mirror of
https://github.com/esphome/esphome.git
synced 2024-12-04 12:38:17 +01:00
c8ccb06f11
Don't try to update CT clamp's state with NaN values returned from the underlaying sensor. A single IO error in the sensor code will cause a NaN to be returned and if we use that in CTClampSensor's floating point maths both sample_sum_ and offset_ will become NaN and from there every future calculation will use the NaN offset_ and return NaN too.
90 lines
2.3 KiB
C++
90 lines
2.3 KiB
C++
#include "ct_clamp_sensor.h"
|
|
|
|
#include "esphome/core/log.h"
|
|
#include <cmath>
|
|
|
|
namespace esphome {
|
|
namespace ct_clamp {
|
|
|
|
static const char *TAG = "ct_clamp";
|
|
|
|
void CTClampSensor::setup() {
|
|
this->is_calibrating_offset_ = true;
|
|
this->high_freq_.start();
|
|
this->set_timeout("calibrate_offset", this->sample_duration_, [this]() {
|
|
this->high_freq_.stop();
|
|
this->is_calibrating_offset_ = false;
|
|
if (this->num_samples_ != 0) {
|
|
this->offset_ = this->sample_sum_ / this->num_samples_;
|
|
}
|
|
});
|
|
}
|
|
|
|
void CTClampSensor::dump_config() {
|
|
LOG_SENSOR("", "CT Clamp Sensor", this);
|
|
ESP_LOGCONFIG(TAG, " Sample Duration: %.2fs", this->sample_duration_ / 1e3f);
|
|
LOG_UPDATE_INTERVAL(this);
|
|
}
|
|
|
|
void CTClampSensor::update() {
|
|
if (this->is_calibrating_offset_)
|
|
return;
|
|
|
|
// Update only starts the sampling phase, in loop() the actual sampling is happening.
|
|
|
|
// Request a high loop() execution interval during sampling phase.
|
|
this->high_freq_.start();
|
|
|
|
// Set timeout for ending sampling phase
|
|
this->set_timeout("read", this->sample_duration_, [this]() {
|
|
this->is_sampling_ = false;
|
|
this->high_freq_.stop();
|
|
|
|
if (this->num_samples_ == 0) {
|
|
// Shouldn't happen, but let's not crash if it does.
|
|
this->publish_state(NAN);
|
|
return;
|
|
}
|
|
|
|
float raw = this->sample_sum_ / this->num_samples_;
|
|
float irms = std::sqrt(raw);
|
|
ESP_LOGD(TAG, "'%s' - Raw Value: %.2fA", this->name_.c_str(), irms);
|
|
this->publish_state(irms);
|
|
});
|
|
|
|
// Set sampling values
|
|
this->is_sampling_ = true;
|
|
this->num_samples_ = 0;
|
|
this->sample_sum_ = 0.0f;
|
|
}
|
|
|
|
void CTClampSensor::loop() {
|
|
if (!this->is_sampling_ && !this->is_calibrating_offset_)
|
|
return;
|
|
|
|
// Perform a single sample
|
|
float value = this->source_->sample();
|
|
if (isnan(value))
|
|
return;
|
|
|
|
if (this->is_calibrating_offset_) {
|
|
this->sample_sum_ += value;
|
|
this->num_samples_++;
|
|
return;
|
|
}
|
|
|
|
// Adjust DC offset via low pass filter (exponential moving average)
|
|
const float alpha = 0.001f;
|
|
this->offset_ = this->offset_ * (1 - alpha) + value * alpha;
|
|
|
|
// Filtered value centered around the mid-point (0V)
|
|
float filtered = value - this->offset_;
|
|
|
|
// IRMS is sqrt(∑v_i²)
|
|
float sq = filtered * filtered;
|
|
this->sample_sum_ += sq;
|
|
this->num_samples_++;
|
|
}
|
|
|
|
} // namespace ct_clamp
|
|
} // namespace esphome
|