#include "sm10bit_base.h" #include "esphome/core/log.h" namespace esphome { namespace sm10bit_base { static const char *const TAG = "sm10bit_base"; static const uint8_t SM10BIT_ADDR_STANDBY = 0x0; static const uint8_t SM10BIT_ADDR_START_3CH = 0x8; static const uint8_t SM10BIT_ADDR_START_2CH = 0x10; static const uint8_t SM10BIT_ADDR_START_5CH = 0x18; // Power current values // HEX | Binary | RGB level | White level | Config value // 0x0 | 0000 | RGB 10mA | CW 5mA | 0 // 0x1 | 0001 | RGB 20mA | CW 10mA | 1 // 0x2 | 0010 | RGB 30mA | CW 15mA | 2 - Default spec color value // 0x3 | 0011 | RGB 40mA | CW 20mA | 3 // 0x4 | 0100 | RGB 50mA | CW 25mA | 4 - Default spec white value // 0x5 | 0101 | RGB 60mA | CW 30mA | 5 // 0x6 | 0110 | RGB 70mA | CW 35mA | 6 // 0x7 | 0111 | RGB 80mA | CW 40mA | 7 // 0x8 | 1000 | RGB 90mA | CW 45mA | 8 // 0x9 | 1001 | RGB 100mA | CW 50mA | 9 // 0xA | 1010 | RGB 110mA | CW 55mA | 10 // 0xB | 1011 | RGB 120mA | CW 60mA | 11 // 0xC | 1100 | RGB 130mA | CW 65mA | 12 // 0xD | 1101 | RGB 140mA | CW 70mA | 13 // 0xE | 1110 | RGB 150mA | CW 75mA | 14 // 0xF | 1111 | RGB 160mA | CW 80mA | 15 void Sm10BitBase::loop() { if (!this->update_) return; uint8_t data[12]; if (this->pwm_amounts_[0] == 0 && this->pwm_amounts_[1] == 0 && this->pwm_amounts_[2] == 0 && this->pwm_amounts_[3] == 0 && this->pwm_amounts_[4] == 0) { // Off / Sleep data[0] = this->model_id_ + SM10BIT_ADDR_STANDBY; for (int i = 1; i < 12; i++) data[i] = 0; this->write_buffer_(data, 12); } else if (this->pwm_amounts_[0] == 0 && this->pwm_amounts_[1] == 0 && this->pwm_amounts_[2] == 0 && (this->pwm_amounts_[3] > 0 || this->pwm_amounts_[4] > 0)) { // Only data on white channels data[0] = this->model_id_ + SM10BIT_ADDR_START_2CH; data[1] = 0 << 4 | this->max_power_white_channels_; for (int i = 2, j = 0; i < 12; i += 2, j++) { data[i] = this->pwm_amounts_[j] >> 0x8; data[i + 1] = this->pwm_amounts_[j] & 0xFF; } this->write_buffer_(data, 12); } else if ((this->pwm_amounts_[0] > 0 || this->pwm_amounts_[1] > 0 || this->pwm_amounts_[2] > 0) && this->pwm_amounts_[3] == 0 && this->pwm_amounts_[4] == 0) { // Only data on RGB channels data[0] = this->model_id_ + SM10BIT_ADDR_START_3CH; data[1] = this->max_power_color_channels_ << 4 | 0; for (int i = 2, j = 0; i < 12; i += 2, j++) { data[i] = this->pwm_amounts_[j] >> 0x8; data[i + 1] = this->pwm_amounts_[j] & 0xFF; } this->write_buffer_(data, 12); } else { // All channels data[0] = this->model_id_ + SM10BIT_ADDR_START_5CH; data[1] = this->max_power_color_channels_ << 4 | this->max_power_white_channels_; for (int i = 2, j = 0; i < 12; i += 2, j++) { data[i] = this->pwm_amounts_[j] >> 0x8; data[i + 1] = this->pwm_amounts_[j] & 0xFF; } this->write_buffer_(data, 12); } this->update_ = false; } void Sm10BitBase::set_channel_value_(uint8_t channel, uint16_t value) { if (this->pwm_amounts_[channel] != value) { this->update_ = true; this->update_channel_ = channel; } this->pwm_amounts_[channel] = value; } void Sm10BitBase::write_bit_(bool value) { this->clock_pin_->digital_write(false); this->data_pin_->digital_write(value); this->clock_pin_->digital_write(true); } void Sm10BitBase::write_byte_(uint8_t data) { for (uint8_t mask = 0x80; mask; mask >>= 1) { this->write_bit_(data & mask); } this->clock_pin_->digital_write(false); this->data_pin_->digital_write(true); this->clock_pin_->digital_write(true); } void Sm10BitBase::write_buffer_(uint8_t *buffer, uint8_t size) { this->data_pin_->digital_write(false); for (uint32_t i = 0; i < size; i++) { this->write_byte_(buffer[i]); } this->clock_pin_->digital_write(false); this->clock_pin_->digital_write(true); this->data_pin_->digital_write(true); } } // namespace sm10bit_base } // namespace esphome