esphome/esphome/components/max31865/max31865.cpp

220 lines
6.9 KiB
C++

#include "max31865.h"
#include "esphome/core/log.h"
#include <cmath>
namespace esphome {
namespace max31865 {
static const char* TAG = "max31865";
void MAX31865Sensor::update() {
// Check new faults since last measurement
if (!has_fault_) {
const uint8_t faults = this->read_register_(FAULT_STATUS_REG);
if (faults & 0b11111100) {
if (faults & (1 << 2)) {
ESP_LOGW(TAG, "Overvoltage/undervoltage fault between measurements");
}
if (faults & (1 << 3)) {
ESP_LOGW(TAG, "RTDIN- < 0.85 x V_BIAS (FORCE- open) between measurements");
}
if (faults & (1 << 4)) {
ESP_LOGW(TAG, "REFIN- < 0.85 x V_BIAS (FORCE- open) between measurements");
}
if (faults & (1 << 5)) {
ESP_LOGW(TAG, "REFIN- > 0.85 x V_BIAS between measurements");
}
if (!has_warn_) {
if (faults & (1 << 6)) {
ESP_LOGW(TAG, "RTD Low Threshold between measurements");
}
if (faults & (1 << 7)) {
ESP_LOGW(TAG, "RTD High Threshold between measurements");
}
}
}
}
// Run fault detection
this->write_config_(0b11101110, 0b10000110);
const uint32_t start_time = micros();
uint8_t config;
uint32_t fault_detect_time;
do {
config = this->read_register_(CONFIGURATION_REG);
fault_detect_time = micros() - start_time;
if ((fault_detect_time >= 6000) && (config & 0b00001100)) {
ESP_LOGE(TAG, "Fault detection incomplete (0x%02X) after %uμs (datasheet spec is 600μs max)! Aborting read.",
config, fault_detect_time);
this->publish_state(NAN);
this->status_set_error();
return;
}
} while (config & 0b00001100);
ESP_LOGV(TAG, "Fault detection completed in %uμs.", fault_detect_time);
// Start 1-shot conversion
this->write_config_(0b11100000, 0b10100000);
// Datasheet max conversion time is 55ms for 60Hz / 66ms for 50Hz
auto f = std::bind(&MAX31865Sensor::read_data_, this);
this->set_timeout("value", filter_ == FILTER_60HZ ? 55 : 66, f);
}
void MAX31865Sensor::setup() {
ESP_LOGCONFIG(TAG, "Setting up MAX31865Sensor '%s'...", this->name_.c_str());
this->spi_setup();
// Build base configuration
base_config_ = 0b00000000;
base_config_ |= (filter_ & 1) << 0;
if (rtd_wires_ == 3) {
base_config_ |= 1 << 4;
}
// Clear any existing faults & set base config
this->write_config_(0b00000010, 0b00000010);
}
void MAX31865Sensor::dump_config() {
LOG_SENSOR("", "MAX31865", this);
LOG_PIN(" CS Pin: ", this->cs_);
LOG_UPDATE_INTERVAL(this);
ESP_LOGCONFIG(TAG, " Reference Resistance: %.2fΩ", reference_resistance_);
ESP_LOGCONFIG(TAG, " RTD: %u-wire %.2fΩ", rtd_wires_, rtd_nominal_resistance_);
ESP_LOGCONFIG(TAG, " Mains Filter: %s",
(filter_ == FILTER_60HZ ? "60 Hz" : (filter_ == FILTER_50HZ ? "50 Hz" : "Unknown!")));
}
float MAX31865Sensor::get_setup_priority() const { return setup_priority::DATA; }
void MAX31865Sensor::read_data_() {
// Read temperature, disable V_BIAS (save power)
const uint16_t rtd_resistance_register = this->read_register_16_(RTD_RESISTANCE_MSB_REG);
this->write_config_(0b11000000, 0b00000000);
// Check faults
const uint8_t faults = this->read_register_(FAULT_STATUS_REG);
if ((has_fault_ = faults & 0b00111100)) {
if (faults & (1 << 2)) {
ESP_LOGE(TAG, "Overvoltage/undervoltage fault");
}
if (faults & (1 << 3)) {
ESP_LOGE(TAG, "RTDIN- < 0.85 x V_BIAS (FORCE- open)");
}
