esphome/esphome/components/esp32_ble_tracker/esp32_ble_tracker.cpp
Otto Winter 904a0b26ea
Make logger string memory usage more efficient (#641)
* Make logger string storing more efficient

* Lint
2019-06-16 19:14:24 +02:00

502 lines
17 KiB
C++

#include "esp32_ble_tracker.h"
#include "esphome/core/log.h"
#include "esphome/core/application.h"
#ifdef ARDUINO_ARCH_ESP32
#include <nvs_flash.h>
#include <freertos/FreeRTOSConfig.h>
#include <esp_bt_main.h>
#include <esp_bt.h>
#include <freertos/task.h>
#include <esp_gap_ble_api.h>
#include <esp_bt_defs.h>
// bt_trace.h
#undef TAG
namespace esphome {
namespace esp32_ble_tracker {
static const char *TAG = "esp32_ble_tracker";
ESP32BLETracker *global_esp32_ble_tracker = nullptr;
uint64_t ble_addr_to_uint64(const esp_bd_addr_t address) {
uint64_t u = 0;
u |= uint64_t(address[0] & 0xFF) << 40;
u |= uint64_t(address[1] & 0xFF) << 32;
u |= uint64_t(address[2] & 0xFF) << 24;
u |= uint64_t(address[3] & 0xFF) << 16;
u |= uint64_t(address[4] & 0xFF) << 8;
u |= uint64_t(address[5] & 0xFF) << 0;
return u;
}
void ESP32BLETracker::setup() {
global_esp32_ble_tracker = this;
this->scan_result_lock_ = xSemaphoreCreateMutex();
this->scan_end_lock_ = xSemaphoreCreateMutex();
if (!ESP32BLETracker::ble_setup()) {
this->mark_failed();
return;
}
global_esp32_ble_tracker->start_scan(true);
}
void ESP32BLETracker::loop() {
if (xSemaphoreTake(this->scan_end_lock_, 0L)) {
xSemaphoreGive(this->scan_end_lock_);
global_esp32_ble_tracker->start_scan(false);
}
if (xSemaphoreTake(this->scan_result_lock_, 5L / portTICK_PERIOD_MS)) {
uint32_t index = this->scan_result_index_;
xSemaphoreGive(this->scan_result_lock_);
if (index >= 16) {
ESP_LOGW(TAG, "Too many BLE events to process. Some devices may not show up.");
}
for (size_t i = 0; i < index; i++) {
ESPBTDevice device;
device.parse_scan_rst(this->scan_result_buffer_[i]);
bool found = false;
for (auto *listener : this->listeners_)
if (listener->parse_device(device))
found = true;
if (!found) {
this->print_bt_device_info(device);
}
}
if (xSemaphoreTake(this->scan_result_lock_, 10L / portTICK_PERIOD_MS)) {
this->scan_result_index_ = 0;
xSemaphoreGive(this->scan_result_lock_);
}
}
if (this->scan_set_param_failed_) {
ESP_LOGE(TAG, "Scan set param failed: %d", this->scan_set_param_failed_);
this->scan_set_param_failed_ = ESP_BT_STATUS_SUCCESS;
}
if (this->scan_start_failed_) {
ESP_LOGE(TAG, "Scan start failed: %d", this->scan_start_failed_);
this->scan_start_failed_ = ESP_BT_STATUS_SUCCESS;
}
}
bool ESP32BLETracker::ble_setup() {
// Initialize non-volatile storage for the bluetooth controller
esp_err_t err = nvs_flash_init();
if (err != ESP_OK) {
ESP_LOGE(TAG, "nvs_flash_init failed: %d", err);
return false;
}
// Initialize the bluetooth controller with the default configuration
if (!btStart()) {
ESP_LOGE(TAG, "btStart failed: %d", esp_bt_controller_get_status());
return false;
}
esp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT);
err = esp_bluedroid_init();
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_bluedroid_init failed: %d", err);
return false;
}
err = esp_bluedroid_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_bluedroid_enable failed: %d", err);
