esphome/esphome/components/havells_solar/sensor.py
Otto Winter 5c65f9f9ad
Convert sensor_schema to use kwargs (#2094)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2021-08-01 12:21:32 +02:00

296 lines
11 KiB
Python

import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor, modbus
from esphome.const import (
CONF_ACTIVE_POWER,
CONF_CURRENT,
CONF_FREQUENCY,
CONF_ID,
CONF_REACTIVE_POWER,
CONF_VOLTAGE,
DEVICE_CLASS_CURRENT,
DEVICE_CLASS_ENERGY,
DEVICE_CLASS_POWER,
DEVICE_CLASS_VOLTAGE,
ICON_CURRENT_AC,
LAST_RESET_TYPE_AUTO,
STATE_CLASS_MEASUREMENT,
STATE_CLASS_NONE,
UNIT_AMPERE,
UNIT_DEGREES,
UNIT_HERTZ,
UNIT_MINUTE,
UNIT_VOLT,
UNIT_VOLT_AMPS_REACTIVE,
UNIT_WATT,
)
CONF_PHASE_A = "phase_a"
CONF_PHASE_B = "phase_b"
CONF_PHASE_C = "phase_c"
CONF_ENERGY_PRODUCTION_DAY = "energy_production_day"
CONF_TOTAL_ENERGY_PRODUCTION = "total_energy_production"
CONF_TOTAL_GENERATION_TIME = "total_generation_time"
CONF_TODAY_GENERATION_TIME = "today_generation_time"
CONF_PV1 = "pv1"
CONF_PV2 = "pv2"
UNIT_KILOWATT_HOURS = "kWh"
UNIT_HOURS = "h"
UNIT_KOHM = ""
UNIT_MILLIAMPERE = "mA"
CONF_INVERTER_MODULE_TEMP = "inverter_module_temp"
CONF_INVERTER_INNER_TEMP = "inverter_inner_temp"
CONF_INVERTER_BUS_VOLTAGE = "inverter_bus_voltage"
CONF_VOLTAGE_SAMPLED_BY_SECONDARY_CPU = "voltage_sampled_by_secondary_cpu"
CONF_INSULATION_OF_P_TO_GROUND = "insulation_of_p_to_ground"
CONF_INSULATION_OF_PV_N_TO_GROUND = "insulation_of_pv_n_to_ground"
CONF_GFCI_VALUE = "gfci_value"
CONF_DCI_OF_R = "dci_of_r"
CONF_DCI_OF_S = "dci_of_s"
CONF_DCI_OF_T = "dci_of_t"
AUTO_LOAD = ["modbus"]
CODEOWNERS = ["@sourabhjaiswal"]
havells_solar_ns = cg.esphome_ns.namespace("havells_solar")
HavellsSolar = havells_solar_ns.class_(
"HavellsSolar", cg.PollingComponent, modbus.ModbusDevice
)
PHASE_SENSORS = {
CONF_VOLTAGE: sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_VOLTAGE,
),
CONF_CURRENT: sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
}
PV_SENSORS = {
CONF_VOLTAGE: sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=2,
device_class=DEVICE_CLASS_VOLTAGE,
),
CONF_CURRENT: sensor.sensor_schema(
unit_of_measurement=UNIT_AMPERE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_CURRENT,
state_class=STATE_CLASS_MEASUREMENT,
),
CONF_ACTIVE_POWER: sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=0,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
CONF_VOLTAGE_SAMPLED_BY_SECONDARY_CPU: sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=0,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
CONF_INSULATION_OF_P_TO_GROUND: sensor.sensor_schema(
unit_of_measurement=UNIT_KOHM,
accuracy_decimals=0,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
}
PHASE_SCHEMA = cv.Schema(
{cv.Optional(sensor): schema for sensor, schema in PHASE_SENSORS.items()}
)
PV_SCHEMA = cv.Schema(
{cv.Optional(sensor): schema for sensor, schema in PV_SENSORS.items()}
)
CONFIG_SCHEMA = (
cv.Schema(
{
cv.GenerateID(): cv.declare_id(HavellsSolar),
cv.Optional(CONF_PHASE_A): PHASE_SCHEMA,
cv.Optional(CONF_PHASE_B): PHASE_SCHEMA,
cv.Optional(CONF_PHASE_C): PHASE_SCHEMA,
cv.Optional(CONF_PV1): PV_SCHEMA,
cv.Optional(CONF_PV2): PV_SCHEMA,
cv.Optional(CONF_FREQUENCY): sensor.sensor_schema(
unit_of_measurement=UNIT_HERTZ,
icon=ICON_CURRENT_AC,
accuracy_decimals=2,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_ACTIVE_POWER): sensor.sensor_schema(
unit_of_measurement=UNIT_WATT,
accuracy_decimals=0,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_REACTIVE_POWER): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT_AMPS_REACTIVE,
accuracy_decimals=2,
device_class=DEVICE_CLASS_POWER,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_ENERGY_PRODUCTION_DAY): sensor.sensor_schema(
unit_of_measurement=UNIT_KILOWATT_HOURS,
accuracy_decimals=2,
device_class=DEVICE_CLASS_ENERGY,
state_class=STATE_CLASS_MEASUREMENT,
last_reset_type=LAST_RESET_TYPE_AUTO,
),
cv.Optional(CONF_TOTAL_ENERGY_PRODUCTION): sensor.sensor_schema(
unit_of_measurement=UNIT_KILOWATT_HOURS,
accuracy_decimals=0,
device_class=DEVICE_CLASS_ENERGY,
state_class=STATE_CLASS_MEASUREMENT,
last_reset_type=LAST_RESET_TYPE_AUTO,
),
cv.Optional(CONF_TOTAL_GENERATION_TIME): sensor.sensor_schema(
unit_of_measurement=UNIT_HOURS,
