esphome/esphome/components/sgp30/sgp30.cpp
2020-06-15 00:41:17 -03:00

301 lines
9.9 KiB
C++

#include "sgp30.h"
#include "esphome/core/log.h"
namespace esphome {
namespace sgp30 {
static const char *TAG = "sgp30";
static const uint16_t SGP30_CMD_GET_SERIAL_ID = 0x3682;
static const uint16_t SGP30_CMD_GET_FEATURESET = 0x202f;
static const uint16_t SGP30_CMD_IAQ_INIT = 0x2003;
static const uint16_t SGP30_CMD_MEASURE_IAQ = 0x2008;
static const uint16_t SGP30_CMD_SET_ABSOLUTE_HUMIDITY = 0x2061;
static const uint16_t SGP30_CMD_GET_IAQ_BASELINE = 0x2015;
static const uint16_t SGP30_CMD_SET_IAQ_BASELINE = 0x201E;
// Sensor baseline should first be relied on after 1H of operation,
// if the sensor starts with a baseline value provided
const long IAQ_BASELINE_WARM_UP_SECONDS_WITH_BASELINE_PROVIDED = 3600;
// Sensor baseline could first be relied on after 12H of operation,
// if the sensor starts without any prior baseline value provided
const long IAQ_BASELINE_WARM_UP_SECONDS_WITHOUT_BASELINE = 43200;
void SGP30Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up SGP30...");
// Serial Number identification
if (!this->write_command_(SGP30_CMD_GET_SERIAL_ID)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
uint16_t raw_serial_number[3];
if (!this->read_data_(raw_serial_number, 3)) {
this->mark_failed();
return;
}
this->serial_number_ = (uint64_t(raw_serial_number[0]) << 24) | (uint64_t(raw_serial_number[1]) << 16) |
(uint64_t(raw_serial_number[2]));
ESP_LOGD(TAG, "Serial Number: %llu", this->serial_number_);
// Featureset identification for future use
if (!this->write_command_(SGP30_CMD_GET_FEATURESET)) {
this->mark_failed();
return;
}
uint16_t raw_featureset[1];
if (!this->read_data_(raw_featureset, 1)) {
this->mark_failed();
return;
}
this->featureset_ = raw_featureset[0];
if (uint16_t(this->featureset_ >> 12) != 0x0) {
if (uint16_t(this->featureset_ >> 12) == 0x1) {
// ID matching a different sensor: SGPC3
this->error_code_ = UNSUPPORTED_ID;
} else {
// Unknown ID
this->error_code_ = INVALID_ID;
}
this->mark_failed();
return;
}
ESP_LOGD(TAG, "Product version: 0x%0X", uint16_t(this->featureset_ & 0x1FF));
// Sensor initialization
if (!this->write_command_(SGP30_CMD_IAQ_INIT)) {
ESP_LOGE(TAG, "Sensor sgp30_iaq_init failed.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
// Sensor baseline reliability timer
if (this->eco2_baseline_ > 0 && this->tvoc_baseline_ > 0) {
this->required_warm_up_time_ = IAQ_BASELINE_WARM_UP_SECONDS_WITH_BASELINE_PROVIDED;
this->write_iaq_baseline_(this->eco2_baseline_, this->tvoc_baseline_);
} else {
this->required_warm_up_time_ = IAQ_BASELINE_WARM_UP_SECONDS_WITHOUT_BASELINE;
}
}
bool SGP30Component::is_sensor_baseline_reliable_() {
if ((this->required_warm_up_time_ == 0) || (std::floor(millis() / 1000) >= this->required_warm_up_time_)) {
// requirement for warm up is removed once the millis uptime surpasses the required warm_up_time
// this avoids the repetitive warm up when the millis uptime is rolled over every ~40 days
this->required_warm_up_time_ = 0;
