esphome/esphome/components/scd30/scd30.cpp

247 lines
7.8 KiB
C++

#include "scd30.h"
#include "esphome/core/log.h"
namespace esphome {
namespace scd30 {
static const char *const TAG = "scd30";
static const uint16_t SCD30_CMD_GET_FIRMWARE_VERSION = 0xd100;
static const uint16_t SCD30_CMD_START_CONTINUOUS_MEASUREMENTS = 0x0010;
static const uint16_t SCD30_CMD_ALTITUDE_COMPENSATION = 0x5102;
static const uint16_t SCD30_CMD_AUTOMATIC_SELF_CALIBRATION = 0x5306;
static const uint16_t SCD30_CMD_GET_DATA_READY_STATUS = 0x0202;
static const uint16_t SCD30_CMD_READ_MEASUREMENT = 0x0300;
/// Commands for future use
static const uint16_t SCD30_CMD_STOP_MEASUREMENTS = 0x0104;
static const uint16_t SCD30_CMD_MEASUREMENT_INTERVAL = 0x4600;
static const uint16_t SCD30_CMD_FORCED_CALIBRATION = 0x5204;
static const uint16_t SCD30_CMD_TEMPERATURE_OFFSET = 0x5403;
static const uint16_t SCD30_CMD_SOFT_RESET = 0xD304;
void SCD30Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up scd30...");
#ifdef ARDUINO_ARCH_ESP8266
Wire.setClockStretchLimit(150000);
#endif
/// Firmware version identification
if (!this->write_command_(SCD30_CMD_GET_FIRMWARE_VERSION)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
uint16_t raw_firmware_version[3];
if (!this->read_data_(raw_firmware_version, 3)) {
this->error_code_ = FIRMWARE_IDENTIFICATION_FAILED;
this->mark_failed();
return;
}
ESP_LOGD(TAG, "SCD30 Firmware v%0d.%02d", (uint16_t(raw_firmware_version[0]) >> 8),
uint16_t(raw_firmware_version[0] & 0xFF));
if (this->temperature_offset_ != 0) {
if (!this->write_command_(SCD30_CMD_TEMPERATURE_OFFSET, (uint16_t)(temperature_offset_ * 100.0))) {
ESP_LOGE(TAG, "Sensor SCD30 error setting temperature offset.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
}
#ifdef ARDUINO_ARCH_ESP32
// According ESP32 clock stretching is typically 30ms and up to 150ms "due to
// internal calibration processes". The I2C peripheral only supports 13ms (at
// least when running at 80MHz).
// In practise it seems that clock stretching occures during this calibration
// calls. It also seems that delays in between calls makes them
// disappear/shorter. Hence work around with delays for ESP32.
//
// By experimentation a delay of 20ms as already sufficient. Let's go
// safe and use 30ms delays.
delay(30);
#endif
// The start measurement command disables the altitude compensation, if any, so we only set it if it's turned on
if (this->altitude_compensation_ != 0xFFFF) {
if (!this->write_command_(SCD30_CMD_ALTITUDE_COMPENSATION, altitude_compensation_)) {
ESP_LOGE(TAG, "Sensor SCD30 error setting altitude compensation.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
}
#ifdef ARDUINO_ARCH_ESP32
delay(30);
#endif
if (!this->write_command_(SCD30_CMD_AUTOMATIC_SELF_CALIBRATION, enable_asc_ ? 1 : 0)) {
ESP_LOGE(TAG, "Sensor SCD30 error setting automatic self calibration.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
#ifdef ARDUINO_ARCH_ESP32
delay(30);
#endif
/// Sensor initialization
if (!this->write_command_(SCD30_CMD_START_CONTINUOUS_MEASUREMENTS, this->ambient_pressure_compensation_)) {
ESP_LOGE(TAG, "Sensor SCD30 error starting continuous measurements.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
}
void SCD30Component::dump_config() {
ESP_LOGCONFIG(TAG, "scd30:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
switch (this->error_code_) {
case COMMUNICATION_FAILED:
ESP_LOGW(TAG, "Communication failed! Is the sensor connected?");
break;
case MEASUREMENT_INIT_FAILED:
ESP_LOGW(TAG, "Measurement Initialization failed!");
break;
case FIRMWARE_IDENTIFICATION_FAILED:
