esphome/esphome/components/vl53l0x/vl53l0x_sensor.h

272 lines
8.5 KiB
C++

#pragma once
#include <list>
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/i2c/i2c.h"
namespace esphome {
namespace vl53l0x {
struct SequenceStepEnables {
bool tcc, msrc, dss, pre_range, final_range;
};
struct SequenceStepTimeouts {
uint16_t pre_range_vcsel_period_pclks, final_range_vcsel_period_pclks;
uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks;
uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us;
};
class VL53L0XSensor : public sensor::Sensor, public PollingComponent, public i2c::I2CDevice {
public:
VL53L0XSensor();
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void update() override;
void loop() override;
void set_signal_rate_limit(float signal_rate_limit) { signal_rate_limit_ = signal_rate_limit; }
void set_long_range(bool long_range) { long_range_ = long_range; }
void set_timeout_us(uint32_t timeout_us) { this->timeout_us_ = timeout_us; }
void set_enable_pin(GPIOPin *enable) { this->enable_pin_ = enable; }
protected:
uint32_t get_measurement_timing_budget_() {
SequenceStepEnables enables{};
SequenceStepTimeouts timeouts{};
uint16_t start_overhead = 1910;
uint16_t end_overhead = 960;
uint16_t msrc_overhead = 660;
uint16_t tcc_overhead = 590;
uint16_t dss_overhead = 690;
uint16_t pre_range_overhead = 660;
uint16_t final_range_overhead = 550;
// "Start and end overhead times always present"
uint32_t budget_us = start_overhead + end_overhead;
get_sequence_step_enables_(&enables);
get_sequence_step_timeouts_(&enables, &timeouts);
if (enables.tcc)
budget_us += (timeouts.msrc_dss_tcc_us + tcc_overhead);
if (enables.dss)
budget_us += 2 * (timeouts.msrc_dss_tcc_us + dss_overhead);
else if (enables.msrc)
budget_us += (timeouts.msrc_dss_tcc_us + msrc_overhead);
if (enables.pre_range)
budget_us += (timeouts.pre_range_us + pre_range_overhead);
if (enables.final_range)
budget_us += (timeouts.final_range_us + final_range_overhead);
measurement_timing_budget_us_ = budget_us; // store for internal reuse
return budget_us;
}
bool set_measurement_timing_budget_(uint32_t budget_us) {
SequenceStepEnables enables{};
SequenceStepTimeouts timeouts{};
uint16_t start_overhead = 1320; // note that this is different than the value in get_
uint16_t end_overhead = 960;
uint16_t msrc_overhead = 660;
uint16_t tcc_overhead = 590;
uint16_t dss_overhead = 690;
uint16_t pre_range_overhead = 660;
uint16_t final_range_overhead = 550;
uint32_t min_timing_budget = 20000;
if (budget_us < min_timing_budget) {
return false;
}
uint32_t used_budget_us = start_overhead + end_overhead;
get_sequence_step_enables_(&enables);
get_sequence_step_timeouts_(&enables, &timeouts);
if (enables.tcc) {
used_budget_us += (timeouts.msrc_dss_tcc_us + tcc_overhead);
}
if (enables.dss) {
used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + dss_overhead);
} else if (enables.msrc) {
used_budget_us += (timeouts.msrc_dss_tcc_us + msrc_overhead);
}
if (enables.pre_range) {
used_budget_us += (timeouts.pre_range_us + pre_range_overhead);
}
if (enables.final_range) {
used_budget_us += final_range_overhead;
// "Note that the final range timeout is determined by the timing
// budget and the sum of all other timeouts within the sequence.
// If there is no room for the final range timeout, then an error
// will be set. Otherwise the remaining time will be applied to
// the final range."
if (used_budget_us > budget_us) {
// "Requested timeout too big."
return false;
}
uint32_t final_range_timeout_us = budget_us - used_budget_us;
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."