return false;
}
err = esp_ble_gap_register_callback(ESP32BLETracker::gap_event_handler);
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_ble_gap_register_callback failed: %d", err);
return false;
}
// Empty name
esp_ble_gap_set_device_name("");
esp_ble_io_cap_t iocap = ESP_IO_CAP_NONE;
err = esp_ble_gap_set_security_param(ESP_BLE_SM_IOCAP_MODE, &iocap, sizeof(uint8_t));
if (err != ESP_OK) {
ESP_LOGE(TAG, "esp_ble_gap_set_security_param failed: %d", err);
return false;
}
// BLE takes some time to be fully set up, 200ms should be more than enough
delay(200);
return true;
}
void ESP32BLETracker::start_scan(bool first) {
if (!xSemaphoreTake(this->scan_end_lock_, 0L)) {
ESP_LOGW(TAG, "Cannot start scan!");
return;
}
ESP_LOGD(TAG, "Starting scan...");
if (!first) {
for (auto *listener : this->listeners_)
listener->on_scan_end();
}
this->already_discovered_.clear();
this->scan_params_.scan_type = BLE_SCAN_TYPE_ACTIVE;
this->scan_params_.own_addr_type = BLE_ADDR_TYPE_PUBLIC;
this->scan_params_.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL;
// Values determined empirically, higher scan intervals and lower scan windows make the ESP more stable
// Ideally, these values should both be quite low, especially scan window. 0x10/0x10 is the esp-idf
// default and works quite well. 0x100/0x50 discovers a few less BLE broadcast packets but is a lot
// more stable (order of several hours). The old ESPHome default (1600/1600) was terrible with
// crashes every few minutes
this->scan_params_.scan_interval = 0x200;
this->scan_params_.scan_window = 0x30;
esp_ble_gap_set_scan_params(&this->scan_params_);
esp_ble_gap_start_scanning(this->scan_interval_);
this->set_timeout("scan", this->scan_interval_ * 2000, []() {
ESP_LOGW(TAG, "ESP-IDF BLE scan never terminated, rebooting to restore BLE stack...");
App.reboot();
});
}
void ESP32BLETracker::gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param) {
switch (event) {
case ESP_GAP_BLE_SCAN_RESULT_EVT:
global_esp32_ble_tracker->gap_scan_result(param->scan_rst);
break;
case ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT:
global_esp32_ble_tracker->gap_scan_set_param_complete(param->scan_param_cmpl);
break;
case ESP_GAP_BLE_SCAN_START_COMPLETE_EVT:
global_esp32_ble_tracker->gap_scan_start_complete(param->scan_start_cmpl);
break;
default:
break;
}
}
void ESP32BLETracker::gap_scan_set_param_complete(const esp_ble_gap_cb_param_t::ble_scan_param_cmpl_evt_param &param) {
this->scan_set_param_failed_ = param.status;
}
void ESP32BLETracker::gap_scan_start_complete(const esp_ble_gap_cb_param_t::ble_scan_start_cmpl_evt_param &param) {
this->scan_start_failed_ = param.status;
}
void ESP32BLETracker::gap_scan_result(const esp_ble_gap_cb_param_t::ble_scan_result_evt_param &param) {
if (param.search_evt == ESP_GAP_SEARCH_INQ_RES_EVT) {
if (xSemaphoreTake(this->scan_result_lock_, 0L)) {
if (this->scan_result_index_ < 16) {
this->scan_result_buffer_[this->scan_result_index_++] = param;
}
xSemaphoreGive(this->scan_result_lock_);
}
} else if (param.search_evt == ESP_GAP_SEARCH_INQ_CMPL_EVT) {
xSemaphoreGive(this->scan_end_lock_);
}
}
