esphome/esphome/core/helpers.cpp
2022-10-28 08:12:12 +13:00

470 lines
14 KiB
C++

#include "esphome/core/helpers.h"
#include "esphome/core/defines.h"
#include "esphome/core/hal.h"
#include <cstdio>
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstring>
#include <cstdarg>
#if defined(USE_ESP8266)
#include <osapi.h>
#include <user_interface.h>
// for xt_rsil()/xt_wsr_ps()
#include <Arduino.h>
#elif defined(USE_ESP32_FRAMEWORK_ARDUINO)
#include <Esp.h>
#elif defined(USE_ESP_IDF)
#include "esp_system.h"
#include <freertos/FreeRTOS.h>
#include <freertos/portmacro.h>
#elif defined(USE_RP2040)
#if defined(USE_WIFI)
#include <WiFi.h>
#endif
#include <hardware/structs/rosc.h>
#include <hardware/sync.h>
#endif
#ifdef USE_ESP32_IGNORE_EFUSE_MAC_CRC
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#endif
namespace esphome {
// STL backports
#if _GLIBCXX_RELEASE < 7
std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
std::string to_string(float value) { return str_snprintf("%f", 32, value); }
std::string to_string(double value) { return str_snprintf("%f", 32, value); }
std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
#endif
// Mathematics
float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
uint8_t crc8(uint8_t *data, uint8_t len) {
uint8_t crc = 0;
while ((len--) != 0u) {
uint8_t inbyte = *data++;
for (uint8_t i = 8; i != 0u; i--) {
bool mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix)
crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
uint16_t crc16(const uint8_t *data, uint8_t len) {
uint16_t crc = 0xFFFF;
while (len--) {
crc ^= *data++;
for (uint8_t i = 0; i < 8; i++) {
if ((crc & 0x01) != 0) {
crc >>= 1;
crc ^= 0xA001;
} else {
crc >>= 1;
}
}
}
return crc;
}
uint32_t fnv1_hash(const std::string &str) {
uint32_t hash = 2166136261UL;
for (char c : str) {
hash *= 16777619UL;
hash ^= c;
}
return hash;
}
uint32_t random_uint32() {
#ifdef USE_ESP32
return esp_random();
#elif defined(USE_ESP8266)
return os_random();
#elif defined(USE_RP2040)
uint32_t result = 0;
for (uint8_t i = 0; i < 32; i++) {
result <<= 1;
result |= rosc_hw->randombit;
}
return result;
#else
#error "No random source available for this configuration."
#endif
}
float random_float() { return static_cast<float>(random_uint32()) / static_cast<float>(UINT32_MAX); }
bool random_bytes(uint8_t *data, size_t len) {
#ifdef USE_ESP32
esp_fill_random(data, len);
return true;
#elif defined(USE_ESP8266)
return os_get_random(data, len) == 0;
#elif defined(USE_RP2040)
while (len-- != 0) {
uint8_t result = 0;
for (uint8_t i = 0; i < 8; i++) {
result <<= 1;
result |= rosc_hw->randombit;
}
*data++ = result;
}
return true;
#else
#error "No random source available for this configuration."
