mirror of
https://github.com/esphome/esphome.git
synced 2024-12-01 19:24:14 +01:00
470 lines
14 KiB
C++
470 lines
14 KiB
C++
#include "esphome/core/helpers.h"
|
|
|
|
#include "esphome/core/defines.h"
|
|
#include "esphome/core/hal.h"
|
|
|
|
#include <cstdio>
|
|
#include <algorithm>
|
|
#include <cctype>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <cstdarg>
|
|
|
|
#if defined(USE_ESP8266)
|
|
#include <osapi.h>
|
|
#include <user_interface.h>
|
|
// for xt_rsil()/xt_wsr_ps()
|
|
#include <Arduino.h>
|
|
#elif defined(USE_ESP32_FRAMEWORK_ARDUINO)
|
|
#include <Esp.h>
|
|
#elif defined(USE_ESP_IDF)
|
|
#include "esp_system.h"
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/portmacro.h>
|
|
#elif defined(USE_RP2040)
|
|
#if defined(USE_WIFI)
|
|
#include <WiFi.h>
|
|
#endif
|
|
#include <hardware/structs/rosc.h>
|
|
#include <hardware/sync.h>
|
|
#endif
|
|
|
|
#ifdef USE_ESP32_IGNORE_EFUSE_MAC_CRC
|
|
#include "esp_efuse.h"
|
|
#include "esp_efuse_table.h"
|
|
#endif
|
|
|
|
namespace esphome {
|
|
|
|
// STL backports
|
|
|
|
#if _GLIBCXX_RELEASE < 7
|
|
std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
|
|
std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
|
|
std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
|
|
std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
|
|
std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
|
|
std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
|
|
std::string to_string(float value) { return str_snprintf("%f", 32, value); }
|
|
std::string to_string(double value) { return str_snprintf("%f", 32, value); }
|
|
std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
|
|
#endif
|
|
|
|
// Mathematics
|
|
|
|
float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
|
|
uint8_t crc8(uint8_t *data, uint8_t len) {
|
|
uint8_t crc = 0;
|
|
|
|
while ((len--) != 0u) {
|
|
uint8_t inbyte = *data++;
|
|
for (uint8_t i = 8; i != 0u; i--) {
|
|
bool mix = (crc ^ inbyte) & 0x01;
|
|
crc >>= 1;
|
|
if (mix)
|
|
crc ^= 0x8C;
|
|
inbyte >>= 1;
|
|
}
|
|
}
|
|
return crc;
|
|
}
|
|
uint16_t crc16(const uint8_t *data, uint8_t len) {
|
|
uint16_t crc = 0xFFFF;
|
|
while (len--) {
|
|
crc ^= *data++;
|
|
for (uint8_t i = 0; i < 8; i++) {
|
|
if ((crc & 0x01) != 0) {
|
|
crc >>= 1;
|
|
crc ^= 0xA001;
|
|
} else {
|
|
crc >>= 1;
|
|
}
|
|
}
|
|
}
|
|
return crc;
|
|
}
|
|
uint32_t fnv1_hash(const std::string &str) {
|
|
uint32_t hash = 2166136261UL;
|
|
for (char c : str) {
|
|
hash *= 16777619UL;
|
|
hash ^= c;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
uint32_t random_uint32() {
|
|
#ifdef USE_ESP32
|
|
return esp_random();
|
|
#elif defined(USE_ESP8266)
|
|
return os_random();
|
|
#elif defined(USE_RP2040)
|
|
uint32_t result = 0;
|
|
for (uint8_t i = 0; i < 32; i++) {
|
|
result <<= 1;
|
|
result |= rosc_hw->randombit;
|
|
}
|
|
return result;
|
|
#else
|
|
#error "No random source available for this configuration."
|
|
#endif
|
|
}
|
|
float random_float() { return static_cast<float>(random_uint32()) / static_cast<float>(UINT32_MAX); }
|
|
bool random_bytes(uint8_t *data, size_t len) {
|
|
#ifdef USE_ESP32
|
|
esp_fill_random(data, len);
|
|
return true;
|
|
#elif defined(USE_ESP8266)
|
|
return os_get_random(data, len) == 0;
|
|
#elif defined(USE_RP2040)
|
|
while (len-- != 0) {
|
|
uint8_t result = 0;
|
|
for (uint8_t i = 0; i < 8; i++) {
|
|
result <<= 1;
|
|
result |= rosc_hw->randombit;
|
|
}
|
|
*data++ = result;
|
|
}
|
|
return true;
|
|
#else
|
|
#error "No random source available for this configuration."