return true;
}
return false;
}
void SGP30Component::read_iaq_baseline_() {
if (this->is_sensor_baseline_reliable_()) {
if (!this->write_command_(SGP30_CMD_GET_IAQ_BASELINE)) {
ESP_LOGD(TAG, "Error getting baseline");
this->status_set_warning();
return;
}
this->set_timeout(50, [this]() {
uint16_t raw_data[2];
if (!this->read_data_(raw_data, 2)) {
this->status_set_warning();
return;
}
uint16_t eco2baseline = (raw_data[0]);
uint16_t tvocbaseline = (raw_data[1]);
ESP_LOGI(TAG, "Current eCO2 baseline: 0x%04X, TVOC baseline: 0x%04X", eco2baseline, tvocbaseline);
this->status_clear_warning();
});
} else {
ESP_LOGD(TAG, "Baseline reading not available for: %.0fs",
(this->required_warm_up_time_ - std::floor(millis() / 1000)));
}
}
void SGP30Component::send_env_data_() {
if (this->humidity_sensor_ == nullptr && this->temperature_sensor_ == nullptr)
return;
float humidity = NAN;
if (this->humidity_sensor_ != nullptr)
humidity = this->humidity_sensor_->state;
if (isnan(humidity) || humidity < 0.0f || humidity > 100.0f) {
ESP_LOGW(TAG, "Compensation not possible yet: bad humidity data.");
return;
} else {
ESP_LOGD(TAG, "External compensation data received: Humidity %0.2f%%", humidity);
}
float temperature = NAN;
if (this->temperature_sensor_ != nullptr) {
temperature = float(this->temperature_sensor_->state);
}
if (isnan(temperature) || temperature < -40.0f || temperature > 85.0f) {
ESP_LOGW(TAG, "Compensation not possible yet: bad temperature value data.");
return;
} else {
ESP_LOGD(TAG, "External compensation data received: Temperature %0.2f°C", temperature);
}
float absolute_humidity =
216.7f * (((humidity / 100) * 6.112f * std::exp((17.62f * temperature) / (243.12f + temperature))) /
(273.15f + temperature));
uint8_t humidity_full = uint8_t(std::floor(absolute_humidity));
uint8_t humidity_dec = uint8_t(std::floor((absolute_humidity - std::floor(absolute_humidity)) * 256));
ESP_LOGD(TAG, "Calculated Absolute humidity: %0.3f g/m³ (0x%04X)", absolute_humidity,
uint16_t(uint16_t(humidity_full) << 8 | uint16_t(humidity_dec)));
uint8_t crc = sht_crc_(humidity_full, humidity_dec);
uint8_t data[4];
data[0] = SGP30_CMD_SET_ABSOLUTE_HUMIDITY & 0xFF;
data[1] = humidity_full;
data[2] = humidity_dec;
data[3] = crc;
if (!this->write_bytes(SGP30_CMD_SET_ABSOLUTE_HUMIDITY >> 8, data, 4)) {
ESP_LOGE(TAG, "Error sending compensation data.");
}
}
void SGP30Component::write_iaq_baseline_(uint16_t eco2_baseline, uint16_t tvoc_baseline) {
uint8_t data[7];
data[0] = SGP30_CMD_SET_IAQ_BASELINE & 0xFF;
data[1] = tvoc_baseline >> 8;
data[2] = tvoc_baseline & 0xFF;
data[3] = sht_crc_(data[1], data[2]);
data[4] = eco2_baseline >> 8;
data[5] = eco2_baseline & 0xFF;
data[6] = sht_crc_(data[4], data[5]);
if (!this->write_bytes(SGP30_CMD_SET_IAQ_BASELINE >> 8, data, 7)) {
ESP_LOGE(TAG, "Error applying eCO2 baseline: 0x%04X, TVOC baseline: 0x%04X", eco2_baseline, tvoc_baseline);
} else
ESP_LOGI(TAG, "Initial eCO2 and TVOC baselines applied successfully!");
}
void SGP30Component::dump_config() {
