esphome/esphome/components/cse7761/cse7761.cpp
Arturo Casal 77dbf84e55
Add support for CSE7761 sensor (#2546)
* Add CSE7761 sensor support

* CSE7761: Added test at test3.yaml

* CSE7761: changed string style

* CSE7761: fixed cpp lint

* CSE7761: Added codeowners

* Lots of code cleanup

* Revert incorrect setup_priority suggestion

* Added error log in read with retries.

Co-authored-by: Oxan van Leeuwen <oxan@oxanvanleeuwen.nl>

* Improved log messages

Co-authored-by: Oxan van Leeuwen <oxan@oxanvanleeuwen.nl>
2021-10-28 20:58:48 +02:00

244 lines
8.5 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "cse7761.h"
#include "esphome/core/log.h"
namespace esphome {
namespace cse7761 {
static const char *const TAG = "cse7761";
/*********************************************************************************************\
* CSE7761 - Energy (Sonoff Dual R3 Pow v1.x)
*
* Based on Tasmota source code
* See https://github.com/arendst/Tasmota/discussions/10793
* https://github.com/arendst/Tasmota/blob/development/tasmota/xnrg_19_cse7761.ino
\*********************************************************************************************/
static const int CSE7761_UREF = 42563; // RmsUc
static const int CSE7761_IREF = 52241; // RmsIAC
static const int CSE7761_PREF = 44513; // PowerPAC
static const uint8_t CSE7761_REG_SYSCON = 0x00; // (2) System Control Register (0x0A04)
static const uint8_t CSE7761_REG_EMUCON = 0x01; // (2) Metering control register (0x0000)
static const uint8_t CSE7761_REG_EMUCON2 = 0x13; // (2) Metering control register 2 (0x0001)
static const uint8_t CSE7761_REG_PULSE1SEL = 0x1D; // (2) Pin function output select register (0x3210)
static const uint8_t CSE7761_REG_RMSIA = 0x24; // (3) The effective value of channel A current (0x000000)
static const uint8_t CSE7761_REG_RMSIB = 0x25; // (3) The effective value of channel B current (0x000000)
static const uint8_t CSE7761_REG_RMSU = 0x26; // (3) Voltage RMS (0x000000)
static const uint8_t CSE7761_REG_POWERPA = 0x2C; // (4) Channel A active power, update rate 27.2Hz (0x00000000)
static const uint8_t CSE7761_REG_POWERPB = 0x2D; // (4) Channel B active power, update rate 27.2Hz (0x00000000)
static const uint8_t CSE7761_REG_SYSSTATUS = 0x43; // (1) System status register
static const uint8_t CSE7761_REG_COEFFCHKSUM = 0x6F; // (2) Coefficient checksum
static const uint8_t CSE7761_REG_RMSIAC = 0x70; // (2) Channel A effective current conversion coefficient
static const uint8_t CSE7761_SPECIAL_COMMAND = 0xEA; // Start special command
static const uint8_t CSE7761_CMD_RESET = 0x96; // Reset command, after receiving the command, the chip resets
static const uint8_t CSE7761_CMD_CLOSE_WRITE = 0xDC; // Close write operation
static const uint8_t CSE7761_CMD_ENABLE_WRITE = 0xE5; // Enable write operation
enum CSE7761 { RMS_IAC, RMS_IBC, RMS_UC, POWER_PAC, POWER_PBC, POWER_SC, ENERGY_AC, ENERGY_BC };
void CSE7761Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up CSE7761...");
this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
uint16_t syscon = this->read_(0x00, 2); // Default 0x0A04
if ((0x0A04 == syscon) && this->chip_init_()) {
this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE);
ESP_LOGD(TAG, "CSE7761 found");
this->data_.ready = true;
} else {
this->mark_failed();
}
}
void CSE7761Component::dump_config() {
ESP_LOGCONFIG(TAG, "CSE7761:");
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication with CSE7761 failed!");
}
LOG_UPDATE_INTERVAL(this);
this->check_uart_settings(38400, 1, uart::UART_CONFIG_PARITY_EVEN, 8);
}
float CSE7761Component::get_setup_priority() const { return setup_priority::DATA; }
void CSE7761Component::update() {
if (this->data_.ready) {
this->get_data_();
}
}
void CSE7761Component::write_(uint8_t reg, uint16_t data) {
uint8_t buffer[5];
buffer[0] = 0xA5;
buffer[1] = reg;
uint32_t len = 2;
if (data) {
if (data < 0xFF) {
buffer[2] = data & 0xFF;
len = 3;
} else {
buffer[2] = (data >> 8) & 0xFF;
buffer[3] = data & 0xFF;
len = 4;
}
uint8_t crc = 0;
for (uint32_t i = 0; i < len; i++) {
crc += buffer[i];
}
buffer[len] = ~crc;
len++;
}
this->write_array(buffer, len);
}
bool CSE7761Component::read_once_(uint8_t reg, uint8_t size, uint32_t *value) {
while (this->available()) {
this->read();
}
this->write_(reg, 0);
