esphome/esphome/components/emc2101/emc2101.cpp
Eduard Llull 28aedae8d7
Add Emc2101 (#4491)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2023-10-26 07:30:11 +13:00

169 lines
6.8 KiB
C++

// Implementation based on:
// - Adafruit_EMC2101: https://github.com/adafruit/Adafruit_EMC2101
// - Official Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/2101.pdf
#include "esphome/core/log.h"
#include "emc2101.h"
namespace esphome {
namespace emc2101 {
static const char *const TAG = "EMC2101";
static const uint8_t EMC2101_CHIP_ID = 0x16; // EMC2101 default device id from part id
static const uint8_t EMC2101_ALT_CHIP_ID = 0x28; // EMC2101 alternate device id from part id
// EMC2101 registers from the datasheet. We only define what we use.
static const uint8_t EMC2101_REGISTER_INTERNAL_TEMP = 0x00; // The internal temperature register
static const uint8_t EMC2101_REGISTER_EXTERNAL_TEMP_MSB = 0x01; // high byte for the external temperature reading
static const uint8_t EMC2101_REGISTER_DAC_CONV_RATE = 0x04; // DAC convesion rate config
static const uint8_t EMC2101_REGISTER_EXTERNAL_TEMP_LSB = 0x10; // low byte for the external temperature reading
static const uint8_t EMC2101_REGISTER_CONFIG = 0x03; // configuration register
static const uint8_t EMC2101_REGISTER_TACH_LSB = 0x46; // Tach RPM data low byte
static const uint8_t EMC2101_REGISTER_TACH_MSB = 0x47; // Tach RPM data high byte
static const uint8_t EMC2101_REGISTER_FAN_CONFIG = 0x4A; // General fan config register
static const uint8_t EMC2101_REGISTER_FAN_SETTING = 0x4C; // Fan speed for non-LUT settings
static const uint8_t EMC2101_REGISTER_PWM_FREQ = 0x4D; // PWM frequency setting
static const uint8_t EMC2101_REGISTER_PWM_DIV = 0x4E; // PWM frequency divisor
static const uint8_t EMC2101_REGISTER_WHOAMI = 0xFD; // Chip ID register
// EMC2101 configuration bits from the datasheet. We only define what we use.
// Determines the funcionallity of the ALERT/TACH pin.
// 0 (default): The ALERT/TECH pin will function as an open drain, active low interrupt.
// 1: The ALERT/TECH pin will function as a high impedance TACH input. This may require an
// external pull-up resistor to set the proper signaling levels.
static const uint8_t EMC2101_ALT_TCH_BIT = 1 << 2;
// Determines the FAN output mode.
// 0 (default): PWM output enabled at FAN pin.
// 1: DAC output enabled at FAN ping.
static const uint8_t EMC2101_DAC_BIT = 1 << 4;
// Overrides the CLK_SEL bit and uses the Frequency Divide Register to determine
// the base PWM frequency. It is recommended that this bit be set for maximum PWM resolution.
// 0 (default): The base clock frequency for the PWM is determined by the CLK_SEL bit.
// 1 (recommended): The base clock that is used to determine the PWM frequency is set by the
// Frequency Divide Register
static const uint8_t EMC2101_CLK_OVR_BIT = 1 << 2;
// Sets the polarity of the Fan output driver.
// 0 (default): The polarity of the Fan output driver is non-inverted. A '00h' setting will
// correspond to a 0% duty cycle or a minimum DAC output voltage.
// 1: The polarity of the Fan output driver is inverted. A '00h' setting will correspond to a
// 100% duty cycle or a maximum DAC output voltage.
