esphome/esphome/components/ac_dimmer/ac_dimmer.cpp
Oxan van Leeuwen 80d03a631e
Force braces around multi-line statements (#3094)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2022-01-25 08:56:36 +13:00

231 lines
8.3 KiB
C++

#ifdef USE_ARDUINO
#include "ac_dimmer.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include <cmath>
#ifdef USE_ESP8266
#include <core_esp8266_waveform.h>
#endif
#ifdef USE_ESP32_FRAMEWORK_ARDUINO
#include <esp32-hal-timer.h>
#endif
namespace esphome {
namespace ac_dimmer {
static const char *const TAG = "ac_dimmer";
// Global array to store dimmer objects
static AcDimmerDataStore *all_dimmers[32]; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
/// Time in microseconds the gate should be held high
/// 10µs should be long enough for most triacs
/// For reference: BT136 datasheet says 2µs nominal (page 7)
/// However other factors like gate driver propagation time
/// are also considered and a really low value is not important
/// See also: https://github.com/esphome/issues/issues/1632
static const uint32_t GATE_ENABLE_TIME = 50;
/// Function called from timer interrupt
/// Input is current time in microseconds (micros())
/// Returns when next "event" is expected in µs, or 0 if no such event known.
uint32_t IRAM_ATTR HOT AcDimmerDataStore::timer_intr(uint32_t now) {
// If no ZC signal received yet.
if (this->crossed_zero_at == 0)
return 0;
uint32_t time_since_zc = now - this->crossed_zero_at;
if (this->value == 65535 || this->value == 0) {
return 0;
}
if (this->enable_time_us != 0 && time_since_zc >= this->enable_time_us) {
this->enable_time_us = 0;
this->gate_pin.digital_write(true);
// Prevent too short pulses
this->disable_time_us = std::max(this->disable_time_us, time_since_zc + GATE_ENABLE_TIME);
}
if (this->disable_time_us != 0 && time_since_zc >= this->disable_time_us) {
this->disable_time_us = 0;
this->gate_pin.digital_write(false);
}
if (time_since_zc < this->enable_time_us) {
// Next event is enable, return time until that event
return this->enable_time_us - time_since_zc;
} else if (time_since_zc < disable_time_us) {
// Next event is disable, return time until that event
return this->disable_time_us - time_since_zc;
}
if (time_since_zc >= this->cycle_time_us) {
// Already past last cycle time, schedule next call shortly
return 100;
}
return this->cycle_time_us - time_since_zc;
}
/// Run timer interrupt code and return in how many µs the next event is expected
uint32_t IRAM_ATTR HOT timer_interrupt() {
// run at least with 1kHz
uint32_t min_dt_us = 1000;
uint32_t now = micros();
for (auto *dimmer : all_dimmers) {
if (dimmer == nullptr) {
// no more dimmers
break;
}
uint32_t res = dimmer->timer_intr(now);
if (res != 0 && res < min_dt_us)
min_dt_us = res;
}
// return time until next timer1 interrupt in µs
return min_dt_us;
}
/// GPIO interrupt routine, called when ZC pin triggers
void IRAM_ATTR HOT AcDimmerDataStore::gpio_intr() {
uint32_t prev_crossed = this->crossed_zero_at;
// 50Hz mains frequency should give a half cycle of 10ms a 60Hz will give 8.33ms
// in any case the cycle last at least 5ms
this->crossed_zero_at = micros();
uint32_t cycle_time = this->crossed_zero_at - prev_crossed;
if (cycle_time > 5000) {
this->cycle_time_us = cycle_time;
} else {
// Otherwise this is noise and this is 2nd (or 3rd...) fall in the same pulse
// Consider this is the right fall edge and accumulate the cycle time instead
this->cycle_time_us += cycle_time;
}
if (this->value == 65535) {
// fully on, enable output immediately
this->gate_pin.digital_write(true);
} else if (this->init_cycle) {
// send a full cycle
this->init_cycle = false;
this->enable_time_us = 0;
this->disable_time_us = cycle_time_us;
} else if (this->value == 0) {
// fully off, disable output immediately
this->gate_pin.digital_write(false);
} else {
if (this->method == DIM_METHOD_TRAILING) {
this->enable_time_us = 1; // cannot be 0
this->disable_time_us = std::max((uint32_t) 10, this->value * this->cycle_time_us / 65535);
} else {
// calculate time until enable in µs: (1.0-value)*cycle_time, but with integer arithmetic
// also take into account min_power
auto min_us = this->cycle_time_us * this->min_power / 1000;
this->enable_time_us = std::max((uint32_t) 1, ((65535 - this->value) * (this->cycle_time_us - min_us)) / 65535);
if (this->method == DIM_METHOD_LEADING_PULSE) {
// Minimum pulse time should be enough for the triac to trigger when it is close to the ZC zone
// this is for brightness near 99%
this->disable_time_us = std::max(this->enable_time_us + GATE_ENABLE_TIME, (uint32_t) cycle_time_us / 10);
} else {
this->gate_pin.digital_write(false);
this->disable_time_us = this->cycle_time_us;
}
}
}
}
void IRAM_ATTR HOT AcDimmerDataStore::s_gpio_intr(AcDimmerDataStore *store) {
// Attaching pin interrupts on the same pin will override the previous interrupt
// However, the user expects that multiple dimmers sharing the same ZC pin will work.
