esphome/esphome/components/sps30/sps30.cpp
Otto Winter ac0d921413
ESP-IDF support and generic target platforms (#2303)
* Socket refactor and SSL

* esp-idf temp

* Fixes

* Echo component and noise

* Add noise API transport support

* Updates

* ESP-IDF

* Complete

* Fixes

* Fixes

* Versions update

* New i2c APIs

* Complete i2c refactor

* SPI migration

* Revert ESP Preferences migration, too complex for now

* OTA support

* Remove echo again

* Remove ssl again

* GPIOFlags updates

* Rename esphal and ICACHE_RAM_ATTR

* Make ESP32 arduino compilable again

* Fix GPIO flags

* Complete pin registry refactor and fixes

* Fixes to make test1 compile

* Remove sdkconfig file

* Ignore sdkconfig file

* Fixes in reviewing

* Make test2 compile

* Make test4 compile

* Make test5 compile

* Run clang-format

* Fix lint errors

* Use esp-idf APIs instead of btStart

* Another round of fixes

* Start implementing ESP8266

* Make test3 compile

* Guard esp8266 code

* Lint

* Reformat

* Fixes

* Fixes v2

* more fixes

* ESP-IDF tidy target

* Convert ARDUINO_ARCH_ESPxx

* Update WiFiSignalSensor

* Update time ifdefs

* OTA needs millis from hal

* RestartSwitch needs delay from hal

* ESP-IDF Uart

* Fix OTA blank password

* Allow setting sdkconfig

* Fix idf partitions and allow setting sdkconfig from yaml

* Re-add read/write compat APIs and fix esp8266 uart

* Fix esp8266 store log strings in flash

* Fix ESP32 arduino preferences not initialized

* Update ifdefs

* Change how sdkconfig change is detected

* Add checks to ci-custom and fix them

* Run clang-format

* Add esp-idf clang-tidy target and fix errors

* Fixes from clang-tidy idf round 2

* Fixes from compiling tests with esp-idf

* Run clang-format

* Switch test5.yaml to esp-idf

* Implement ESP8266 Preferences

* Lint

* Re-do PIO package version selection a bit

* Fix arduinoespressif32 package version

* Fix unit tests

* Lint

* Lint fixes

* Fix readv/writev not defined

* Fix graphing component

* Re-add all old options from core/config.py

Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2021-09-20 11:47:51 +02:00

265 lines
9.3 KiB
C++

#include "sps30.h"
#include "esphome/core/log.h"
namespace esphome {
namespace sps30 {
static const char *const TAG = "sps30";
static const uint16_t SPS30_CMD_GET_ARTICLE_CODE = 0xD025;
static const uint16_t SPS30_CMD_GET_SERIAL_NUMBER = 0xD033;
static const uint16_t SPS30_CMD_GET_FIRMWARE_VERSION = 0xD100;
static const uint16_t SPS30_CMD_START_CONTINUOUS_MEASUREMENTS = 0x0010;
static const uint16_t SPS30_CMD_START_CONTINUOUS_MEASUREMENTS_ARG = 0x0300;
static const uint16_t SPS30_CMD_GET_DATA_READY_STATUS = 0x0202;
static const uint16_t SPS30_CMD_READ_MEASUREMENT = 0x0300;
static const uint16_t SPS30_CMD_STOP_MEASUREMENTS = 0x0104;
static const uint16_t SPS30_CMD_SET_AUTOMATIC_CLEANING_INTERVAL_SECONDS = 0x8004;
static const uint16_t SPS30_CMD_START_FAN_CLEANING = 0x5607;
static const uint16_t SPS30_CMD_SOFT_RESET = 0xD304;
static const size_t SERIAL_NUMBER_LENGTH = 8;
static const uint8_t MAX_SKIPPED_DATA_CYCLES_BEFORE_ERROR = 5;
void SPS30Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up sps30...");
this->write_command_(SPS30_CMD_SOFT_RESET);
/// Deferred Sensor initialization
this->set_timeout(500, [this]() {
/// Firmware version identification
if (!this->write_command_(SPS30_CMD_GET_FIRMWARE_VERSION)) {
this->error_code_ = FIRMWARE_VERSION_REQUEST_FAILED;
this->mark_failed();
return;
}
uint16_t raw_firmware_version[4];
if (!this->read_data_(raw_firmware_version, 4)) {