std::string hexencode(const std::string &raw_data) {
char buf[20];
std::string res;
for (size_t i = 0; i < raw_data.size(); i++) {
if (i + 1 != raw_data.size()) {
sprintf(buf, "0x%02X.", static_cast<uint8_t>(raw_data[i]));
} else {
sprintf(buf, "0x%02X ", static_cast<uint8_t>(raw_data[i]));
}
res += buf;
}
sprintf(buf, "(%zu)", raw_data.size());
res += buf;
return res;
}
ESPBTUUID::ESPBTUUID() : uuid_() {}
ESPBTUUID ESPBTUUID::from_uint16(uint16_t uuid) {
ESPBTUUID ret;
ret.uuid_.len = ESP_UUID_LEN_16;
ret.uuid_.uuid.uuid16 = uuid;
return ret;
}
ESPBTUUID ESPBTUUID::from_uint32(uint32_t uuid) {
ESPBTUUID ret;
ret.uuid_.len = ESP_UUID_LEN_32;
ret.uuid_.uuid.uuid32 = uuid;
return ret;
}
ESPBTUUID ESPBTUUID::from_raw(const uint8_t *data) {
ESPBTUUID ret;
ret.uuid_.len = ESP_UUID_LEN_128;
for (size_t i = 0; i < ESP_UUID_LEN_128; i++)
ret.uuid_.uuid.uuid128[i] = data[i];
return ret;
}
bool ESPBTUUID::contains(uint8_t data1, uint8_t data2) const {
if (this->uuid_.len == ESP_UUID_LEN_16) {
return (this->uuid_.uuid.uuid16 >> 8) == data2 || (this->uuid_.uuid.uuid16 & 0xFF) == data1;
} else if (this->uuid_.len == ESP_UUID_LEN_32) {
for (uint8_t i = 0; i < 3; i++) {
bool a = ((this->uuid_.uuid.uuid32 >> i * 8) & 0xFF) == data1;
bool b = ((this->uuid_.uuid.uuid32 >> (i + 1) * 8) & 0xFF) == data2;
if (a && b)
return true;
}
} else {
for (uint8_t i = 0; i < 15; i++) {
if (this->uuid_.uuid.uuid128[i] == data1 && this->uuid_.uuid.uuid128[i + 1] == data2)
return true;
}
}
return false;
}
std::string ESPBTUUID::to_string() {
char sbuf[64];
switch (this->uuid_.len) {
case ESP_UUID_LEN_16:
sprintf(sbuf, "%02X:%02X", this->uuid_.uuid.uuid16 >> 8, this->uuid_.uuid.uuid16);
break;
case ESP_UUID_LEN_32:
sprintf(sbuf, "%02X:%02X:%02X:%02X", this->uuid_.uuid.uuid32 >> 24, this->uuid_.uuid.uuid32 >> 16,
this->uuid_.uuid.uuid32 >> 8, this->uuid_.uuid.uuid32);
break;
default:
case ESP_UUID_LEN_128:
for (uint8_t i = 0; i < 16; i++)
sprintf(sbuf + i * 3, "%02X:", this->uuid_.uuid.uuid128[i]);
sbuf[47] = '\0';
break;
}
return sbuf;
}
ESPBLEiBeacon::ESPBLEiBeacon(const uint8_t *data) { memcpy(&this->beacon_data_, data, sizeof(beacon_data_)); }
optional<ESPBLEiBeacon> ESPBLEiBeacon::from_manufacturer_data(const std::string &data) {
if (data.size() != 25)
return {};
if (data[0] != 0x4C || data[1] != 0x00)
return {};
return ESPBLEiBeacon(reinterpret_cast<const uint8_t *>(data.data()));
}
void ESPBTDevice::parse_scan_rst(const esp_ble_gap_cb_param_t::ble_scan_result_evt_param &param) {
for (uint8_t i = 0; i < ESP_BD_ADDR_LEN; i++)
this->address_[i] = param.bda[i];
this->address_type_ = param.ble_addr_type;
this->rssi_ = param.rssi;
this->parse_adv_(param);
#ifdef ESPHOME_LOG_HAS_VERY_VERBOSE
ESP_LOGVV(TAG, "Parse Result:");
const char *address_type = "";
switch (this->address_type_) {
case BLE_ADDR_TYPE_PUBLIC:
address_type = "PUBLIC";
break;
case BLE_ADDR_TYPE_RANDOM:
address_type = "RANDOM";
break;
case BLE_ADDR_TYPE_RPA_PUBLIC:
address_type = "RPA_PUBLIC";
break;
case BLE_ADDR_TYPE_RPA_RANDOM:
address_type = "RPA_RANDOM";
break;
}
ESP_LOGVV(TAG, " Address: %02X:%02X:%02X:%02X:%02X:%02X (%s)", this->address_[0], this->address_[1],