// We solve this in a bit of a hacky way: On each pin interrupt, we check all dimmers
// if any of them are using the same ZC pin, and also trigger the interrupt for *them*.
for (auto *dimmer : all_dimmers) {
if (dimmer == nullptr)
break;
if (dimmer->zero_cross_pin_number == store->zero_cross_pin_number) {
dimmer->gpio_intr();
}
}
}
#ifdef USE_ESP32
// ESP32 implementation, uses basically the same code but needs to wrap
// timer_interrupt() function to auto-reschedule
static hw_timer_t *dimmer_timer = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void IRAM_ATTR HOT AcDimmerDataStore::s_timer_intr() { timer_interrupt(); }
#endif
void AcDimmer::setup() {
// extend all_dimmers array with our dimmer
// Need to be sure the zero cross pin is setup only once, ESP8266 fails and ESP32 seems to fail silently
auto setup_zero_cross_pin = true;
for (auto &all_dimmer : all_dimmers) {
if (all_dimmer == nullptr) {
all_dimmer = &this->store_;
break;
}
if (all_dimmer->zero_cross_pin_number == this->zero_cross_pin_->get_pin()) {
setup_zero_cross_pin = false;
}
}
this->gate_pin_->setup();
this->store_.gate_pin = this->gate_pin_->to_isr();
this->store_.zero_cross_pin_number = this->zero_cross_pin_->get_pin();
this->store_.min_power = static_cast<uint16_t>(this->min_power_ * 1000);
this->min_power_ = 0;
this->store_.method = this->method_;
if (setup_zero_cross_pin) {
this->zero_cross_pin_->setup();
this->store_.zero_cross_pin = this->zero_cross_pin_->to_isr();
this->zero_cross_pin_->attach_interrupt(&AcDimmerDataStore::s_gpio_intr, &this->store_,
gpio::INTERRUPT_FALLING_EDGE);
}
#ifdef USE_ESP8266
// Uses ESP8266 waveform (soft PWM) class
// PWM and AcDimmer can even run at the same time this way
setTimer1Callback(&timer_interrupt);
#endif
#ifdef USE_ESP32
// 80 Divider -> 1 count=1µs
dimmer_timer = timerBegin(0, 80, true);
timerAttachInterrupt(dimmer_timer, &AcDimmerDataStore::s_timer_intr, true);
// For ESP32, we can't use dynamic interval calculation because the timerX functions
// are not callable from ISR (placed in flash storage).
// Here we just use an interrupt firing every 50 µs.
timerAlarmWrite(dimmer_timer, 50, true);
timerAlarmEnable(dimmer_timer);
#endif
}
void AcDimmer::write_state(float state) {
auto new_value = static_cast<uint16_t>(roundf(state * 65535));
if (new_value != 0 && this->store_.value == 0)
this->store_.init_cycle = this->init_with_half_cycle_;
this->store_.value = new_value;
}
void AcDimmer::dump_config() {
ESP_LOGCONFIG(TAG, "AcDimmer:");
LOG_PIN(" Output Pin: ", this->gate_pin_);
LOG_PIN(" Zero-Cross Pin: ", this->zero_cross_pin_);
ESP_LOGCONFIG(TAG, " Min Power: %.1f%%", this->store_.min_power / 10.0f);
ESP_LOGCONFIG(TAG, " Init with half cycle: %s", YESNO(this->init_with_half_cycle_));
if (method_ == DIM_METHOD_LEADING_PULSE) {
ESP_LOGCONFIG(TAG, " Method: leading pulse");
} else if (method_ == DIM_METHOD_LEADING) {
ESP_LOGCONFIG(TAG, " Method: leading");
} else {
ESP_LOGCONFIG(TAG, " Method: trailing");
}
LOG_FLOAT_OUTPUT(this);
ESP_LOGV(TAG, " Estimated Frequency: %.3fHz", 1e6f / this->store_.cycle_time_us / 2);
}
} // namespace ac_dimmer
} // namespace esphome
#endif // USE_ARDUINO