if (faults & (1 << 4)) {
ESP_LOGE(TAG, "REFIN- < 0.85 x V_BIAS (FORCE- open)");
}
if (faults & (1 << 5)) {
ESP_LOGE(TAG, "REFIN- > 0.85 x V_BIAS");
}
this->publish_state(NAN);
this->status_set_error();
return;
} else {
this->status_clear_error();
}
if ((has_warn_ = faults & 0b11000000)) {
if (faults & (1 << 6)) {
ESP_LOGW(TAG, "RTD Low Threshold");
}
if (faults & (1 << 7)) {
ESP_LOGW(TAG, "RTD High Threshold");
}
this->status_set_warning();
} else {
this->status_clear_warning();
}
// Process temperature
if (rtd_resistance_register & 0x0001) {
ESP_LOGW(TAG, "RTD Resistance Registers fault bit set! (0x%04X)", rtd_resistance_register);
this->status_set_warning();
}
const float rtd_ratio = static_cast<float>(rtd_resistance_register >> 1) / static_cast<float>((1 << 15) - 1);
const float temperature = this->calc_temperature_(rtd_ratio);
ESP_LOGV(TAG, "RTD read complete. %.5f (ratio) * %.1fΩ (reference) = %.2fΩ --> %.2f°C", rtd_ratio,
reference_resistance_, reference_resistance_ * rtd_ratio, temperature);
this->publish_state(temperature);
}
void MAX31865Sensor::write_config_(uint8_t mask, uint8_t bits, uint8_t start_position) {
uint8_t value = base_config_;
value &= (~mask);
value |= (bits << start_position);
this->write_register_(CONFIGURATION_REG, value);
}
void MAX31865Sensor::write_register_(uint8_t reg, uint8_t value) {
this->enable();
this->write_byte(reg |= SPI_WRITE_M);
this->write_byte(value);
this->disable();
ESP_LOGVV(TAG, "write_register_ 0x%02X: 0x%02X", reg, value);
}
const uint8_t MAX31865Sensor::read_register_(uint8_t reg) {
this->enable();
this->write_byte(reg);
const uint8_t value(this->read_byte());
this->disable();
ESP_LOGVV(TAG, "read_register_ 0x%02X: 0x%02X", reg, value);
return value;
}
const uint16_t MAX31865Sensor::read_register_16_(uint8_t reg) {
this->enable();
this->write_byte(reg);
const uint8_t msb(this->read_byte());
const uint8_t lsb(this->read_byte());
this->disable();
const uint16_t value((msb << 8) | lsb);
ESP_LOGVV(TAG, "read_register_16_ 0x%02X: 0x%04X", reg, value);
return value;
}
float MAX31865Sensor::calc_temperature_(const float& rtd_ratio) {
// Based loosely on Adafruit's library: https://github.com/adafruit/Adafruit_MAX31865
// Mainly based on formulas provided by Analog:
// http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf
const float a = 3.9083e-3;
const float b = -5.775e-7;
const float z1 = -a;
const float z2 = a * a - 4 * b;
const float z3 = 4 * b / rtd_nominal_resistance_;
const float z4 = 2 * b;
float rtd_resistance = rtd_ratio * reference_resistance_;
// ≥ 0°C Formula
const float pos_temp = (z1 + std::sqrt(z2 + (z3 * rtd_resistance))) / z4;
if (pos_temp >= 0) {
return pos_temp;
}
// < 0°C Formula
if (rtd_nominal_resistance_ != 100) {
// Normalize RTD to 100Ω
rtd_resistance /= rtd_nominal_resistance_;
rtd_resistance *= 100;
}
float rpoly = rtd_resistance;
float neg_temp = -242.02;
neg_temp += 2.2228 * rpoly;
rpoly *= rtd_resistance; // square
neg_temp += 2.5859e-3 * rpoly;
rpoly *= rtd_resistance; // ^3
neg_temp -= 4.8260e-6 * rpoly;
rpoly *= rtd_resistance; // ^4
neg_temp -= 2.8183e-8 * rpoly;
rpoly *= rtd_resistance; // ^5
neg_temp += 1.5243e-10 * rpoly;
return neg_temp;
}
} // namespace max31865
} // namespace esphome