this->address_[2], this->address_[3], this->address_[4], this->address_[5], address_type);
ESP_LOGVV(TAG, " RSSI: %d", this->rssi_);
ESP_LOGVV(TAG, " Name: '%s'", this->name_.c_str());
if (this->tx_power_.has_value()) {
ESP_LOGVV(TAG, " TX Power: %d", *this->tx_power_);
}
if (this->appearance_.has_value()) {
ESP_LOGVV(TAG, " Appearance: %u", *this->appearance_);
}
if (this->ad_flag_.has_value()) {
ESP_LOGVV(TAG, " Ad Flag: %u", *this->ad_flag_);
}
for (auto uuid : this->service_uuids_) {
ESP_LOGVV(TAG, " Service UUID: %s", uuid.to_string().c_str());
}
ESP_LOGVV(TAG, " Manufacturer data: %s", hexencode(this->manufacturer_data_).c_str());
ESP_LOGVV(TAG, " Service data: %s", hexencode(this->service_data_).c_str());
if (this->service_data_uuid_.has_value()) {
ESP_LOGVV(TAG, " Service Data UUID: %s", this->service_data_uuid_->to_string().c_str());
}
ESP_LOGVV(TAG, "Adv data: %s",
hexencode(std::string(reinterpret_cast<const char *>(param.ble_adv), param.adv_data_len)).c_str());
#endif
}
void ESPBTDevice::parse_adv_(const esp_ble_gap_cb_param_t::ble_scan_result_evt_param &param) {
size_t offset = 0;
const uint8_t *payload = param.ble_adv;
uint8_t len = param.adv_data_len;
while (offset + 2 < len) {
const uint8_t field_length = payload[offset++]; // First byte is length of adv record
if (field_length == 0)
break;
// first byte of adv record is adv record type
const uint8_t record_type = payload[offset++];
const uint8_t *record = &payload[offset];
const uint8_t record_length = field_length - 1;
offset += record_length;
switch (record_type) {
case ESP_BLE_AD_TYPE_NAME_CMPL: {
this->name_ = std::string(reinterpret_cast<const char *>(record), record_length);
break;
}
case ESP_BLE_AD_TYPE_TX_PWR: {
this->tx_power_ = *payload;
break;
}
case ESP_BLE_AD_TYPE_APPEARANCE: {
this->appearance_ = *reinterpret_cast<const uint16_t *>(record);
break;
}
case ESP_BLE_AD_TYPE_FLAG: {
this->ad_flag_ = *record;
break;
}
case ESP_BLE_AD_TYPE_16SRV_CMPL:
case ESP_BLE_AD_TYPE_16SRV_PART: {
for (uint8_t i = 0; i < record_length / 2; i++) {
this->service_uuids_.push_back(ESPBTUUID::from_uint16(*reinterpret_cast<const uint16_t *>(record + 2 * i)));
}
break;
}
case ESP_BLE_AD_TYPE_32SRV_CMPL:
case ESP_BLE_AD_TYPE_32SRV_PART: {
for (uint8_t i = 0; i < record_length / 4; i++) {
this->service_uuids_.push_back(ESPBTUUID::from_uint32(*reinterpret_cast<const uint32_t *>(record + 4 * i)));
}
break;
}
case ESP_BLE_AD_TYPE_128SRV_CMPL:
case ESP_BLE_AD_TYPE_128SRV_PART: {
this->service_uuids_.push_back(ESPBTUUID::from_raw(record));
break;
}
case ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE: {
this->manufacturer_data_ = std::string(reinterpret_cast<const char *>(record), record_length);
break;
}
case ESP_BLE_AD_TYPE_SERVICE_DATA: {
if (record_length < 2) {
ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_SERVICE_DATA");
break;
}
this->service_data_uuid_ = ESPBTUUID::from_uint16(*reinterpret_cast<const uint16_t *>(record));
if (record_length > 2)
this->service_data_ = std::string(reinterpret_cast<const char *>(record + 2), record_length - 2UL);
break;
}
case ESP_BLE_AD_TYPE_32SERVICE_DATA: {
if (record_length < 4) {
ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_32SERVICE_DATA");