static const uint8_t EMC2101_POLARITY_BIT = 1 << 4;
float Emc2101Component::get_setup_priority() const { return setup_priority::HARDWARE; }
void Emc2101Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up Emc2101 sensor...");
// make sure we're talking to the right chip
uint8_t chip_id = reg(EMC2101_REGISTER_WHOAMI).get();
if ((chip_id != EMC2101_CHIP_ID) && (chip_id != EMC2101_ALT_CHIP_ID)) {
ESP_LOGE(TAG, "Wrong chip ID %02X", chip_id);
this->mark_failed();
return;
}
// Configure EMC2101
i2c::I2CRegister config = reg(EMC2101_REGISTER_CONFIG);
config |= EMC2101_ALT_TCH_BIT;
if (this->dac_mode_) {
config |= EMC2101_DAC_BIT;
}
if (this->inverted_) {
config |= EMC2101_POLARITY_BIT;
}
if (this->dac_mode_) { // DAC mode configurations
// set DAC conversion rate
reg(EMC2101_REGISTER_DAC_CONV_RATE) = this->dac_conversion_rate_;
} else { // PWM mode configurations
// set PWM divider
reg(EMC2101_REGISTER_FAN_CONFIG) |= EMC2101_CLK_OVR_BIT;
reg(EMC2101_REGISTER_PWM_DIV) = this->pwm_divider_;
// set PWM resolution
reg(EMC2101_REGISTER_PWM_FREQ) = this->pwm_resolution_;
}
}
void Emc2101Component::dump_config() {
ESP_LOGCONFIG(TAG, "Emc2101 component:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication with EMC2101 failed!");
}
ESP_LOGCONFIG(TAG, " Mode: %s", this->dac_mode_ ? "DAC" : "PWM");
if (this->dac_mode_) {
ESP_LOGCONFIG(TAG, " DAC Conversion Rate: %X", this->dac_conversion_rate_);
} else {
ESP_LOGCONFIG(TAG, " PWM Resolution: %02X", this->pwm_resolution_);
ESP_LOGCONFIG(TAG, " PWM Divider: %02X", this->pwm_divider_);
}
ESP_LOGCONFIG(TAG, " Inverted: %s", YESNO(this->inverted_));
}
void Emc2101Component::set_duty_cycle(float value) {
uint8_t duty_cycle = remap(value, 0.0f, 1.0f, (uint8_t) 0, this->max_output_value_);
ESP_LOGD(TAG, "Setting duty fan setting to %02X", duty_cycle);
if (!this->write_byte(EMC2101_REGISTER_FAN_SETTING, duty_cycle)) {
ESP_LOGE(TAG, "Communication with EMC2101 failed!");
this->status_set_warning();
return;
}
}
float Emc2101Component::get_duty_cycle() {
uint8_t duty_cycle;
if (!this->read_byte(EMC2101_REGISTER_FAN_SETTING, &duty_cycle)) {
ESP_LOGE(TAG, "Communication with EMC2101 failed!");
this->status_set_warning();
return NAN;
}
return remap(duty_cycle, (uint8_t) 0, this->max_output_value_, 0.0f, 1.0f);
}
float Emc2101Component::get_internal_temperature() {
uint8_t temperature;
if (!this->read_byte(EMC2101_REGISTER_INTERNAL_TEMP, &temperature)) {
ESP_LOGE(TAG, "Communication with EMC2101 failed!");
this->status_set_warning();
return NAN;
}
return temperature;
}
float Emc2101Component::get_external_temperature() {
// Read **MSB** first to match 'Data Read Interlock' behavior from 6.1 of datasheet
uint8_t lsb, msb;
if (!this->read_byte(EMC2101_REGISTER_EXTERNAL_TEMP_MSB, &msb) ||
!this->read_byte(EMC2101_REGISTER_EXTERNAL_TEMP_LSB, &lsb)) {
ESP_LOGE(TAG, "Communication with EMC2101 failed!");
this->status_set_warning();
return NAN;
}
// join msb and lsb (5 least significant bits are not used)
uint16_t raw = (msb << 8 | lsb) >> 5;
return raw * 0.125;
}
float Emc2101Component::get_speed() {
// Read **LSB** first to match 'Data Read Interlock' behavior from 6.1 of datasheet
uint8_t lsb, msb;
if (!this->read_byte(EMC2101_REGISTER_TACH_LSB, &lsb) || !this->read_byte(EMC2101_REGISTER_TACH_MSB, &msb)) {
ESP_LOGE(TAG, "Communication with EMC2101 failed!");
this->status_set_warning();
return NAN;
}
// calculate RPMs
uint16_t tach = msb << 8 | lsb;
return tach == 0xFFFF ? 0.0f : 5400000.0f / tach;
}
} // namespace emc2101
} // namespace esphome