ESP_LOGW(TAG, "Unable to read sensor firmware version");
break;
default:
ESP_LOGW(TAG, "Unknown setup error!");
break;
}
}
if (this->altitude_compensation_ == 0xFFFF) {
ESP_LOGCONFIG(TAG, " Altitude compensation: OFF");
} else {
ESP_LOGCONFIG(TAG, " Altitude compensation: %dm", this->altitude_compensation_);
}
ESP_LOGCONFIG(TAG, " Automatic self calibration: %s", ONOFF(this->enable_asc_));
ESP_LOGCONFIG(TAG, " Ambient pressure compensation: %dmBar", this->ambient_pressure_compensation_);
ESP_LOGCONFIG(TAG, " Temperature offset: %.2f °C", this->temperature_offset_);
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "CO2", this->co2_sensor_);
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
LOG_SENSOR(" ", "Humidity", this->humidity_sensor_);
}
void SCD30Component::update() {
/// Check if measurement is ready before reading the value
if (!this->write_command_(SCD30_CMD_GET_DATA_READY_STATUS)) {
this->status_set_warning();
return;
}
uint16_t raw_read_status[1];
if (!this->read_data_(raw_read_status, 1) || raw_read_status[0] == 0x00) {
this->status_set_warning();
ESP_LOGW(TAG, "Data not ready yet!");
return;
}
if (!this->write_command_(SCD30_CMD_READ_MEASUREMENT)) {
ESP_LOGW(TAG, "Error reading measurement!");
this->status_set_warning();
return;
}
this->set_timeout(50, [this]() {
uint16_t raw_data[6];
if (!this->read_data_(raw_data, 6)) {
this->status_set_warning();
return;
}
union uint32_float_t {
uint32_t uint32;
float value;
};
uint32_t temp_c_o2_u32 = (((uint32_t(raw_data[0])) << 16) | (uint32_t(raw_data[1])));
uint32_float_t co2{.uint32 = temp_c_o2_u32};
uint32_t temp_temp_u32 = (((uint32_t(raw_data[2])) << 16) | (uint32_t(raw_data[3])));
uint32_float_t temperature{.uint32 = temp_temp_u32};
uint32_t temp_hum_u32 = (((uint32_t(raw_data[4])) << 16) | (uint32_t(raw_data[5])));
uint32_float_t humidity{.uint32 = temp_hum_u32};
ESP_LOGD(TAG, "Got CO2=%.2fppm temperature=%.2f°C humidity=%.2f%%", co2.value, temperature.value, humidity.value);
if (this->co2_sensor_ != nullptr)
this->co2_sensor_->publish_state(co2.value);
if (this->temperature_sensor_ != nullptr)
this->temperature_sensor_->publish_state(temperature.value);
if (this->humidity_sensor_ != nullptr)
this->humidity_sensor_->publish_state(humidity.value);
this->status_clear_warning();
});
}
bool SCD30Component::write_command_(uint16_t command) {
// Warning ugly, trick the I2Ccomponent base by setting register to the first 8 bit.
return this->write_byte(command >> 8, command & 0xFF);
}
bool SCD30Component::write_command_(uint16_t command, uint16_t data) {
uint8_t raw[5];
raw[0] = command >> 8;
raw[1] = command & 0xFF;
raw[2] = data >> 8;
raw[3] = data & 0xFF;
raw[4] = sht_crc_(raw[2], raw[3]);
return this->write_bytes_raw(raw, 5);
}
uint8_t SCD30Component::sht_crc_(uint8_t data1, uint8_t data2) {
uint8_t bit;
uint8_t crc = 0xFF;
crc ^= data1;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
crc ^= data2;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
return crc;
}
bool SCD30Component::read_data_(uint16_t *data, uint8_t len) {
const uint8_t num_bytes = len * 3;
auto *buf = new uint8_t[num_bytes];
if (!this->parent_->raw_receive(this->address_, buf, num_bytes)) {
delete[](buf);
return false;
}
for (uint8_t i = 0; i < len; i++) {
const uint8_t j = 3 * i;
uint8_t crc = sht_crc_(buf[j], buf[j + 1]);
if (crc != buf[j + 2]) {
ESP_LOGE(TAG, "CRC8 Checksum invalid! 0x%02X != 0x%02X", buf[j + 2], crc);
delete[](buf);
return false;
}
data[i] = (buf[j] << 8) | buf[j + 1];
}
delete[](buf);
return true;
}
} // namespace scd30
} // namespace esphome