break;
}
this->service_data_uuid_ = ESPBTUUID::from_uint32(*reinterpret_cast<const uint32_t *>(record));
if (record_length > 4)
this->service_data_ = std::string(reinterpret_cast<const char *>(record + 4), record_length - 4UL);
break;
}
case ESP_BLE_AD_TYPE_128SERVICE_DATA: {
if (record_length < 16) {
ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_128SERVICE_DATA");
break;
}
this->service_data_uuid_ = ESPBTUUID::from_raw(record);
if (record_length > 16)
this->service_data_ = std::string(reinterpret_cast<const char *>(record + 16), record_length - 16UL);
break;
}
default: {
ESP_LOGV(TAG, "Unhandled type: advType: 0x%02x", record_type);
break;
}
}
}
}
std::string ESPBTDevice::address_str() const {
char mac[24];
snprintf(mac, sizeof(mac), "%02X:%02X:%02X:%02X:%02X:%02X", this->address_[0], this->address_[1], this->address_[2],
this->address_[3], this->address_[4], this->address_[5]);
return mac;
}
uint64_t ESPBTDevice::address_uint64() const { return ble_addr_to_uint64(this->address_); }
esp_ble_addr_type_t ESPBTDevice::get_address_type() const { return this->address_type_; }
int ESPBTDevice::get_rssi() const { return this->rssi_; }
const std::string &ESPBTDevice::get_name() const { return this->name_; }
const optional<int8_t> &ESPBTDevice::get_tx_power() const { return this->tx_power_; }
const optional<uint16_t> &ESPBTDevice::get_appearance() const { return this->appearance_; }
const optional<uint8_t> &ESPBTDevice::get_ad_flag() const { return this->ad_flag_; }
const std::vector<ESPBTUUID> &ESPBTDevice::get_service_uuids() const { return this->service_uuids_; }
const std::string &ESPBTDevice::get_manufacturer_data() const { return this->manufacturer_data_; }
const std::string &ESPBTDevice::get_service_data() const { return this->service_data_; }
const optional<ESPBTUUID> &ESPBTDevice::get_service_data_uuid() const { return this->service_data_uuid_; }
void ESP32BLETracker::set_scan_interval(uint32_t scan_interval) { this->scan_interval_ = scan_interval; }
void ESP32BLETracker::dump_config() {
ESP_LOGCONFIG(TAG, "BLE Tracker:");
ESP_LOGCONFIG(TAG, " Scan Interval: %u s", this->scan_interval_);
}
void ESP32BLETracker::print_bt_device_info(const ESPBTDevice &device) {
const uint64_t address = device.address_uint64();
for (auto &disc : this->already_discovered_) {
if (disc == address)
return;
}
this->already_discovered_.push_back(address);
ESP_LOGD(TAG, "Found device %s RSSI=%d", device.address_str().c_str(), device.get_rssi());
const char *address_type_s;
switch (device.get_address_type()) {
case BLE_ADDR_TYPE_PUBLIC:
address_type_s = "PUBLIC";
break;
case BLE_ADDR_TYPE_RANDOM:
address_type_s = "RANDOM";
break;
case BLE_ADDR_TYPE_RPA_PUBLIC:
address_type_s = "RPA_PUBLIC";
break;
case BLE_ADDR_TYPE_RPA_RANDOM:
address_type_s = "RPA_RANDOM";
break;
default:
address_type_s = "UNKNOWN";
break;
}
ESP_LOGD(TAG, " Address Type: %s", address_type_s);
if (!device.get_name().empty())
ESP_LOGD(TAG, " Name: '%s'", device.get_name().c_str());
if (device.get_tx_power().has_value()) {
ESP_LOGD(TAG, " TX Power: %d", *device.get_tx_power());
}
}
} // namespace esp32_ble_tracker
} // namespace esphome
#endif