esphome/esphome/components/remote_base/pronto_protocol.cpp

245 lines
8.1 KiB
C++

/*
* @file irPronto.cpp
* @brief In this file, the functions IRrecv::compensateAndPrintPronto and IRsend::sendPronto are defined.
*
* See http://www.harctoolbox.org/Glossary.html#ProntoSemantics
* Pronto database http://www.remotecentral.com/search.htm
*
* This file is part of Arduino-IRremote https://github.com/Arduino-IRremote/Arduino-IRremote.
*
************************************************************************************
* MIT License
*
* Copyright (c) 2020 Bengt Martensson
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
************************************************************************************
*/
#include "pronto_protocol.h"
#include "esphome/core/log.h"
namespace esphome {
namespace remote_base {
static const char *const TAG = "remote.pronto";
bool ProntoData::operator==(const ProntoData &rhs) const {
std::vector<uint16_t> data1 = encode_pronto(data);
std::vector<uint16_t> data2 = encode_pronto(rhs.data);
uint32_t total_diff = 0;
// Don't need to check the last one, it's the large gap at the end.
for (std::vector<uint16_t>::size_type i = 0; i < data1.size() - 1; ++i) {
int diff = data2[i] - data1[i];
diff *= diff;
if (diff > 9)
return false;
total_diff += diff;
}
return total_diff <= data1.size() * 3;
}
// DO NOT EXPORT from this file
static const uint16_t MICROSECONDS_T_MAX = 0xFFFFU;
static const uint16_t LEARNED_TOKEN = 0x0000U;
static const uint16_t LEARNED_NON_MODULATED_TOKEN = 0x0100U;
static const uint16_t BITS_IN_HEXADECIMAL = 4U;
static const uint16_t DIGITS_IN_PRONTO_NUMBER = 4U;
static const uint16_t NUMBERS_IN_PREAMBLE = 4U;
static const uint16_t HEX_MASK = 0xFU;
static const uint32_t REFERENCE_FREQUENCY = 4145146UL;
static const uint16_t FALLBACK_FREQUENCY = 64767U; // To use with frequency = 0;
static const uint32_t MICROSECONDS_IN_SECONDS = 1000000UL;
static const uint16_t PRONTO_DEFAULT_GAP = 45000;
static const uint16_t MARK_EXCESS_MICROS = 20;
static uint16_t to_frequency_k_hz(uint16_t code) {
if (code == 0)
return 0;
return ((REFERENCE_FREQUENCY / code) + 500) / 1000;
}
/*
* Parse the string given as Pronto Hex, and send it a number of times given as argument.
*/
void ProntoProtocol::send_pronto_(RemoteTransmitData *dst, const std::vector<uint16_t> &data) {
if (data.size() < 4)
return;
uint16_t timebase = (MICROSECONDS_IN_SECONDS * data[1] + REFERENCE_FREQUENCY / 2) / REFERENCE_FREQUENCY;
uint16_t khz;
switch (data[0]) {
case LEARNED_TOKEN: // normal, "learned"
khz = to_frequency_k_hz(data[1]);
break;
case LEARNED_NON_MODULATED_TOKEN: // non-demodulated, "learned"
khz = 0U;
break;
default:
return; // There are other types, but they are not handled yet.
}
ESP_LOGD(TAG, "Send Pronto: frequency=%dkHz", khz);
dst->set_carrier_frequency(khz * 1000);
uint16_t intros = 2 * data[2];
uint16_t repeats = 2 * data[3];
ESP_LOGD(TAG, "Send Pronto: intros=%d", intros);
ESP_LOGD(TAG, "Send Pronto: repeats=%d", repeats);
if (NUMBERS_IN_PREAMBLE + intros + repeats != data.size()) { // inconsistent sizes
ESP_LOGE(TAG, "Inconsistent data, not sending");
return;
}
/*
* Generate a new microseconds timing array for sendRaw.