uint16_t final_range_timeout_mclks =
timeout_microseconds_to_mclks_(final_range_timeout_us, timeouts.final_range_vcsel_period_pclks);
if (enables.pre_range) {
final_range_timeout_mclks += timeouts.pre_range_mclks;
}
write_byte_16(0x71, encode_timeout_(final_range_timeout_mclks));
// set_sequence_step_timeout() end
measurement_timing_budget_us_ = budget_us; // store for internal reuse
}
return true;
}
void get_sequence_step_enables_(SequenceStepEnables *enables) {
uint8_t sequence_config = reg(0x01).get();
enables->tcc = (sequence_config >> 4) & 0x1;
enables->dss = (sequence_config >> 3) & 0x1;
enables->msrc = (sequence_config >> 2) & 0x1;
enables->pre_range = (sequence_config >> 6) & 0x1;
enables->final_range = (sequence_config >> 7) & 0x1;
}
enum VcselPeriodType { VCSEL_PERIOD_PRE_RANGE, VCSEL_PERIOD_FINAL_RANGE };
void get_sequence_step_timeouts_(SequenceStepEnables const *enables, SequenceStepTimeouts *timeouts) {
timeouts->pre_range_vcsel_period_pclks = get_vcsel_pulse_period_(VCSEL_PERIOD_PRE_RANGE);
timeouts->msrc_dss_tcc_mclks = reg(0x46).get() + 1;
timeouts->msrc_dss_tcc_us =
timeout_mclks_to_microseconds_(timeouts->msrc_dss_tcc_mclks, timeouts->pre_range_vcsel_period_pclks);
uint16_t value;
read_byte_16(0x51, &value);
timeouts->pre_range_mclks = decode_timeout_(value);
timeouts->pre_range_us =
timeout_mclks_to_microseconds_(timeouts->pre_range_mclks, timeouts->pre_range_vcsel_period_pclks);
timeouts->final_range_vcsel_period_pclks = get_vcsel_pulse_period_(VCSEL_PERIOD_FINAL_RANGE);
read_byte_16(0x71, &value);
timeouts->final_range_mclks = decode_timeout_(value);
if (enables->pre_range) {
timeouts->final_range_mclks -= timeouts->pre_range_mclks;
}
timeouts->final_range_us =
timeout_mclks_to_microseconds_(timeouts->final_range_mclks, timeouts->final_range_vcsel_period_pclks);
}
uint8_t get_vcsel_pulse_period_(VcselPeriodType type) {
uint8_t vcsel;
if (type == VCSEL_PERIOD_PRE_RANGE)
vcsel = reg(0x50).get();
else if (type == VCSEL_PERIOD_FINAL_RANGE)
vcsel = reg(0x70).get();
else
return 255;
return (vcsel + 1) << 1;
}
uint32_t get_macro_period_(uint8_t vcsel_period_pclks) {
return ((2304UL * vcsel_period_pclks * 1655UL) + 500UL) / 1000UL;
}
uint32_t timeout_mclks_to_microseconds_(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks) {
uint32_t macro_period_ns = get_macro_period_(vcsel_period_pclks);
return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000;
}
uint32_t timeout_microseconds_to_mclks_(uint32_t timeout_period_us, uint8_t vcsel_period_pclks) {
uint32_t macro_period_ns = get_macro_period_(vcsel_period_pclks);
return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns);
}
uint16_t decode_timeout_(uint16_t reg_val) {
// format: "(LSByte * 2^MSByte) + 1"
uint8_t msb = (reg_val >> 8) & 0xFF;
uint8_t lsb = (reg_val >> 0) & 0xFF;
return (uint16_t(lsb) << msb) + 1;
}
uint16_t encode_timeout_(uint16_t timeout_mclks) {
// format: "(LSByte * 2^MSByte) + 1"
uint32_t ls_byte = 0;
uint16_t ms_byte = 0;
if (timeout_mclks <= 0)
return 0;
ls_byte = timeout_mclks - 1;
while ((ls_byte & 0xFFFFFF00) > 0) {
ls_byte >>= 1;
ms_byte++;
}
return (ms_byte << 8) | (ls_byte & 0xFF);
}
bool perform_single_ref_calibration_(uint8_t vhv_init_byte) {
reg(0x00) = 0x01 | vhv_init_byte; // VL53L0X_REG_SYSRANGE_MODE_START_STOP
uint32_t start = millis();
while ((reg(0x13).get() & 0x07) == 0) {
if (millis() - start > 1000)
return false;
yield();
}
reg(0x0B) = 0x01;
reg(0x00) = 0x00;
return true;
}
float signal_rate_limit_;
bool long_range_;
GPIOPin *enable_pin_{nullptr};
uint32_t measurement_timing_budget_us_;
bool initiated_read_{false};
bool waiting_for_interrupt_{false};
uint8_t stop_variable_;
uint16_t timeout_start_us_;
uint16_t timeout_us_{};
static std::list<VL53L0XSensor *> vl53_sensors; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
static bool enable_pin_setup_complete; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
};
} // namespace vl53l0x
} // namespace esphome