esphome/esphome/components/sps30/sps30.cpp
Martin 6fe22a7e62
SPS30: Add fan action (#3410)
* Add fan action to SPS30

* add codeowner
2022-04-26 09:50:36 +12:00

238 lines
9.2 KiB
C++

#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include "sps30.h"
namespace esphome {
namespace sps30 {
static const char *const TAG = "sps30";
static const uint16_t SPS30_CMD_GET_ARTICLE_CODE = 0xD025;
static const uint16_t SPS30_CMD_GET_SERIAL_NUMBER = 0xD033;
static const uint16_t SPS30_CMD_GET_FIRMWARE_VERSION = 0xD100;
static const uint16_t SPS30_CMD_START_CONTINUOUS_MEASUREMENTS = 0x0010;
static const uint16_t SPS30_CMD_START_CONTINUOUS_MEASUREMENTS_ARG = 0x0300;
static const uint16_t SPS30_CMD_GET_DATA_READY_STATUS = 0x0202;
static const uint16_t SPS30_CMD_READ_MEASUREMENT = 0x0300;
static const uint16_t SPS30_CMD_STOP_MEASUREMENTS = 0x0104;
static const uint16_t SPS30_CMD_SET_AUTOMATIC_CLEANING_INTERVAL_SECONDS = 0x8004;
static const uint16_t SPS30_CMD_START_FAN_CLEANING = 0x5607;
static const uint16_t SPS30_CMD_SOFT_RESET = 0xD304;
static const size_t SERIAL_NUMBER_LENGTH = 8;
static const uint8_t MAX_SKIPPED_DATA_CYCLES_BEFORE_ERROR = 5;
void SPS30Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up sps30...");
this->write_command(SPS30_CMD_SOFT_RESET);
/// Deferred Sensor initialization
this->set_timeout(500, [this]() {
/// Firmware version identification
if (!this->get_register(SPS30_CMD_GET_FIRMWARE_VERSION, raw_firmware_version_, 1)) {
this->error_code_ = FIRMWARE_VERSION_READ_FAILED;
this->mark_failed();
return;
}
/// Serial number identification
uint16_t raw_serial_number[8];
if (!this->get_register(SPS30_CMD_GET_SERIAL_NUMBER, raw_serial_number, 8, 1)) {
this->error_code_ = SERIAL_NUMBER_READ_FAILED;
this->mark_failed();
return;
}
for (size_t i = 0; i < 8; ++i) {
this->serial_number_[i * 2] = static_cast<char>(raw_serial_number[i] >> 8);
this->serial_number_[i * 2 + 1] = uint16_t(uint16_t(raw_serial_number[i] & 0xFF));
}
ESP_LOGD(TAG, " Serial Number: '%s'", this->serial_number_);
bool result;
if (this->fan_interval_.has_value()) {
// override default value
result = write_command(SPS30_CMD_SET_AUTOMATIC_CLEANING_INTERVAL_SECONDS, this->fan_interval_.value());
} else {
result = write_command(SPS30_CMD_SET_AUTOMATIC_CLEANING_INTERVAL_SECONDS);
}
if (result) {
delay(20);
uint16_t secs[2];
if (this->read_data(secs, 2)) {
fan_interval_ = secs[0] << 16 | secs[1];
}
}
this->status_clear_warning();
this->skipped_data_read_cycles_ = 0;
this->start_continuous_measurement_();
});
}
void SPS30Component::dump_config() {
ESP_LOGCONFIG(TAG, "sps30:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
switch (this->error_code_) {
case COMMUNICATION_FAILED:
ESP_LOGW(TAG, "Communication failed! Is the sensor connected?");
break;
case MEASUREMENT_INIT_FAILED:
ESP_LOGW(TAG, "Measurement Initialization failed!");
break;
case SERIAL_NUMBER_REQUEST_FAILED:
ESP_LOGW(TAG, "Unable to request sensor serial number");
break;
case SERIAL_NUMBER_READ_FAILED:
ESP_LOGW(TAG, "Unable to read sensor serial number");
break;
case FIRMWARE_VERSION_REQUEST_FAILED:
ESP_LOGW(TAG, "Unable to request sensor firmware version");
break;
case FIRMWARE_VERSION_READ_FAILED:
ESP_LOGW(TAG, "Unable to read sensor firmware version");
break;
default:
ESP_LOGW(TAG, "Unknown setup error!");
break;
}
}
LOG_UPDATE_INTERVAL(this);
ESP_LOGCONFIG(TAG, " Serial Number: '%s'", this->serial_number_);
ESP_LOGCONFIG(TAG, " Firmware version v%0d.%0d", (raw_firmware_version_ >> 8),
uint16_t(raw_firmware_version_ & 0xFF));
LOG_SENSOR(" ", "PM1.0 Weight Concentration", this->pm_1_0_sensor_);
LOG_SENSOR(" ", "PM2.5 Weight Concentration", this->pm_2_5_sensor_);
LOG_SENSOR(" ", "PM4 Weight Concentration", this->pm_4_0_sensor_);
LOG_SENSOR(" ", "PM10 Weight Concentration", this->pm_10_0_sensor_);
LOG_SENSOR(" ", "PM1.0 Number Concentration", this->pmc_1_0_sensor_);
LOG_SENSOR(" ", "PM2.5 Number Concentration", this->pmc_2_5_sensor_);
LOG_SENSOR(" ", "PM4 Number Concentration", this->pmc_4_0_sensor_);
LOG_SENSOR(" ", "PM10 Number Concentration", this->pmc_10_0_sensor_);
LOG_SENSOR(" ", "PM typical size", this->pm_size_sensor_);
}
void SPS30Component::update() {
/// Check if warning flag active (sensor reconnected?)
if (this->status_has_warning()) {
ESP_LOGD(TAG, "Trying to reconnect the sensor...");
if (this->write_command(SPS30_CMD_SOFT_RESET)) {
ESP_LOGD(TAG, "Sensor has soft-reset successfully. Waiting for reconnection in 500ms...");
this->set_timeout(500, [this]() {
this->start_continuous_measurement_();
/// Sensor restarted and reading attempt made next cycle
this->status_clear_warning();
this->skipped_data_read_cycles_ = 0;
ESP_LOGD(TAG, "Sensor reconnected successfully. Resuming continuous measurement!");
});
} else {
ESP_LOGD(TAG, "Sensor soft-reset failed. Is the sensor offline?");
}
return;
}
/// Check if measurement is ready before reading the value
if (!this->write_command(SPS30_CMD_GET_DATA_READY_STATUS)) {
this->status_set_warning();
return;
}
uint16_t raw_read_status;
if (!this->read_data(&raw_read_status, 1) || raw_read_status == 0x00) {
ESP_LOGD(TAG, "Sensor measurement not ready yet.");
this->skipped_data_read_cycles_++;
/// The following logic is required to address the cases when a sensor is quickly replaced before it's marked
/// as failed so that new sensor is eventually forced to be reinitialized for continuous measurement.