* If recorded by IRremote, intro contains the whole IR data and repeat is empty
*/
dst->reserve(intros + repeats);
for (uint16_t i = 0; i < intros + repeats; i += 2) {
uint32_t duration0 = ((uint32_t) data[i + 0 + NUMBERS_IN_PREAMBLE]) * timebase;
duration0 = duration0 < MICROSECONDS_T_MAX ? duration0 : MICROSECONDS_T_MAX;
uint32_t duration1 = ((uint32_t) data[i + 1 + NUMBERS_IN_PREAMBLE]) * timebase;
duration1 = duration1 < MICROSECONDS_T_MAX ? duration1 : MICROSECONDS_T_MAX;
dst->item(duration0, duration1);
}
}
std::vector<uint16_t> encode_pronto(const std::string &str) {
size_t len = str.length() / (DIGITS_IN_PRONTO_NUMBER + 1) + 1;
std::vector<uint16_t> data;
const char *p = str.c_str();
char *endptr[1];
for (size_t i = 0; i < len; i++) {
uint16_t x = strtol(p, endptr, 16);
if (x == 0 && i >= NUMBERS_IN_PREAMBLE) {
// Alignment error?, bail immediately (often right result).
break;
}
data.push_back(x); // If input is conforming, there can be no overflow!
p = *endptr;
}
return data;
}
void ProntoProtocol::send_pronto_(RemoteTransmitData *dst, const std::string &str) {
std::vector<uint16_t> data = encode_pronto(str);
send_pronto_(dst, data);
}
void ProntoProtocol::encode(RemoteTransmitData *dst, const ProntoData &data) { send_pronto_(dst, data.data); }
uint16_t ProntoProtocol::effective_frequency_(uint16_t frequency) {
return frequency > 0 ? frequency : FALLBACK_FREQUENCY;
}
uint16_t ProntoProtocol::to_timebase_(uint16_t frequency) {
return MICROSECONDS_IN_SECONDS / effective_frequency_(frequency);
}
uint16_t ProntoProtocol::to_frequency_code_(uint16_t frequency) {
return REFERENCE_FREQUENCY / effective_frequency_(frequency);
}
std::string ProntoProtocol::dump_digit_(uint8_t x) {
return std::string(1, (char) (x <= 9 ? ('0' + x) : ('A' + (x - 10))));
}
std::string ProntoProtocol::dump_number_(uint16_t number, bool end /* = false */) {
std::string num;
for (uint8_t i = 0; i < DIGITS_IN_PRONTO_NUMBER; ++i) {
uint8_t shifts = BITS_IN_HEXADECIMAL * (DIGITS_IN_PRONTO_NUMBER - 1 - i);
num += dump_digit_((number >> shifts) & HEX_MASK);
}
if (!end)
num += ' ';
return num;
}
std::string ProntoProtocol::dump_duration_(uint32_t duration, uint16_t timebase, bool end /* = false */) {
return dump_number_((duration + timebase / 2) / timebase, end);
}
std::string ProntoProtocol::compensate_and_dump_sequence_(std::vector<int32_t> *data, uint16_t timebase) {
std::string out;
for (std::vector<int32_t>::size_type i = 0; i < data->size() - 1; i++) {
int32_t t_length = data->at(i);
uint32_t t_duration;
if (t_length > 0) {
// Mark
t_duration = t_length - MARK_EXCESS_MICROS;
} else {
t_duration = -t_length + MARK_EXCESS_MICROS;
}
out += dump_duration_(t_duration, timebase);
}
// append minimum gap
out += dump_duration_(PRONTO_DEFAULT_GAP, timebase, true);
return out;
}
optional<ProntoData> ProntoProtocol::decode(RemoteReceiveData src) {
ProntoData out;
uint16_t frequency = 38000U;
std::vector<int32_t> *data = src.get_raw_data();
std::string prontodata;
prontodata += dump_number_(frequency > 0 ? LEARNED_TOKEN : LEARNED_NON_MODULATED_TOKEN);
prontodata += dump_number_(to_frequency_code_(frequency));
prontodata += dump_number_((data->size() + 1) / 2);
prontodata += dump_number_(0);
uint16_t timebase = to_timebase_(frequency);
prontodata += compensate_and_dump_sequence_(data, timebase);
out.data = prontodata;
return out;
}
void ProntoProtocol::dump(const ProntoData &data) {
std::string first, rest;
if (data.data.size() < 230) {
first = data.data;
} else {
first = data.data.substr(0, 229);
rest = data.data.substr(230);
}
ESP_LOGD(TAG, "Received Pronto: data=%s", first.c_str());
if (!rest.empty()) {
ESP_LOGD(TAG, "%s", rest.c_str());
}
}
} // namespace remote_base
} // namespace esphome