ESP_LOGCONFIG(TAG, "SGP30:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
switch (this->error_code_) {
case COMMUNICATION_FAILED:
ESP_LOGW(TAG, "Communication failed! Is the sensor connected?");
break;
case MEASUREMENT_INIT_FAILED:
ESP_LOGW(TAG, "Measurement Initialization failed!");
break;
case INVALID_ID:
ESP_LOGW(TAG, "Sensor reported an invalid ID. Is this an SGP30?");
break;
case UNSUPPORTED_ID:
ESP_LOGW(TAG, "Sensor reported an unsupported ID (SGPC3).");
break;
default:
ESP_LOGW(TAG, "Unknown setup error!");
break;
}
} else {
ESP_LOGCONFIG(TAG, " Serial number: %llu", this->serial_number_);
if (this->eco2_baseline_ != 0x0000 && this->tvoc_baseline_ != 0x0000) {
ESP_LOGCONFIG(TAG, " Baseline:");
ESP_LOGCONFIG(TAG, " eCO2 Baseline: 0x%04X", this->eco2_baseline_);
ESP_LOGCONFIG(TAG, " TVOC Baseline: 0x%04X", this->tvoc_baseline_);
} else {
ESP_LOGCONFIG(TAG, " Baseline: No baseline configured");
}
ESP_LOGCONFIG(TAG, " Warm up time: %lds", this->required_warm_up_time_);
}
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "eCO2", this->eco2_sensor_);
LOG_SENSOR(" ", "TVOC", this->tvoc_sensor_);
if (this->humidity_sensor_ != nullptr && this->temperature_sensor_ != nullptr) {
ESP_LOGCONFIG(TAG, " Compensation:");
LOG_SENSOR(" ", "Temperature Source:", this->temperature_sensor_);
LOG_SENSOR(" ", "Humidity Source:", this->humidity_sensor_);
} else {
ESP_LOGCONFIG(TAG, " Compensation: No source configured");
}
}
void SGP30Component::update() {
if (!this->write_command_(SGP30_CMD_MEASURE_IAQ)) {
this->status_set_warning();
return;
}
this->set_timeout(50, [this]() {
uint16_t raw_data[2];
if (!this->read_data_(raw_data, 2)) {
this->status_set_warning();
return;
}
float eco2 = (raw_data[0]);
float tvoc = (raw_data[1]);
ESP_LOGD(TAG, "Got eCO2=%.1fppm TVOC=%.1fppb", eco2, tvoc);
if (this->eco2_sensor_ != nullptr)
this->eco2_sensor_->publish_state(eco2);
if (this->tvoc_sensor_ != nullptr)
this->tvoc_sensor_->publish_state(tvoc);
this->status_clear_warning();
this->send_env_data_();
this->read_iaq_baseline_();
});
}
bool SGP30Component::write_command_(uint16_t command) {
// Warning ugly, trick the I2Ccomponent base by setting register to the first 8 bit.
return this->write_byte(command >> 8, command & 0xFF);
}
uint8_t SGP30Component::sht_crc_(uint8_t data1, uint8_t data2) {
uint8_t bit;
uint8_t crc = 0xFF;
crc ^= data1;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
crc ^= data2;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
return crc;
}
bool SGP30Component::read_data_(uint16_t *data, uint8_t len) {
const uint8_t num_bytes = len * 3;
auto *buf = new uint8_t[num_bytes];
if (!this->parent_->raw_receive(this->address_, buf, num_bytes)) {
delete[](buf);
return false;
}
for (uint8_t i = 0; i < len; i++) {
const uint8_t j = 3 * i;
uint8_t crc = sht_crc_(buf[j], buf[j + 1]);
if (crc != buf[j + 2]) {
ESP_LOGE(TAG, "CRC8 Checksum invalid! 0x%02X != 0x%02X", buf[j + 2], crc);
delete[](buf);
return false;
}
data[i] = (buf[j] << 8) | buf[j + 1];
}
delete[](buf);
return true;
}
} // namespace sgp30
} // namespace esphome