|
|
#endif
|
|
}
|
|
|
|
// Strings
|
|
|
|
bool str_equals_case_insensitive(const std::string &a, const std::string &b) {
|
|
return strcasecmp(a.c_str(), b.c_str()) == 0;
|
|
}
|
|
bool str_startswith(const std::string &str, const std::string &start) { return str.rfind(start, 0) == 0; }
|
|
bool str_endswith(const std::string &str, const std::string &end) {
|
|
return str.rfind(end) == (str.size() - end.size());
|
|
}
|
|
std::string str_truncate(const std::string &str, size_t length) {
|
|
return str.length() > length ? str.substr(0, length) : str;
|
|
}
|
|
std::string str_until(const char *str, char ch) {
|
|
char *pos = strchr(str, ch);
|
|
return pos == nullptr ? std::string(str) : std::string(str, pos - str);
|
|
}
|
|
std::string str_until(const std::string &str, char ch) { return str.substr(0, str.find(ch)); }
|
|
// wrapper around std::transform to run safely on functions from the ctype.h header
|
|
// see https://en.cppreference.com/w/cpp/string/byte/toupper#Notes
|
|
template<int (*fn)(int)> std::string str_ctype_transform(const std::string &str) {
|
|
std::string result;
|
|
result.resize(str.length());
|
|
std::transform(str.begin(), str.end(), result.begin(), [](unsigned char ch) { return fn(ch); });
|
|
return result;
|
|
}
|
|
std::string str_lower_case(const std::string &str) { return str_ctype_transform<std::tolower>(str); }
|
|
std::string str_upper_case(const std::string &str) { return str_ctype_transform<std::toupper>(str); }
|
|
std::string str_snake_case(const std::string &str) {
|
|
std::string result;
|
|
result.resize(str.length());
|
|
std::transform(str.begin(), str.end(), result.begin(), ::tolower);
|
|
std::replace(result.begin(), result.end(), ' ', '_');
|
|
return result;
|
|
}
|
|
std::string str_sanitize(const std::string &str) {
|
|
std::string out;
|
|
std::copy_if(str.begin(), str.end(), std::back_inserter(out), [](const char &c) {
|
|
return c == '-' || c == '_' || (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
|
|
});
|
|
return out;
|
|
}
|
|
std::string str_snprintf(const char *fmt, size_t len, ...) {
|
|
std::string str;
|
|
va_list args;
|
|
|
|
str.resize(len);
|
|
va_start(args, len);
|
|
size_t out_length = vsnprintf(&str[0], len + 1, fmt, args);
|
|
va_end(args);
|
|
|
|
if (out_length < len)
|
|
str.resize(out_length);
|
|
|
|
return str;
|
|
}
|
|
std::string str_sprintf(const char *fmt, ...) {
|
|
std::string str;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
size_t length = vsnprintf(nullptr, 0, fmt, args);
|
|
va_end(args);
|
|
|
|
str.resize(length);
|
|
va_start(args, fmt);
|
|
vsnprintf(&str[0], length + 1, fmt, args);
|
|
va_end(args);
|
|
|
|
return str;
|
|
}
|
|
|
|
// Parsing & formatting
|
|
|
|
size_t parse_hex(const char *str, size_t length, uint8_t *data, size_t count) {
|
|
uint8_t val;
|
|
size_t chars = std::min(length, 2 * count);
|
|
for (size_t i = 2 * count - chars; i < 2 * count; i++, str++) {
|
|
if (*str >= '0' && *str <= '9') {
|
|
val = *str - '0';
|
|
} else if (*str >= 'A' && *str <= 'F') {
|
|
val = 10 + (*str - 'A');
|
|
} else if (*str >= 'a' && *str <= 'f') {
|
|
val = 10 + (*str - 'a');
|
|
} else {
|
|
return 0;
|
|
}
|
|
data[i >> 1] = !(i & 1) ? val << 4 : data[i >> 1] | val;
|
|
}
|
|
return chars;
|
|
}
|
|
|
|
static char format_hex_char(uint8_t v) { return v >= 10 ? 'a' + (v - 10) : '0' + v; }
|
|
std::string format_hex(const uint8_t *data, size_t length) {
|
|
std::string ret;
|
|
ret.resize(length * 2);
|
|
for (size_t i = 0; i < length; i++) {
|
|
ret[2 * i] = format_hex_char((data[i] & 0xF0) >> 4);
|
|
ret[2 * i + 1] = format_hex_char(data[i] & 0x0F);
|
|
}
|
|
return ret;
|
|
}
|
|
std::string format_hex(const std::vector<uint8_t> &data) { return format_hex(data.data(), data.size()); }
|
|
|
|