this->error_code_ = FIRMWARE_VERSION_READ_FAILED;
this->mark_failed();
return;
}
ESP_LOGD(TAG, " Firmware version v%0d.%02d", (raw_firmware_version[0] >> 8),
uint16_t(raw_firmware_version[0] & 0xFF));
/// Serial number identification
if (!this->write_command_(SPS30_CMD_GET_SERIAL_NUMBER)) {
this->error_code_ = SERIAL_NUMBER_REQUEST_FAILED;
this->mark_failed();
return;
}
uint16_t raw_serial_number[8];
if (!this->read_data_(raw_serial_number, 8)) {
this->error_code_ = SERIAL_NUMBER_READ_FAILED;
this->mark_failed();
return;
}
for (size_t i = 0; i < 8; ++i) {
this->serial_number_[i * 2] = static_cast<char>(raw_serial_number[i] >> 8);
this->serial_number_[i * 2 + 1] = uint16_t(uint16_t(raw_serial_number[i] & 0xFF));
}
ESP_LOGD(TAG, " Serial Number: '%s'", this->serial_number_);
this->start_continuous_measurement_();
});
}
void SPS30Component::dump_config() {
ESP_LOGCONFIG(TAG, "sps30:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
switch (this->error_code_) {
case COMMUNICATION_FAILED:
ESP_LOGW(TAG, "Communication failed! Is the sensor connected?");
break;
case MEASUREMENT_INIT_FAILED:
ESP_LOGW(TAG, "Measurement Initialization failed!");
break;
case SERIAL_NUMBER_REQUEST_FAILED:
ESP_LOGW(TAG, "Unable to request sensor serial number");
break;
case SERIAL_NUMBER_READ_FAILED:
ESP_LOGW(TAG, "Unable to read sensor serial number");
break;
case FIRMWARE_VERSION_REQUEST_FAILED:
ESP_LOGW(TAG, "Unable to request sensor firmware version");
break;
case FIRMWARE_VERSION_READ_FAILED:
ESP_LOGW(TAG, "Unable to read sensor firmware version");
break;
default:
ESP_LOGW(TAG, "Unknown setup error!");
break;
}
}
LOG_UPDATE_INTERVAL(this);
ESP_LOGCONFIG(TAG, " Serial Number: '%s'", this->serial_number_);
LOG_SENSOR(" ", "PM1.0", this->pm_1_0_sensor_);
LOG_SENSOR(" ", "PM2.5", this->pm_2_5_sensor_);
LOG_SENSOR(" ", "PM4", this->pm_4_0_sensor_);
LOG_SENSOR(" ", "PM10", this->pm_10_0_sensor_);
}
void SPS30Component::update() {
/// Check if warning flag active (sensor reconnected?)
if (this->status_has_warning()) {
ESP_LOGD(TAG, "Trying to reconnect the sensor...");
if (this->write_command_(SPS30_CMD_SOFT_RESET)) {
ESP_LOGD(TAG, "Sensor has soft-reset successfully. Waiting for reconnection in 500ms...");
this->set_timeout(500, [this]() {
this->start_continuous_measurement_();
/// Sensor restarted and reading attempt made next cycle
this->status_clear_warning();
this->skipped_data_read_cycles_ = 0;
ESP_LOGD(TAG, "Sensor reconnected successfully. Resuming continuous measurement!");
});
} else {
ESP_LOGD(TAG, "Sensor soft-reset failed. Is the sensor offline?");
}
return;
}
/// Check if measurement is ready before reading the value
if (!this->write_command_(SPS30_CMD_GET_DATA_READY_STATUS)) {
this->status_set_warning();
return;
}
uint16_t raw_read_status[1];
if (!this->read_data_(raw_read_status, 1) || raw_read_status[0] == 0x00) {
ESP_LOGD(TAG, "Sensor measurement not ready yet.");
this->skipped_data_read_cycles_++;
/// The following logic is required to address the cases when a sensor is quickly replaced before it's marked
/// as failed so that new sensor is eventually forced to be reinitialized for continuous measurement.
if (this->skipped_data_read_cycles_ > MAX_SKIPPED_DATA_CYCLES_BEFORE_ERROR) {
ESP_LOGD(TAG, "Sensor exceeded max allowed attempts. Sensor communication will be reinitialized.");
this->status_set_warning();
}
return;
}
if (!this->write_command_(SPS30_CMD_READ_MEASUREMENT)) {
ESP_LOGW(TAG, "Error reading measurement status!");
this->status_set_warning();
return;
}
this->set_timeout(50, [this]() {
uint16_t raw_data[20];
