 12 bit+128 samples -> 68.10 ms config |= 0b0000011110000000; config |= 0b0000000001111000; const float shunt_max_voltage = this->shunt_resistance_ohm_ * this->max_current_a_; // 0b00x0000000000000 << 13 Bus Voltage Range (0 -> 16V, 1 -> 32V) bool bus_32v_range = this->max_voltage_v_ > 16.0f || shunt_max_voltage > 0.16f; float multiplier; if (bus_32v_range) { config |= 0b0010000000000000; multiplier = 0.5f; } else { config |= 0b0000000000000000; multiplier = 1.0f; } // 0b000xx00000000000 << 11 Shunt Voltage Gain (0b00 -> 40mV, 0b01 -> 80mV, 0b10 -> 160mV, 0b11 -> 320mV) uint16_t shunt_gain; if (shunt_max_voltage * multiplier <= 0.02f) { shunt_gain = 0b00; // 40mV } else if (shunt_max_voltage * multiplier <= 0.04f) { shunt_gain = 0b01; // 80mV } else if (shunt_max_voltage * multiplier <= 0.08f) { shunt_gain = 0b10; // 160mV } else { if (int(shunt_max_voltage * multiplier * 100) > 16) { ESP_LOGW(TAG, " Max voltage across shunt resistor (resistance*current) exceeds %dmV. " "This could damage the sensor!", int(160 / multiplier)); } shunt_gain = 0b11; // 320mV } config |= shunt_gain << 11; ESP_LOGCONFIG(TAG, " Using %dV-Range Shunt Gain=%dmV", bus_32v_range ? 32 : 16, 40 << shunt_gain); if (!this->write_byte_16(INA219_REGISTER_CONFIG, config)) { this->mark_failed(); return; } auto min_lsb = uint32_t(ceilf(this->max_current_a_ * 1000000.0f / 0x8000)); auto max_lsb = uint32_t(floorf(this->max_current_a_ * 1000000.0f / 0x1000)); uint32_t lsb = min_lsb; for (; lsb <= max_lsb; lsb++) { float max_current_before_overflow = lsb * 0x7FFF / 1000000.0f; if (this->max_current_a_ <= max_current_before_overflow) break; } if (lsb > max_lsb) { lsb = max_lsb; ESP_LOGW(TAG, " The requested current (%0.02fA) cannot be achieved without an overflow", this->max_current_a_); } this->calibration_lsb_ = lsb; auto calibration = uint32_t(0.04096f / (0.000001 * lsb * this->shunt_resistance_ohm_)); ESP_LOGV(TAG, " Using LSB=%u calibration=%u", lsb, calibration); if (!this->write_byte_16(INA219_REGISTER_CALIBRATION, calibration)) { this->mark_failed(); return; } } void INA219Component::dump_config() { ESP_LOGCONFIG(TAG, "INA219:"); LOG_I2C_DEVICE(this); if (this->is_failed()) { ESP_LOGE(TAG, "Communication with INA219 failed!"); return; } LOG_UPDATE_INTERVAL(this); LOG_SENSOR(" ", "Bus Voltage", this->bus_voltage_sensor_); LOG_SENSOR(" ", "Shunt Voltage", this->shunt_voltage_sensor_); LOG_SENSOR(" ", "Current", this->current_sensor_); LOG_SENSOR(" ", "Power", this->power_sensor_); } float INA219Component::get_setup_priority() const { return setup_priority::DATA; } void INA219Component::update() { if (this->bus_voltage_sensor_ != nullptr) { uint16_t raw_bus_voltage; if (!this->read_byte_16(INA219_REGISTER_BUS_VOLTAGE, &raw_bus_voltage)) { this->status_set_warning(); return; } raw_bus_voltage >>= 3; float bus_voltage_v = int16_t(raw_bus_voltage) * 0.004f; this->bus_voltage_sensor_->publish_state(bus_voltage_v); } if (this->shunt_voltage_sensor_ != nullptr) { uint16_t raw_shunt_voltage; if (!this->read_byte_16(INA219_REGISTER_SHUNT_VOLTAGE, &raw_shunt_voltage)) { this->status_set_warning(); return; } float shunt_voltage_mv = int16_t(raw_shunt_voltage) * 0.01f; this->shunt_voltage_sensor_->publish_state(shunt_voltage_mv / 1000.0f); } if (this->current_sensor_ != nullptr) { uint16_t raw_current; if (!this->read_byte_16(INA219_REGISTER_CURRENT, &raw_current)) { this->status_set_warning(); return; } float current_ma = int16_t(raw_current) * (this->calibration_lsb_ / 1000.0f); this->current_sensor_->publish_state(current_ma / 1000.0f); } if (this->power_sensor_ != nullptr) { uint16_t raw_power; if (!this->read_byte_16(INA219_REGISTER_POWER, &raw_power)) { this->status_set_warning(); return; } float power_mw = int16_t(raw_power) * (this->calibration_lsb_ * 20.0f / 1000.0f); this->power_sensor_->publish_state(power_mw / 1000.0f); } this->status_clear_warning(); } } // namespace ina219 } // namespace esphome