accuracy_decimals=0,
state_class=STATE_CLASS_NONE,
),
cv.Optional(CONF_TODAY_GENERATION_TIME): sensor.sensor_schema(
unit_of_measurement=UNIT_MINUTE,
accuracy_decimals=0,
state_class=STATE_CLASS_NONE,
),
cv.Optional(CONF_INVERTER_MODULE_TEMP): sensor.sensor_schema(
unit_of_measurement=UNIT_DEGREES,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_INVERTER_INNER_TEMP): sensor.sensor_schema(
unit_of_measurement=UNIT_DEGREES,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_INVERTER_BUS_VOLTAGE): sensor.sensor_schema(
unit_of_measurement=UNIT_VOLT,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_INSULATION_OF_PV_N_TO_GROUND): sensor.sensor_schema(
unit_of_measurement=UNIT_KOHM,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_GFCI_VALUE): sensor.sensor_schema(
unit_of_measurement=UNIT_MILLIAMPERE,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_DCI_OF_R): sensor.sensor_schema(
unit_of_measurement=UNIT_MILLIAMPERE,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_DCI_OF_S): sensor.sensor_schema(
unit_of_measurement=UNIT_MILLIAMPERE,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
cv.Optional(CONF_DCI_OF_T): sensor.sensor_schema(
unit_of_measurement=UNIT_MILLIAMPERE,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
}
)
.extend(cv.polling_component_schema("10s"))
.extend(modbus.modbus_device_schema(0x01))
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await modbus.register_modbus_device(var, config)
if CONF_FREQUENCY in config:
sens = await sensor.new_sensor(config[CONF_FREQUENCY])
cg.add(var.set_frequency_sensor(sens))
if CONF_ACTIVE_POWER in config:
sens = await sensor.new_sensor(config[CONF_ACTIVE_POWER])
cg.add(var.set_active_power_sensor(sens))
if CONF_REACTIVE_POWER in config:
sens = await sensor.new_sensor(config[CONF_REACTIVE_POWER])
cg.add(var.set_reactive_power_sensor(sens))
if CONF_ENERGY_PRODUCTION_DAY in config:
sens = await sensor.new_sensor(config[CONF_ENERGY_PRODUCTION_DAY])
cg.add(var.set_today_production_sensor(sens))
if CONF_TOTAL_ENERGY_PRODUCTION in config:
sens = await sensor.new_sensor(config[CONF_TOTAL_ENERGY_PRODUCTION])
cg.add(var.set_total_energy_production_sensor(sens))
if CONF_TOTAL_GENERATION_TIME in config:
sens = await sensor.new_sensor(config[CONF_TOTAL_GENERATION_TIME])
cg.add(var.set_total_generation_time_sensor(sens))
if CONF_TODAY_GENERATION_TIME in config:
sens = await sensor.new_sensor(config[CONF_TODAY_GENERATION_TIME])
cg.add(var.set_today_generation_time_sensor(sens))
if CONF_INVERTER_MODULE_TEMP in config:
sens = await sensor.new_sensor(config[CONF_INVERTER_MODULE_TEMP])
cg.add(var.set_inverter_module_temp_sensor(sens))
if CONF_INVERTER_INNER_TEMP in config:
sens = await sensor.new_sensor(config[CONF_INVERTER_INNER_TEMP])
cg.add(var.set_inverter_inner_temp_sensor(sens))
if CONF_INVERTER_BUS_VOLTAGE in config:
sens = await sensor.new_sensor(config[CONF_INVERTER_BUS_VOLTAGE])
cg.add(var.set_inverter_bus_voltage_sensor(sens))
if CONF_INSULATION_OF_PV_N_TO_GROUND in config:
sens = await sensor.new_sensor(config[CONF_INSULATION_OF_PV_N_TO_GROUND])
cg.add(var.set_insulation_pv_n_to_ground_sensor(sens))
if CONF_GFCI_VALUE in config:
sens = await sensor.new_sensor(config[CONF_GFCI_VALUE])
cg.add(var.set_gfci_value_sensor(sens))
if CONF_DCI_OF_R in config:
sens = await sensor.new_sensor(config[CONF_DCI_OF_R])
cg.add(var.set_dci_of_r_sensor(sens))
if CONF_DCI_OF_S in config:
sens = await sensor.new_sensor(config[CONF_DCI_OF_S])
cg.add(var.set_dci_of_s_sensor(sens))
if CONF_DCI_OF_T in config:
sens = await sensor.new_sensor(config[CONF_DCI_OF_T])
cg.add(var.set_dci_of_t_sensor(sens))
for i, phase in enumerate([CONF_PHASE_A, CONF_PHASE_B, CONF_PHASE_C]):
if phase not in config:
continue
phase_config = config[phase]
for sensor_type in PHASE_SENSORS:
if sensor_type in phase_config:
sens = await sensor.new_sensor(phase_config[sensor_type])
cg.add(getattr(var, f"set_{sensor_type}_sensor")(i, sens))
for i, pv in enumerate([CONF_PV1, CONF_PV2]):
if pv not in config:
continue
pv_config = config[pv]
for sensor_type in pv_config:
if sensor_type in pv_config:
sens = await sensor.new_sensor(pv_config[sensor_type])
cg.add(getattr(var, f"set_{sensor_type}_sensor_pv")(i, sens))