if (!this->read_data_(raw_data, 20)) {
ESP_LOGW(TAG, "Error reading measurement data!");
this->status_set_warning();
return;
}
union uint32_float_t {
uint32_t uint32;
float value;
};
/// Reading and converting Mass concentration
uint32_float_t pm_1_0{.uint32 = (((uint32_t(raw_data[0])) << 16) | (uint32_t(raw_data[1])))};
uint32_float_t pm_2_5{.uint32 = (((uint32_t(raw_data[2])) << 16) | (uint32_t(raw_data[3])))};
uint32_float_t pm_4_0{.uint32 = (((uint32_t(raw_data[4])) << 16) | (uint32_t(raw_data[5])))};
uint32_float_t pm_10_0{.uint32 = (((uint32_t(raw_data[6])) << 16) | (uint32_t(raw_data[7])))};
/// Reading and converting Number concentration
uint32_float_t pmc_0_5{.uint32 = (((uint32_t(raw_data[8])) << 16) | (uint32_t(raw_data[9])))};
uint32_float_t pmc_1_0{.uint32 = (((uint32_t(raw_data[10])) << 16) | (uint32_t(raw_data[11])))};
uint32_float_t pmc_2_5{.uint32 = (((uint32_t(raw_data[12])) << 16) | (uint32_t(raw_data[13])))};
uint32_float_t pmc_4_0{.uint32 = (((uint32_t(raw_data[14])) << 16) | (uint32_t(raw_data[15])))};
uint32_float_t pmc_10_0{.uint32 = (((uint32_t(raw_data[16])) << 16) | (uint32_t(raw_data[17])))};
/// Reading and converting Typical size
uint32_float_t pm_size{.uint32 = (((uint32_t(raw_data[18])) << 16) | (uint32_t(raw_data[19])))};
if (this->pm_1_0_sensor_ != nullptr)
this->pm_1_0_sensor_->publish_state(pm_1_0.value);
if (this->pm_2_5_sensor_ != nullptr)
this->pm_2_5_sensor_->publish_state(pm_2_5.value);
if (this->pm_4_0_sensor_ != nullptr)
this->pm_4_0_sensor_->publish_state(pm_4_0.value);
if (this->pm_10_0_sensor_ != nullptr)
this->pm_10_0_sensor_->publish_state(pm_10_0.value);
if (this->pmc_0_5_sensor_ != nullptr)
this->pmc_0_5_sensor_->publish_state(pmc_0_5.value);
if (this->pmc_1_0_sensor_ != nullptr)
this->pmc_1_0_sensor_->publish_state(pmc_1_0.value);
if (this->pmc_2_5_sensor_ != nullptr)
this->pmc_2_5_sensor_->publish_state(pmc_2_5.value);
if (this->pmc_4_0_sensor_ != nullptr)
this->pmc_4_0_sensor_->publish_state(pmc_4_0.value);
if (this->pmc_10_0_sensor_ != nullptr)
this->pmc_10_0_sensor_->publish_state(pmc_10_0.value);
if (this->pm_size_sensor_ != nullptr)
this->pm_size_sensor_->publish_state(pm_size.value);
this->status_clear_warning();
this->skipped_data_read_cycles_ = 0;
});
}
bool SPS30Component::write_command_(uint16_t command) {
// Warning ugly, trick the I2Ccomponent base by setting register to the first 8 bit.
return this->write_byte(command >> 8, command & 0xFF);
}
uint8_t SPS30Component::sht_crc_(uint8_t data1, uint8_t data2) {
uint8_t bit;
uint8_t crc = 0xFF;
crc ^= data1;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
crc ^= data2;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
return crc;
}
bool SPS30Component::start_continuous_measurement_() {
uint8_t data[4];
data[0] = SPS30_CMD_START_CONTINUOUS_MEASUREMENTS & 0xFF;
data[1] = 0x03;
data[2] = 0x00;
data[3] = sht_crc_(0x03, 0x00);
if (!this->write_bytes(SPS30_CMD_START_CONTINUOUS_MEASUREMENTS >> 8, data, 4)) {
ESP_LOGE(TAG, "Error initiating measurements");
return false;
}
return true;
}
bool SPS30Component::read_data_(uint16_t *data, uint8_t len) {
const uint8_t num_bytes = len * 3;
std::vector<uint8_t> buf(num_bytes);
if (this->read(buf.data(), num_bytes) != i2c::ERROR_OK) {
return false;
}
for (uint8_t i = 0; i < len; i++) {
const uint8_t j = 3 * i;
uint8_t crc = sht_crc_(buf[j], buf[j + 1]);
if (crc != buf[j + 2]) {
ESP_LOGE(TAG, "CRC8 Checksum invalid! 0x%02X != 0x%02X", buf[j + 2], crc);
return false;
}
data[i] = (buf[j] << 8) | buf[j + 1];
}
return true;
}
} // namespace sps30
} // namespace esphome