#endif
}
// Strings
bool str_equals_case_insensitive(const std::string &a, const std::string &b) {
return strcasecmp(a.c_str(), b.c_str()) == 0;
}
bool str_startswith(const std::string &str, const std::string &start) { return str.rfind(start, 0) == 0; }
bool str_endswith(const std::string &str, const std::string &end) {
return str.rfind(end) == (str.size() - end.size());
}
std::string str_truncate(const std::string &str, size_t length) {
return str.length() > length ? str.substr(0, length) : str;
}
std::string str_until(const char *str, char ch) {
char *pos = strchr(str, ch);
return pos == nullptr ? std::string(str) : std::string(str, pos - str);
}
std::string str_until(const std::string &str, char ch) { return str.substr(0, str.find(ch)); }
// wrapper around std::transform to run safely on functions from the ctype.h header
// see https://en.cppreference.com/w/cpp/string/byte/toupper#Notes
template<int (*fn)(int)> std::string str_ctype_transform(const std::string &str) {
std::string result;
result.resize(str.length());
std::transform(str.begin(), str.end(), result.begin(), [](unsigned char ch) { return fn(ch); });
return result;
}
std::string str_lower_case(const std::string &str) { return str_ctype_transform<std::tolower>(str); }
std::string str_upper_case(const std::string &str) { return str_ctype_transform<std::toupper>(str); }
std::string str_snake_case(const std::string &str) {
std::string result;
result.resize(str.length());
std::transform(str.begin(), str.end(), result.begin(), ::tolower);
std::replace(result.begin(), result.end(), ' ', '_');
return result;
}
std::string str_sanitize(const std::string &str) {
std::string out;
std::copy_if(str.begin(), str.end(), std::back_inserter(out), [](const char &c) {
return c == '-' || c == '_' || (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
});
return out;
}
std::string str_snprintf(const char *fmt, size_t len, ...) {
std::string str;
va_list args;
str.resize(len);
va_start(args, len);
size_t out_length = vsnprintf(&str[0], len + 1, fmt, args);
va_end(args);
if (out_length < len)
str.resize(out_length);
return str;
}
std::string str_sprintf(const char *fmt, ...) {
std::string str;
va_list args;
va_start(args, fmt);
size_t length = vsnprintf(nullptr, 0, fmt, args);
va_end(args);
str.resize(length);
va_start(args, fmt);
vsnprintf(&str[0], length + 1, fmt, args);
va_end(args);
return str;
}
// Parsing & formatting
size_t parse_hex(const char *str, size_t length, uint8_t *data, size_t count) {
uint8_t val;
size_t chars = std::min(length, 2 * count);
for (size_t i = 2 * count - chars; i < 2 * count; i++, str++) {
if (*str >= '0' && *str <= '9') {
val = *str - '0';
} else if (*str >= 'A' && *str <= 'F') {
val = 10 + (*str - 'A');
} else if (*str >= 'a' && *str <= 'f') {
val = 10 + (*str - 'a');
} else {
return 0;
}
data[i >> 1] = !(i & 1) ? val << 4 : data[i >> 1] | val;
}
return chars;
}
static char format_hex_char(uint8_t v) { return v >= 10 ? 'a' + (v - 10) : '0' + v; }
std::string format_hex(const uint8_t *data, size_t length) {
std::string ret;
ret.resize(length * 2);
for (size_t i = 0; i < length; i++) {
ret[2 * i] = format_hex_char((data[i] & 0xF0) >> 4);
ret[2 * i + 1] = format_hex_char(data[i] & 0x0F);
}
return ret;
}
std::string format_hex(const std::vector<uint8_t> &data) { return format_hex(data.data(), data.size()); }
static char format_hex_pretty_char(uint8_t v) { return v >= 10 ? 'A' + (v - 10) : '0' + v; }
std::string format_hex_pretty(const uint8_t *data, size_t length) {
if (length == 0)
return "";
std::string ret;
ret.resize(3 * length - 1);
for (size_t i = 0; i < length; i++) {
ret[3 * i] = format_hex_pretty_char((data[i] & 0xF0) >> 4);
ret[3 * i + 1] = format_hex_pretty_char(data[i] & 0x0F);
if (i != length - 1)
ret[3 * i + 2] = '.';
}
if (length > 4)
return ret + " (" + to_string(length) + ")";
return ret;
}
std::string format_hex_pretty(const std::vector<uint8_t> &data) { return format_hex_pretty(data.data(), data.size()); }
std::string format_hex_pretty(const uint16_t *data, size_t length) {
if (length == 0)
return "";
std::string ret;
ret.resize(5 * length - 1);
for (size_t i = 0; i < length; i++) {
ret[5 * i] = format_hex_pretty_char((data[i] & 0xF000) >> 12);
ret[5 * i + 1] = format_hex_pretty_char((data[i] & 0x0F00) >> 8);
ret[5 * i + 2] = format_hex_pretty_char((data[i] & 0x00F0) >> 4);
ret[5 * i + 3] = format_hex_pretty_char(data[i] & 0x000F);
if (i != length - 1)
ret[5 * i + 2] = '.';
}
if (length > 4)
return ret + " (" + to_string(length) + ")";
return ret;
}
std::string format_hex_pretty(const std::vector<uint16_t> &data) { return format_hex_pretty(data.data(), data.size()); }
ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) {
if (on == nullptr && strcasecmp(str, "on") == 0)
return PARSE_ON;
if (on != nullptr && strcasecmp(str, on) == 0)
return PARSE_ON;
if (off == nullptr && strcasecmp(str, "off") == 0)
return PARSE_OFF;
if (off != nullptr && strcasecmp(str, off) == 0)
return PARSE_OFF;
if (strcasecmp(str, "toggle") == 0)
return PARSE_TOGGLE;
return PARSE_NONE;
}
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) {
if (accuracy_decimals < 0) {
auto multiplier = powf(10.0f, accuracy_decimals);
value = roundf(value * multiplier) / multiplier;
accuracy_decimals = 0;
}
char tmp[32]; // should be enough, but we should maybe improve this at some point.
snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value);
return std::string(tmp);
}
int8_t step_to_accuracy_decimals(float step) {
// use printf %g to find number of digits based on temperature step
char buf[32];
sprintf(buf, "%.5g", step);
std::string str{buf};
size_t dot_pos = str.find('.');
if (dot_pos == std::string::npos)
return 0;
return str.length() - dot_pos - 1;
}
// Colors
float gamma_correct(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, gamma);
}
float gamma_uncorrect(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, 1 / gamma);
}
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) {
float max_color_value = std::max(std::max(red, green), blue);
float min_color_value = std::min(std::min(red, green), blue);
float delta = max_color_value - min_color_value;
if (delta == 0) {
hue = 0;
} else if (max_color_value == red) {
hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360));
} else if (max_color_value == green) {
hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360));
} else if (max_color_value == blue) {
hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360));
}
if (max_color_value == 0) {
saturation = 0;
} else {
saturation = delta / max_color_value;
}
value = max_color_value;
}
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) {
float chroma = value * saturation;
float hue_prime = fmod(hue / 60.0, 6);
float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1));
float delta = value - chroma;
if (0 <= hue_prime && hue_prime < 1) {
red = chroma;
green = intermediate;
blue = 0;
} else if (1 <= hue_prime && hue_prime < 2) {
red = intermediate;
green = chroma;
blue = 0;
} else if (2 <= hue_prime && hue_prime < 3) {
red = 0;
green = chroma;
blue = intermediate;
} else if (3 <= hue_prime && hue_prime < 4) {
red = 0;
green = intermediate;
blue = chroma;
} else if (4 <= hue_prime && hue_prime < 5) {
red = intermediate;
green = 0;
blue = chroma;
} else if (5 <= hue_prime && hue_prime < 6) {
red = chroma;
green = 0;
blue = intermediate;
} else {
red = 0;
green = 0;
blue = 0;
}
red += delta;
green += delta;
blue += delta;
}
// System APIs
#if defined(USE_ESP8266)
IRAM_ATTR InterruptLock::InterruptLock() { state_ = xt_rsil(15); }
IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(state_); }
#elif defined(USE_ESP32)
// only affects the executing core
// so should not be used as a mutex lock, only to get accurate timing
IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); }
IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); }
#elif defined(USE_RP2040)
IRAM_ATTR InterruptLock::InterruptLock() { state_ = save_and_disable_interrupts(); }
IRAM_ATTR InterruptLock::~InterruptLock() { restore_interrupts(state_); }
#endif
uint8_t HighFrequencyLoopRequester::num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void HighFrequencyLoopRequester::start() {
if (this->started_)
return;
num_requests++;
this->started_ = true;
}
void HighFrequencyLoopRequester::stop() {
if (!this->started_)
return;
num_requests--;
this->started_ = false;
}
bool HighFrequencyLoopRequester::is_high_frequency() { return num_requests > 0; }
void get_mac_address_raw(uint8_t *mac) {
#if defined(USE_ESP32)
#if defined(USE_ESP32_IGNORE_EFUSE_MAC_CRC)
// On some devices, the MAC address that is burnt into EFuse does not
// match the CRC that goes along with it. For those devices, this
// work-around reads and uses the MAC address as-is from EFuse,
// without doing the CRC check.
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
#else
esp_efuse_mac_get_default(mac);
#endif
#elif defined(USE_ESP8266)
wifi_get_macaddr(STATION_IF, mac);
#elif defined(USE_RP2040) && defined(USE_WIFI)
WiFi.macAddress(mac);
#endif
}
std::string get_mac_address() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02x%02x%02x%02x%02x%02x", 12, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
std::string get_mac_address_pretty() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
#ifdef USE_ESP32
void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); }
#endif
void delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
uint32_t start = micros();
const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
// it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
// 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
if (us > lag) {
delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
while (micros() - start < us - lag)
delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
}
while (micros() - start < us) // fine delay the remaining usecs
;
}
} // namespace esphome