static char format_hex_pretty_char(uint8_t v) { return v >= 10 ? 'A' + (v - 10) : '0' + v; }
|
|
std::string format_hex_pretty(const uint8_t *data, size_t length) {
|
|
if (length == 0)
|
|
return "";
|
|
std::string ret;
|
|
ret.resize(3 * length - 1);
|
|
for (size_t i = 0; i < length; i++) {
|
|
ret[3 * i] = format_hex_pretty_char((data[i] & 0xF0) >> 4);
|
|
ret[3 * i + 1] = format_hex_pretty_char(data[i] & 0x0F);
|
|
if (i != length - 1)
|
|
ret[3 * i + 2] = '.';
|
|
}
|
|
if (length > 4)
|
|
return ret + " (" + to_string(length) + ")";
|
|
return ret;
|
|
}
|
|
std::string format_hex_pretty(const std::vector<uint8_t> &data) { return format_hex_pretty(data.data(), data.size()); }
|
|
|
|
std::string format_hex_pretty(const uint16_t *data, size_t length) {
|
|
if (length == 0)
|
|
return "";
|
|
std::string ret;
|
|
ret.resize(5 * length - 1);
|
|
for (size_t i = 0; i < length; i++) {
|
|
ret[5 * i] = format_hex_pretty_char((data[i] & 0xF000) >> 12);
|
|
ret[5 * i + 1] = format_hex_pretty_char((data[i] & 0x0F00) >> 8);
|
|
ret[5 * i + 2] = format_hex_pretty_char((data[i] & 0x00F0) >> 4);
|
|
ret[5 * i + 3] = format_hex_pretty_char(data[i] & 0x000F);
|
|
if (i != length - 1)
|
|
ret[5 * i + 2] = '.';
|
|
}
|
|
if (length > 4)
|
|
return ret + " (" + to_string(length) + ")";
|
|
return ret;
|
|
}
|
|
std::string format_hex_pretty(const std::vector<uint16_t> &data) { return format_hex_pretty(data.data(), data.size()); }
|
|
|
|
ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) {
|
|
if (on == nullptr && strcasecmp(str, "on") == 0)
|
|
return PARSE_ON;
|
|
if (on != nullptr && strcasecmp(str, on) == 0)
|
|
return PARSE_ON;
|
|
if (off == nullptr && strcasecmp(str, "off") == 0)
|
|
return PARSE_OFF;
|
|
if (off != nullptr && strcasecmp(str, off) == 0)
|
|
return PARSE_OFF;
|
|
if (strcasecmp(str, "toggle") == 0)
|
|
return PARSE_TOGGLE;
|
|
|
|
return PARSE_NONE;
|
|
}
|
|
|
|
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) {
|
|
if (accuracy_decimals < 0) {
|
|
auto multiplier = powf(10.0f, accuracy_decimals);
|
|
value = roundf(value * multiplier) / multiplier;
|
|
accuracy_decimals = 0;
|
|
}
|
|
char tmp[32]; // should be enough, but we should maybe improve this at some point.
|
|
snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value);
|
|
return std::string(tmp);
|
|
}
|
|
|
|
int8_t step_to_accuracy_decimals(float step) {
|
|
// use printf %g to find number of digits based on temperature step
|
|
char buf[32];
|
|
sprintf(buf, "%.5g", step);
|
|
|
|
std::string str{buf};
|
|
size_t dot_pos = str.find('.');
|
|
if (dot_pos == std::string::npos)
|
|
return 0;
|
|
|
|
return str.length() - dot_pos - 1;
|
|
}
|
|
|
|
// Colors
|
|
|
|
float gamma_correct(float value, float gamma) {
|
|
if (value <= 0.0f)
|
|
return 0.0f;
|
|
if (gamma <= 0.0f)
|
|
return value;
|
|
|
|
return powf(value, gamma);
|
|
}
|
|
float gamma_uncorrect(float value, float gamma) {
|
|
if (value <= 0.0f)
|
|
return 0.0f;
|
|
if (gamma <= 0.0f)
|
|
return value;
|
|
|
|
return powf(value, 1 / gamma);
|
|
}
|
|
|
|
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) {
|
|
float max_color_value = std::max(std::max(red, green), blue);
|
|
float min_color_value = std::min(std::min(red, green), blue);
|
|
float delta = max_color_value - min_color_value;
|
|
|
|
if (delta == 0) {
|
|
hue = 0;
|
|
} else if (max_color_value == red) {
|
|
hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360));
|
|
} else if (max_color_value == green) {
|
|
hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360));
|
|
} else if (max_color_value == blue) {
|
|
hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360));
|
|
}
|
|
|
|
if (max_color_value == 0) {
|
|
saturation = 0;
|
|
} else {
|
|
saturation = delta / max_color_value;
|
|
}
|
|
|
|
value = max_color_value;
|
|
}
|
|
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) {