if (this->skipped_data_read_cycles_ > MAX_SKIPPED_DATA_CYCLES_BEFORE_ERROR) {
ESP_LOGD(TAG, "Sensor exceeded max allowed attempts. Sensor communication will be reinitialized.");
this->status_set_warning();
}
return;
}
if (!this->write_command(SPS30_CMD_READ_MEASUREMENT)) {
ESP_LOGW(TAG, "Error reading measurement status!");
this->status_set_warning();
return;
}
this->set_timeout(50, [this]() {
uint16_t raw_data[20];
if (!this->read_data(raw_data, 20)) {
ESP_LOGW(TAG, "Error reading measurement data!");
this->status_set_warning();
return;
}
union uint32_float_t {
uint32_t uint32;
float value;
};
/// Reading and converting Mass concentration
uint32_float_t pm_1_0{.uint32 = (((uint32_t(raw_data[0])) << 16) | (uint32_t(raw_data[1])))};
uint32_float_t pm_2_5{.uint32 = (((uint32_t(raw_data[2])) << 16) | (uint32_t(raw_data[3])))};
uint32_float_t pm_4_0{.uint32 = (((uint32_t(raw_data[4])) << 16) | (uint32_t(raw_data[5])))};
uint32_float_t pm_10_0{.uint32 = (((uint32_t(raw_data[6])) << 16) | (uint32_t(raw_data[7])))};
/// Reading and converting Number concentration
uint32_float_t pmc_0_5{.uint32 = (((uint32_t(raw_data[8])) << 16) | (uint32_t(raw_data[9])))};
uint32_float_t pmc_1_0{.uint32 = (((uint32_t(raw_data[10])) << 16) | (uint32_t(raw_data[11])))};
uint32_float_t pmc_2_5{.uint32 = (((uint32_t(raw_data[12])) << 16) | (uint32_t(raw_data[13])))};
uint32_float_t pmc_4_0{.uint32 = (((uint32_t(raw_data[14])) << 16) | (uint32_t(raw_data[15])))};
uint32_float_t pmc_10_0{.uint32 = (((uint32_t(raw_data[16])) << 16) | (uint32_t(raw_data[17])))};
/// Reading and converting Typical size
uint32_float_t pm_size{.uint32 = (((uint32_t(raw_data[18])) << 16) | (uint32_t(raw_data[19])))};
if (this->pm_1_0_sensor_ != nullptr)
this->pm_1_0_sensor_->publish_state(pm_1_0.value);
if (this->pm_2_5_sensor_ != nullptr)
this->pm_2_5_sensor_->publish_state(pm_2_5.value);
if (this->pm_4_0_sensor_ != nullptr)
this->pm_4_0_sensor_->publish_state(pm_4_0.value);
if (this->pm_10_0_sensor_ != nullptr)
this->pm_10_0_sensor_->publish_state(pm_10_0.value);
if (this->pmc_0_5_sensor_ != nullptr)
this->pmc_0_5_sensor_->publish_state(pmc_0_5.value);
if (this->pmc_1_0_sensor_ != nullptr)
this->pmc_1_0_sensor_->publish_state(pmc_1_0.value);
if (this->pmc_2_5_sensor_ != nullptr)
this->pmc_2_5_sensor_->publish_state(pmc_2_5.value);
if (this->pmc_4_0_sensor_ != nullptr)
this->pmc_4_0_sensor_->publish_state(pmc_4_0.value);
if (this->pmc_10_0_sensor_ != nullptr)
this->pmc_10_0_sensor_->publish_state(pmc_10_0.value);
if (this->pm_size_sensor_ != nullptr)
this->pm_size_sensor_->publish_state(pm_size.value);
this->status_clear_warning();
this->skipped_data_read_cycles_ = 0;
});
}
bool SPS30Component::start_continuous_measurement_() {
uint8_t data[4];
data[0] = SPS30_CMD_START_CONTINUOUS_MEASUREMENTS & 0xFF;
data[1] = 0x03;
data[2] = 0x00;
data[3] = sht_crc_(0x03, 0x00);
if (!this->write_command(SPS30_CMD_START_CONTINUOUS_MEASUREMENTS, SPS30_CMD_START_CONTINUOUS_MEASUREMENTS_ARG)) {
ESP_LOGE(TAG, "Error initiating measurements");
return false;
}
return true;
}
bool SPS30Component::start_fan_cleaning() {
if (!write_command(SPS30_CMD_START_FAN_CLEANING)) {
this->status_set_warning();
ESP_LOGE(TAG, "write error start fan (%d)", this->last_error_);
return false;
} else {
ESP_LOGD(TAG, "Fan auto clean started");
}
return true;
}
} // namespace sps30
} // namespace esphome