uint8_t buffer[8] = {0};
uint32_t rcvd = 0;
for (uint32_t i = 0; i <= size; i++) {
int value = this->read();
if (value > -1 && rcvd < sizeof(buffer) - 1) {
buffer[rcvd++] = value;
}
}
if (!rcvd) {
ESP_LOGD(TAG, "Received 0 bytes for register %hhu", reg);
return false;
}
rcvd--;
uint32_t result = 0;
// CRC check
uint8_t crc = 0xA5 + reg;
for (uint32_t i = 0; i < rcvd; i++) {
result = (result << 8) | buffer[i];
crc += buffer[i];
}
crc = ~crc;
if (crc != buffer[rcvd]) {
return false;
}
*value = result;
return true;
}
uint32_t CSE7761Component::read_(uint8_t reg, uint8_t size) {
bool result = false; // Start loop
uint8_t retry = 3; // Retry up to three times
uint32_t value = 0; // Default no value
while (!result && retry > 0) {
retry--;
if (this->read_once_(reg, size, &value))
return value;
}
ESP_LOGE(TAG, "Reading register %hhu failed!", reg);
return value;
}
uint32_t CSE7761Component::coefficient_by_unit_(uint32_t unit) {
switch (unit) {
case RMS_UC:
return 0x400000 * 100 / this->data_.coefficient[RMS_UC];
case RMS_IAC:
return (0x800000 * 100 / this->data_.coefficient[RMS_IAC]) * 10; // Stay within 32 bits
case POWER_PAC:
return 0x80000000 / this->data_.coefficient[POWER_PAC];
}
return 0;
}
bool CSE7761Component::chip_init_() {
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
this->data_.coefficient[i] = this->read_(CSE7761_REG_RMSIAC + i, 2);
calc_chksum += this->data_.coefficient[i];
}
calc_chksum = ~calc_chksum;
uint16_t coeff_chksum = this->read_(CSE7761_REG_COEFFCHKSUM, 2);
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
ESP_LOGD(TAG, "Default calibration");
this->data_.coefficient[RMS_IAC] = CSE7761_IREF;
this->data_.coefficient[RMS_UC] = CSE7761_UREF;
this->data_.coefficient[POWER_PAC] = CSE7761_PREF;
}
this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
uint8_t sys_status = this->read_(CSE7761_REG_SYSSTATUS, 1);
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
this->write_(CSE7761_REG_SYSCON | 0x80, 0xFF04);
this->write_(CSE7761_REG_EMUCON | 0x80, 0x1183);
this->write_(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1);
this->write_(CSE7761_REG_PULSE1SEL | 0x80, 0x3290);
} else {
ESP_LOGD(TAG, "Write failed at chip_init");
return false;
}
return true;
}
void CSE7761Component::get_data_() {
// The effective value of current and voltage Rms is a 24-bit signed number,
// the highest bit is 0 for valid data,
// and when the highest bit is 1, the reading will be processed as zero
// The active power parameter PowerA/B is in twos complement format, 32-bit
// data, the highest bit is Sign bit.
uint32_t value = this->read_(CSE7761_REG_RMSU, 3);
this->data_.voltage_rms = (value >= 0x800000) ? 0 : value;
value = this->read_(CSE7761_REG_RMSIA, 3);
this->data_.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = this->read_(CSE7761_REG_POWERPA, 4);
this->data_.active_power[0] = (0 == this->data_.current_rms[0]) ? 0 : ((uint32_t) abs((int) value));
value = this->read_(CSE7761_REG_RMSIB, 3);
this->data_.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = this->read_(CSE7761_REG_POWERPB, 4);
this->data_.active_power[1] = (0 == this->data_.current_rms[1]) ? 0 : ((uint32_t) abs((int) value));
// convert values and publish to sensors
float voltage = (float) this->data_.voltage_rms / this->coefficient_by_unit_(RMS_UC);
if (this->voltage_sensor_ != nullptr) {
this->voltage_sensor_->publish_state(voltage);
}
for (uint32_t channel = 0; channel < 2; channel++) {
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
float active_power = (float) this->data_.active_power[channel] / this->coefficient_by_unit_(POWER_PAC); // W
float amps = (float) this->data_.current_rms[channel] / this->coefficient_by_unit_(RMS_IAC); // A
ESP_LOGD(TAG, "Channel %d power %f W, current %f A", channel + 1, active_power, amps);
if (channel == 0) {
if (this->power_sensor_1_ != nullptr) {
this->power_sensor_1_->publish_state(active_power);
}
if (this->current_sensor_1_ != nullptr) {
this->current_sensor_1_->publish_state(amps);
}
} else if (channel == 1) {
if (this->power_sensor_2_ != nullptr) {
this->power_sensor_2_->publish_state(active_power);
}
if (this->current_sensor_2_ != nullptr) {
this->current_sensor_2_->publish_state(amps);
}
}
}
}
} // namespace cse7761
} // namespace esphome