|
|
float chroma = value * saturation;
|
|
float hue_prime = fmod(hue / 60.0, 6);
|
|
float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1));
|
|
float delta = value - chroma;
|
|
|
|
if (0 <= hue_prime && hue_prime < 1) {
|
|
red = chroma;
|
|
green = intermediate;
|
|
blue = 0;
|
|
} else if (1 <= hue_prime && hue_prime < 2) {
|
|
red = intermediate;
|
|
green = chroma;
|
|
blue = 0;
|
|
} else if (2 <= hue_prime && hue_prime < 3) {
|
|
red = 0;
|
|
green = chroma;
|
|
blue = intermediate;
|
|
} else if (3 <= hue_prime && hue_prime < 4) {
|
|
red = 0;
|
|
green = intermediate;
|
|
blue = chroma;
|
|
} else if (4 <= hue_prime && hue_prime < 5) {
|
|
red = intermediate;
|
|
green = 0;
|
|
blue = chroma;
|
|
} else if (5 <= hue_prime && hue_prime < 6) {
|
|
red = chroma;
|
|
green = 0;
|
|
blue = intermediate;
|
|
} else {
|
|
red = 0;
|
|
green = 0;
|
|
blue = 0;
|
|
}
|
|
|
|
red += delta;
|
|
green += delta;
|
|
blue += delta;
|
|
}
|
|
|
|
// System APIs
|
|
|
|
#if defined(USE_ESP8266)
|
|
IRAM_ATTR InterruptLock::InterruptLock() { state_ = xt_rsil(15); }
|
|
IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(state_); }
|
|
#elif defined(USE_ESP32)
|
|
// only affects the executing core
|
|
// so should not be used as a mutex lock, only to get accurate timing
|
|
IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); }
|
|
IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); }
|
|
#elif defined(USE_RP2040)
|
|
IRAM_ATTR InterruptLock::InterruptLock() { state_ = save_and_disable_interrupts(); }
|
|
IRAM_ATTR InterruptLock::~InterruptLock() { restore_interrupts(state_); }
|
|
#endif
|
|
|
|
uint8_t HighFrequencyLoopRequester::num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
|
|
void HighFrequencyLoopRequester::start() {
|
|
if (this->started_)
|
|
return;
|
|
num_requests++;
|
|
this->started_ = true;
|
|
}
|
|
void HighFrequencyLoopRequester::stop() {
|
|
if (!this->started_)
|
|
return;
|
|
num_requests--;
|
|
this->started_ = false;
|
|
}
|
|
bool HighFrequencyLoopRequester::is_high_frequency() { return num_requests > 0; }
|
|
|
|
void get_mac_address_raw(uint8_t *mac) {
|
|
#if defined(USE_ESP32)
|
|
#if defined(USE_ESP32_IGNORE_EFUSE_MAC_CRC)
|
|
// On some devices, the MAC address that is burnt into EFuse does not
|
|
// match the CRC that goes along with it. For those devices, this
|
|
// work-around reads and uses the MAC address as-is from EFuse,
|
|
// without doing the CRC check.
|
|
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
|
|
#else
|
|
esp_efuse_mac_get_default(mac);
|
|
#endif
|
|
#elif defined(USE_ESP8266)
|
|
wifi_get_macaddr(STATION_IF, mac);
|
|
#elif defined(USE_RP2040) && defined(USE_WIFI)
|
|
WiFi.macAddress(mac);
|
|
#endif
|
|
}
|
|
std::string get_mac_address() {
|
|
uint8_t mac[6];
|
|
get_mac_address_raw(mac);
|
|
return str_snprintf("%02x%02x%02x%02x%02x%02x", 12, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
|
|
}
|
|
std::string get_mac_address_pretty() {
|
|
uint8_t mac[6];
|
|
get_mac_address_raw(mac);
|
|
return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
|
|
}
|
|
#ifdef USE_ESP32
|
|
void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); }
|
|
#endif
|
|
|
|
void delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
|
|
uint32_t start = micros();
|
|
const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
|
|
// it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
|
|
// 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
|
|
if (us > lag) {
|
|
delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
|
|
while (micros() - start < us - lag)
|
|
delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
|
|
}
|
|
while (micros() - start < us) // fine delay the remaining usecs
|
|
;
|
|
}
|
|
|
|
} // namespace esphome
|