esphome/esphome/components/light/addressable_light.cpp
Paul Monigatti 867fecd157
Fix: Light flash not restoring previous LightState (#2383)
* Update light state when transformer has finished

* Revert writing direct to output

* Correct handling of zero-length light transformers

* Allow transformers to handle zero-length transitions, and check more boundary conditions when transitioning back to start state

* Removed log.h

* Fixed race condition between LightFlashTransformer.apply() and is_finished()

* clang-format

* Step progress from 0.0f to 1.0f at t=start_time for zero-length transforms to avoid divide-by-zero
2021-10-13 21:59:52 +02:00

113 lines
4.2 KiB
C++

#include "addressable_light.h"
#include "esphome/core/log.h"
namespace esphome {
namespace light {
static const char *const TAG = "light.addressable";
void AddressableLight::call_setup() {
this->setup();
#ifdef ESPHOME_LOG_HAS_VERY_VERBOSE
this->set_interval(5000, [this]() {
const char *name = this->state_parent_ == nullptr ? "" : this->state_parent_->get_name().c_str();
ESP_LOGVV(TAG, "Addressable Light '%s' (effect_active=%s)", name, YESNO(this->effect_active_));
for (int i = 0; i < this->size(); i++) {
auto color = this->get(i);
ESP_LOGVV(TAG, " [%2d] Color: R=%3u G=%3u B=%3u W=%3u", i, color.get_red_raw(), color.get_green_raw(),
color.get_blue_raw(), color.get_white_raw());
}
ESP_LOGVV(TAG, " ");
});
#endif
}
std::unique_ptr<LightTransformer> AddressableLight::create_default_transition() {
return make_unique<AddressableLightTransformer>(*this);
}
Color color_from_light_color_values(LightColorValues val) {
auto r = to_uint8_scale(val.get_color_brightness() * val.get_red());
auto g = to_uint8_scale(val.get_color_brightness() * val.get_green());
auto b = to_uint8_scale(val.get_color_brightness() * val.get_blue());
auto w = to_uint8_scale(val.get_white());
return Color(r, g, b, w);
}
void AddressableLight::update_state(LightState *state) {
auto val = state->current_values;
auto max_brightness = to_uint8_scale(val.get_brightness() * val.get_state());
this->correction_.set_local_brightness(max_brightness);
if (this->is_effect_active())
return;
// don't use LightState helper, gamma correction+brightness is handled by ESPColorView
this->all() = color_from_light_color_values(val);
this->schedule_show();
}
void AddressableLightTransformer::start() {
// don't try to transition over running effects.
if (this->light_.is_effect_active())
return;
auto end_values = this->target_values_;
this->target_color_ = color_from_light_color_values(end_values);
// our transition will handle brightness, disable brightness in correction.
this->light_.correction_.set_local_brightness(255);
this->target_color_ *= to_uint8_scale(end_values.get_brightness() * end_values.get_state());
}
optional<LightColorValues> AddressableLightTransformer::apply() {
float smoothed_progress = LightTransitionTransformer::smoothed_progress(this->get_progress_());
// When running an output-buffer modifying effect, don't try to transition individual LEDs, but instead just fade the
// LightColorValues. write_state() then picks up the change in brightness, and the color change is picked up by the
// effects which respect it.
if (this->light_.is_effect_active())
return LightColorValues::lerp(this->get_start_values(), this->get_target_values(), smoothed_progress);
// Use a specialized transition for addressable lights: instead of using a unified transition for
// all LEDs, we use the current state of each LED as the start.
// We can't use a direct lerp smoothing here though - that would require creating a copy of the original
// state of each LED at the start of the transition.
// Instead, we "fake" the look of the LERP by using an exponential average over time and using
// dynamically-calculated alpha values to match the look.
float denom = (1.0f - smoothed_progress);
float alpha = denom == 0.0f ? 1.0f : (smoothed_progress - this->last_transition_progress_) / denom;
// We need to use a low-resolution alpha here which makes the transition set in only after ~half of the length
// We solve this by accumulating the fractional part of the alpha over time.
float alpha255 = alpha * 255.0f;
float alpha255int = floorf(alpha255);
float alpha255remainder = alpha255 - alpha255int;
this->accumulated_alpha_ += alpha255remainder;
float alpha_add = floorf(this->accumulated_alpha_);
this->accumulated_alpha_ -= alpha_add;
alpha255 += alpha_add;
alpha255 = clamp(alpha255, 0.0f, 255.0f);
auto alpha8 = static_cast<uint8_t>(alpha255);
if (alpha8 != 0) {
uint8_t inv_alpha8 = 255 - alpha8;
Color add = this->target_color_ * alpha8;
for (auto led : this->light_)
led.set(add + led.get() * inv_alpha8);
}
this->last_transition_progress_ = smoothed_progress;
this->light_.schedule_show();
return {};
}
} // namespace light
} // namespace esphome